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Theory of existence and uniqueness

for the nonlinear

Maxwell-Boltzmann equation I

Aleksander Glikson

A review of the development of the theory of existence and

uniqueness of solutions to initial-value problems for mostly

reduced versions of the nonlinear Maxwell-Boltzmann equation with

a cut-off of intermolecular interaction, precedes the formulation

and discussion of a somewhat generalized initial-value problem

for the full nonlinear Maxwell-Boltzmann equation, with or with-

out a cut-off. This is followed by a derivation of a new

existence-uniqueness result for a particular Cauchy problem for

the full nonlinear Maxwell-Boltzmann equation with a cut-off,

under the assumption that the monatomic Boltzmann gas in the

unbounded physical space X is acted upon by a member of a broad

class of external conservative forces with sufficiently well-

behaved potentials, defined on X and bounded from below. The

result represents a significant improvement of an earlier

theorem by this author which was until now the strongest obtained

for Cauchy problems for the full Maxwell-Boltzmann equation. The
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380 A l e k s a n d e r G l i k s o n

improvement is basically due to the introduction of equivalent

norms in a Banach space, the definition of which is connected

with an exponential function of the total energy of a free-

streaming molecule.

1 . Introduction

In this paper we shall mainly he concerned with the formulation,

discussion, and solution of the general space-dependent initial-value

problem for the full nonlinear Maxwell-Boltzmann equation ("Maxwell-

Boltzmann" in Hilbert's terminology). The Maxwell-Boltzmann equation is a

specific attempt to describe the behaviour of a sufficiently rarefied ideal

gas of identical monatomic molecules in terms of the evolution of the one-

particle distribution function / having arguments

(i, X, £) e r ^ x ^ x E , f{t, X, C) > 0 . Here t is the time coordinate,

X, ̂  a r e respectively the position vector and the velocity vector (of the

so-called representative or test molecule) at instant t , Tm is the time

interval equivalent nondimensionally to [0, °°) , X and H are

respectively the physical (or position) space and the velocity space, and

the set X x E (equivalent to the phase space of the molecule) is non-

dimensionally R' x IT .

The theory of existence and uniqueness of the solutions to the Cauchy

problem for the Maxwell-Boltzmann equation is reasonably complete and well

developed in the spatially homogeneous case (that is when f is by

assumption independent of x ) for the initial condition

/(0, £) = /0(C) ̂  0 such that fQtL (=•) , assuming the absence of any

field of external forces (denoted in the following by F ). Global

existence-uniqueness results (generalized or classical, in the meaning

defined in Subsection 2.B of this paper) were obtained in this case for

various classes of cut-off intermolecular interaction, while imposing

additional restrictions on the initial datum /„ (some of them quite

natural from the physical point of view; for example, the requirement of

the existence of further lower moments of /- ) . See [ M ] , [74], [7], [2],

[76] for relevant literature, covering the results up to 1973, and for a

brief description and discussion of these results. The published results
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The MaxwelI-Boltzmann equation 381

were recently supplemented and improved by an interesting and important

existence-uniqueness-boundedness-smoothness theorem (Truesdell and

Muncaster [2S]), being a continuation of, and complement to, Arkeryd's

investigations [7] and [2]. The authors show that if (l+£2)2/ € ^ ( H )

and a cut-off is assumed, then there exists a unique function f , non-

negative and Lebesgue measurable on J^x : , differentiable almost

everywhere, satisfying the classical Cauchy problem for the reduced

spatially homogeneous Maxwell-Boltzmann equation, and for which, for each

t* = const > 0 , there exists c,A = const > 0 such that

22nt, o n , < 0 „ if * c to, **] .

Though the spatially homogeneous case is interesting for mathematical

and general theoretical considerations, it does not correspond to realistic

rarefied gas flows since the fluid dynamics for this case is trivial - the

density, mean velocity, pressure tensor, heat flux, and so on, are

spatially constant in the region occupied by the gas. For a long time,

progress in the much more realistic (and much more complex) space-dependent

Cauchy problem could not match that in the spatially homogeneous case,

despite the fact that authors had always assumed a cut-off and the absence

of external forces. The existence and uniqueness of solutions were shown

for finite intervals of time of lengths (roughly speaking) inversely

proportional to the degree of departure of the initial data from an

absolute Maxwellian distribution. The most important existence-uniqueness

theorems of that period proven for the Cauchy problem for some classes of

initial conditions, and under the assumption of the so-called angularly

cut-off hard potentials ([/3], especially Sections II and III), were due to

Grad [J5]. See also his earlier papers [73], [74] for the important

fundamentals of the mathematical theory of the reduced (F = 0) Maxwell-

Boltzmann equation, and [72] (especially Section IX) for the connection

with fluid dynamics.

These investigations by Grad, based to a certain extent on the

pioneering works of Hilbert, Carleman, Wild, and Morgenstern (for instance,

Grad's monotone iteration procedure is based on that of Wild [37]), were in

turn extensively used for further investigations of a variety of

theoretical (mathematical) problems of the kinetic theory of gases
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382 Aleksander Glikson

connected with, or related to, the Maxwell-Boltzmann equation, such as in

the work of Gi raud and others in France (see for example [/6], [/7] and the

references contained therein) and more recently in the work of Shizuta,

Ukai, and others essentially done in Japan (see [27] and the references

contained therein). The work done by these Japanese authors is of

particular importance to us since it considers directly the initial-value

problems for the space-dependent case under discussion. Shizuta and

others, using many elements of Grad's approach (for example, the type of

cut-off and the iterative scheme) as well as some elements of the theory of

semigroups, extended Grad's local in time existence-uniqueness results

(including the continuous dependence on the initial data) to global

existence theorems for classical and/or generalized solutions, under the

principal assumption of the closeness of the initial state of the gas to

equilibrium. Since a more detailed description of their results would be

quite lengthy, in view of the sophistication of both the mathematical

methods and the notation used, and since some of the papers listed in [27]

were not available to this author, the reader is referred to the originals

for details. (Although an application of the methods of the theory of

semigroups to Cauchy problems related to, or connected with, the Maxwell-

Boltzmann equation was initiated much earlier by Arsen'ev in [5], and a few

years later developed significantly by Scharf in [24] and [25] - these

three papers were basically on the linearized version of the equation.)

The above results for the space-dependent Cauchy problem are very

similar to, or identical with, the ones obtained for a standard initial-

boundary value problem (briefly, "mixed problem") in a bounded domain

AT (c X) which is a rectangular box with specularly reflecting walls.
D

This boundary condition is, roughly speaking, almost equivalent to a

periodic boundary condition in a smaller rectangular domain in X . (Both

these conditions were first introduced into the existence theory somewhat

unclearly by Morgenstern in [22, §5]-) For a precise description of the

connection between the two types of boundary conditions, see [74,

pp. 161-162].

Chronologically, the existence-uniqueness results for the mixed

problem (derived by similar if not identical means by the same set of

authors as listed above for the space-dependent Cauchy problem) always

preceded corresponding results for "the whole of X ". For example, for
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small initial deviations from an absolute Maxwellian distribution,

significant results were obtained for the mixed problem by Ukai [29] and

somewhat later by Shizuta [26] (strictly speaking, X_ of [26] is cubic

with a periodic boundary condition). Ukai extended Grad's local existence

theorem for Xg in a Sobolev space [74] to a global one in a larger

Sobolev space with the same norm, while Sh i zuta was able to show that his

global continuous solutions were smoother than Ukai's under less

restrictive conditions on the initial data. Shizuta's approach relies

heavily upon the theory of perturbed semigroups as well as on some elements

of the previous investigations of Grad and the classical work of Carleman.

(One cannot rule out the possibility that the significant success with this

standard mixed problem may be linked in an intrinsic way with the well-

known result for the Boltzmann-Gibbs conjecture due to SinaT (for example

see [4, §18] and the references contained therein) that a gas of identical

'billiard-ball' molecules, confined to a container XD as specified above,

is ergodic. Here "identical" means "satisfying (for t € Tm ) the same

vector equation of motion under Axioms 1 and 2 of Subsection 2. A below".)

Before proceeding, it should be mentioned that in this review we omit

all space-dependent existence-uniqueness results obtained for various

modified forms of the reduced or full Maxwell-Boltzmann equation; for

example, we omit a theorem due to Arkeryd [3]. We also omit some slight

perturbations on the theory of the linearized Maxwell-Boltzmann equation,

and we do not discuss results obtained for "the approach to equilibrium",

that is more precisely, for the problem of uniform asymptotic stability in

the large (for example, in the sense of Liapunov) of an appropriate

absolute maxwellian distribution function. (The latest results obtained

for this problem in the space-dependent case seem to be those of [26] and

[27].)

In space-dependent Cauchy problems, involving a reasonably broad class

of external forces acting on a general class of cut-off molecules in X ,

the only investigations made so far are those of [9] and [10]. In these

respects the results of [9] and [70] for continuous solutions (generalized,

regarding their smoothness) were until now the strongest obtained in the

theory of existence and uniqueness of solutions to the full nonlinear

Maxwell-Boltzmann equation.
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In Section 3 of this paper, we significantly strengthen the results of

[9] and [70] by weakening certain restrictions imposed previously on finite

intervals of existence and uniqueness of the solutions. (Only an

improvement on [70] will be presented, since a similar improvement on [9]

is fundamentally less useful.) The advance is basically due to the

introduction of a family of equivalent norms in a certain Banach space, the

definition of which is connected with an exponential function of the total

energy of the free-streaming test molecule. This leads to the replacement

of some Lipschitz conditions, obtained in [9] and [70] for certain integral

operators on closed subsets of the Banach space, by strict contractions on

the same subsets. (As Grad pointed out in [7 7, p. 2!t3] and [74, p. 155],

one cannot be absolutely sure of ultimately obtaining general solutions of

the nonlinear Maxwell-Boltzmann equation valid for all t € Tm , but the

nonlinear theory of the Navier-Stokes equations (which should arise as a

special limiting case from the Maxwell-Boltzmann equation) helps one to

believe in the positive outcome of the expectation.)

In Section 2, which is not only a preparation for the considerations

of Section 3, but more importantly a preparation for further investigations,

we discuss the general space-dependent Cauchy problem for the full Maxwell-

Boltzmann equation, with or without a cut-off. First, in Subsection 2.A,

certain mathematical characteristics of the fundamental concept of the

monatomic molecule, characteristics which in this author's opinion are

definitely needed in the existence-uniqueness theory, are specified by

laying down some mathematical axioms and definitions, while supplementing

them by remarks and comments. (The word "fundamental" is used here in the

meaning that the concept itself is not defined by the axioms.) In such a

way we want to avoid the habitual lack of rigour and completeness of those

theoretical preliminaries of most texts on kinetic theory (and more

generally statistical mechanics), which by their very nature are necessary

preliminaries to the construction of the theory of existence and uniqueness

for the (full) Maxwell-Boltzmann equation.

It should be mentioned here that Subsection 2.A, being basically an

extension and reworking of this author's general ideas and preliminaries

from [9] and [70], exhibits some unavoidable similarities to certain

portions of the text of [2S] which are influenced to a varying extent by

[9] and [70]. It is hoped that the reader will find the content and
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presentation of Subsection 2.A a useful complement to the related material

of [ZS].

Other axioms, concepts, and laws which (again in this author's

opinion) may not be necessarily needed in the theory of existence-

uniqueness, and/or which are in general correctly given in many well-known

texts and papers, are either omitted (for example, some of those used in

the derivations of the Maxwell-Boltzmann equation; see 1111), given and

briefly discussed in Subsection 2.B, or to be found in the l i t e ra tu re to

which references are made in the text .

2. The genera l space -dependen t i n i t i a l - v a l u e problem

A. PRELIMINARIES

AXIOM 1. There i s a vector-differential equation, the newtonian

(vector) equation of motion,

(2.1) | L (x, C) = (? , F( t , x , ?)) ,

obeyed by each monatomic molecule (of a given rarefied gas). Here

X = x(t) and £ = g(t) are, for any fixed t i T = [t , £ ] , points of

X and H respectively, given in cartesian coordinates [X and ~ are as

in Section 1 ; t^. and t. are constants, t. > £ . . ) ; the function F is

supposed to be given, defined everywhere on RL = T x X x E , and

sufficiently well-behaved on R' (see Axiom 2); F(t, X, 5) . often

denoted for brevity as F , is the so-called (resultant) external forae per

unit mass acting on the molecule 'positioned' at (t, x, £) £ R^ .

REMARK. A purist should also postulate the existence of mass of the

molecule as a positive constant assigned to the molecule; that is, mass is

an absolute invariant over I ^ x X x H . In (2.1) mass has been implicitly

taken account of in F . (Now, corresponding to t , Tm = \tQ, <*>) .)

AXIOM 2. For the function F , there exists S : T * R' ->• X x E and

such that, for each fixed [s, X , E ) € RJ, and all t € T ,

8 8 J.
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(x, E) = S(t, 8, X , E ) is a unique solution of (2.1) satisfying the
8 8

init ial condition S(e , e , X , E ) = (x , E ) .
8 8 8 8

REMARK. Physically, such a solution is postulated to describe for

each t € T (by one-to-one correspondence) the so-called classical state

of the molecule in the molecule's phase space.

REMARKS 2.1 . Sets of functions F allowed by Axioms 1 and 2 follow

from various classical existence and/or uniqueness theorems (in particular

those associated with the names of Cauchy, Peano, Picard, Lindelof, Kamke,

Osgood, Nagumo, and Perron) which may be found in most standard texts on

differential equations; for newer results, see for example [20], §§1.3,

1.6, 1.8, and the references contained therein. Usually these theorems are

proved for local existence and uniqueness. When generalizing such local

theorems to the case specified by the above axioms, in which the domain i?_,

is unbounded and with a general T , there can be of course immediate

trivial extensions, as for example the one given in LI 82 (p. 53f footnote

1) for the Picard-Lindel'of theorem. More importantly though, with some

effort the existence and uniqueness can be often shown valid for the

unbounded domain under weaker" conditions than those in trivial extensions,

and such extensions are more useful in our case. [For example, in the case

of the Picard-Lindelof theorem it would be the uniform Lipschltz continuity

of F in (x, E) in the whole of i?J .)

LEMMA 2.1. S ie a continuous function on T * RT .

DEFINITIONS 2.1. For a fixed [s, X , E ) € Ftl , the set
S 8 J.

TT{s, X g , E s ) = { a l l p o i n t s ( * , x , E) | ( x , E) = S{t, e, X g , Cs) ; * € T]

is called the free-streaming Ft -trajectory (of the molecule) through

[8, X , £ ) • If T can be replaced by Tm = [t , ">) , we have the whole

'positive' trajectory denoted by rM(s , X , Es) .

REMARK. In the theory of differential equations or in s t a t i s t i c a l

mechanics a t ra jectory would usually be defined on X x H or an equivalent
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space. However, for our purposes Definitions 2.1 are more useful since

(i) the distribution function / and related functions of

interest are in general defined on i?' , and

(ii) the definitions help to avoid some ambiguities (for example,

see Definitions 2.2 and 2.3 below, or general comments at

the end of this subsection).

DEFINITIONS 2.2. We say that a real scalar-valued function g of

variables t, x , £ i s differentiable in some sense (for example, almost

everywhere) along a trajectory F_(s , x , £_) , i f

exists in the same sense for (x, £) = S ( i , s , X , £ j and t « t < t .
S o U X

If the function g is differentiable along each Tm(s, X , £ ) , that is

for an arbitrary (s, X , £_) € i?~ , then we say that g is differentiable
•7

along the free-streaming trajectories in R' or, briefly, differentiable

along the R'-trajeetories. We call Vg(t, x, £) the total derivative of

g(t, X, £) with respect to t (briefly, the total (time) derivative of

g ) , and usually denote it by Vg . Naturally, Vg , and Vg
0 t=t1

taken as the right- and left-hand side derivatives, respectively.

REMARK 2.2. If g of Definitions 2.2 is differentiable on RJ, ,

( 2 . 2 ) 1 2 % = (O/3*K.O/3x)+F.(3/35))0 E p ^ .

REMARKS 2.3. The notation P of [9] and [JO], as well as the

related terminology of those papers (like "Vg exists" or "g has the

total derivative") were used there with the same meaning as that given in

Definitions 2.2, but, since we followed the use of the rather ambiguous

notation of Grad [JJ], [/3], [74], and of many others (for example, see

[J9], Equation 2.9 and subsequent statements, or see [7], §3.1), we

automatically 'specified' Vg in the form of V-a , although like Grad

himself we did not mean to imply by such a notation that any of the
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separate partial derivatives dg/dt, dg/dx. , or 3g/3E need exist

independently. In this paper we use notation clearly distinguishing

functions g for which Vg is defined (in some sense) from those for which

the separate derivatives exist and so Vjg is defined; see also Remark

2.U. [ A tendency to treat the operators V and V, as equivalent is not

confined to kinetic theory texts. For example, such equivalence is taken

for granted in almost all texts of fluid mechanics.) We should also stress

that except in [2S] the importance of Axiom 2 in writing (2.2)- has not

been pointed out in previous literature on kinetic theory.

REMARK 2.4. It is worth recalling that the mere existence of all

partial derivatives of a continuous function of several variables, plus the

uniqueness and differentiability of parametric representations of these

variables, is not in general sufficient for the equivalence of the total

derivative at the parameter value, t = t* say, and the 'chain-rule'

derivative formally evaluated at t = t* . A classical illustration is

given by g : R •*• R such that g(x, y) = xy /[x +y) for x + y # 0 ,

g(0, 0) = 0 , with x = y = t and t* = 0 .

DEFINITIONS 2.3. The operator {'}S, , if acting on functions with

v
domain i?_ , is defined by

{g{s, Xs, Es)}^ = git, x, E) ,

where s, t 6 T and (x, E) = S(t, s, X , E ) . It will be called the

trajeotorial shifter along VJs, X , E ) . The 'inverse' operator, {•} ,
x S S S

which can be shown to exist on the basis of the above axioms, is defined by

igit, x, E)}* = g{s, xs, £g) ,

where (x , E ] = Sis, t, X, 0 ; that is (xg, Eg) is a unique solution

to the vector equation

at (v ̂  = ft.. F(s- v= ft.. F(s-
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with i n i t i a l conditions x s ( s = *) = X , £g(s = t) = £ . (Of course,

{•} may be interpreted as the trajectorial shifter along T^,(t, x, £) .)

We shall often write {g} instead of {g(t, X, £)} > i f i t does not lead
s s

to any confusion.

REMARK. The distinction between the trajectorial shifter and the

operator, S say, of translating along the (JTxE)-trajectories [20] is

clearly seen from the definition of S , namely, S (x , £ ) = (x, £) .

2.5. {g}, = g and, for any g defined everywhere on i?_ ,
t 1REMARKS

If t)s 7
\{g] > = g • The assumption that dom g = Em is important; for example,

f t)1
see |{x.g/(t-l)}*l for F E 0 .

*• >t

REMARK 2.6. If Vg exists for t € T , then

5 = 0 , 0~ for t = t., t. respectively.

This explains the connection between V and {•} , and gives Vg as a

7
function on R' .

LEMMA 2.2. It follows from Lemma 2.1 i/iat for s, t € 2" a

trajeatorial shifter maps continuous functions, defined on RL , into

continuous functions.

LEMMA 2.3. If s is independent of t , then V{g} E 0 wherever
s

Dig] esn,sts.
a s

REMARK. It seems proper to explain here that the condition t f. e in

the property (12b) of [9] was meant to express the above assumption of

independence between s and t by pointing out that s and t are two
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different (in the sense of independent) variables. The assumption is

needed, see the case {g)t of Remarks 2.5 or see Remark 2.6.

GENERAL COMMENTS. It is clear from the preceding that the explicit

presentation of Axiom 2 is needed to assure rigour and completeness in

various parts of kinetic theory, and more generally of statistical

mechanics. As a rule, this has not been recognized in the literature,

though one may sometimes trace this very axiom used implicitly in a

statement like "no trajectories can intersect one another since then for

the same initial condition we would have two different histories of the

same motion". In the kinetic theory of gases such a lack of recognition

appears in almost all of the modern mathematically oriented texts, for

example, in [J7], [793, [7], [6], [S3 ([2S] being a notable exception), and

in all less mathematical and older texts. (I suspect this rather sloppy

approach is largely due to the traditional philosophic viewpoint on the

determinism of classical mechanics.)

In the specific case of the theory of existence and uniqueness for the

Maxwell-Boltzmann equation proper, the situation happened to be in general

better in this respect, simply because almost all results (see Section 1 )

were derived under the assumption F = 0 in which case Axiom 2 is

trivially satisfied. But the abovementioned lack of rigour can be noticed

in papers dealing with existence-uniqueness questions for modified or some-

what generalized versions of the full Maxwell-Boltzmann equation (that is,

roughly speaking, with F ^ 0 ). For example, this was the case in [23]

and to a lesser extent in [9] and [70]. In [23] Povzner, considering a

modified Maxwell-Bolt zmann equation with a conservative F independent of

t and £ , used a certain superposition of operations which is formally

equivalent to a particular kind of the trajectorial shifter {•} , while

assuming only that the F's potential, V , belongs to C(X) . Of course,

this assumption was too weak even to guarantee local existence of solutions

to the appropriate hamiltonian equations, and moreover, since Povzner's

results for the modified Maxwell-Boltzmann equation were global on

T x x x 5 , even the assumption U € u(X) would not be sufficient to

ensure the needed global fulfilment of Axiom 2. In [9] and [70], this

author pointed out that his F (defined almost identically to that of
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[23]) was assumed to be a continuous vector-function of x , thus Axiom 2

was valid at least locally. Unfortunately, under the influence of

longstanding 'tradition1, it was not explicitly stated in [9] and [70] that

Axiom 2 is supposed valid in i?~ for a suitable T , although just this

'global' assumption was implicitly used in the papers in certain parts of

the proofs. (The use of this assumption is apparent in the proof of Lemma

3.1 below.) While it would be sufficient to assume F 6 Lip(X) uniformly,

the assumption f\ € CX(X) (i = 1, 2, 3) , F = {F , F , f j , would not

be sufficient since in particular the domain i?~ is unbounded; see also

Remarks 2.1.

B. THE GENERAL INITIAL-VALUE PROBLEM

7
Assuming that Axioms 1 and 2 are satisfied on i?™ for every t > t_

(unless otherwise stated), we shall first consider the following Cauchy

problem closely related to the full conventional Maxwell-Boltzmann

equation:

(2.3) Vf = C(/, /) , t > tQ ,

with the initial condition

(2.U) f{tQ, X, C) = f o ( x , €) 5 0 ,

which on physical grounds should be such that at least

The quadratic operator C(* , •) in (2.3) is formally given by

(2.5) C(g, g) = \ Vig^

where

( 2 . 5 ) 2 g = g ( t , x , 5 ) , g = ( t , x , £ ) , g ' E g ( t , x , £ ' ) ,

V s g(t, x, I ' ) ,

( 2 . 5 ) 2 3 V B % - ? , <Jtf =rdrdz ,
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(Hereafter, for brevity, we often use functional symbols to denote varying

values of functions; also for any vector O , a = |a| .) The

conventional Maxwell-Boltzmann equation is obtained from (2.3) on replacing

the operator V by the operator P, introduced in Remark 2.2.

In the usual terminology, C(f,f) is the collision integral (which

should be explicitly assumed (absolutely) convergent - a precaution which

has often been neglected); V is the velocity of a scattered molecule with

respect to a scatterer; r 2 0 and e € [0, 2tr) , called respectively the

impact parameter and the azimuthal angle, are geometric variables - polar

coordinates in the impact parameter plane - of the elastic collision of two

monatomic molecules, whose velocities £ an<^ £ before collision are for

given r and e uniquely transformed under the conservation laws (2.5);, ^

to velocities £' and £' , respectively, after collision, ( A detailed

information about the linear mappings % , % ) * • (£ ' , % ') can be found in

[77], Section 15, and [6], Chapter I, Section 7, Chapter II, Section 1.)

The region Q determines the limits of integration for the differential

scattering cross-section I(V, 9) of spherically symmetric scattering into

a differential solid angle (9, 0-»d9) , where 8 € [0, IT] is the

colatitude (the polar axis is directed along V ); by definition,

I(V, 9 ) sin QdQde. = do . It is standard practice to assume the potential

of (central) intermolecular force is repulsive; this guarantees in

particular a 'safe' one-to-one passage from 9 as a function of r to its

inverse (for example see [6], Chapter I, Section 7)-

The volume of Q , I do , is the so-called total collision cross-•I
section. For an infinite range of intermolecular interaction, when

r € [0, °°) or 9 € [0, ir ] , thevolume is clearly infinite; if the volume

is finite we say that a cut-off (of the range of intermolecular inter-

action) has been applied. It should be mentioned that integration over fi

may, in some cases, be a priori artificial. This is the case with the

pseudo-maxwellian molecular model. (For the original definition of this

model, see [77], p. 2UU and p. 21*7, Equation (20.1*); a frequently used

description of such molecules as simply cut-off maxwellian is ambiguous.)

The same is true for a whole class of formal models which contains the
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pseudo-maxwellian as a particular case. (The existence of such a class of

the so-called pseudomolecules [28] has been pointed out in [9].) The

artificial integration is a specific feature of an implicit or unspecified

cut-off defined later in this subsection.

For an alternative introduction of the collision integral, which is

more abstract and somewhat less detailed from the physical point of view,

see [23~], [7], [26]; for other details of the collision integral, in

particular for a thorough description of certain cut-offs, see [7 7], [79],

[7], [6]; a thorough discussion of the (absolute) convergence of C(/, /)

and related integrals is given in [28].

The value t = t. has been used above as the initial time, instead of

t = 0 , to facilitate:

(i) a discussion of a continuation of the solution outside some

'basic' interval of its existence, and

(ii) a planned extension of this work to mixed problems for the

full Maxwell-Boltzmann equation (compare with the "F = 0"

case in [71], Section 19).

Also the last but not the least reason for the use of t rather than

t = 0 is that, if the above axioms are satisfied for a particular given F

provided t € [t , *0+a] where a = const > 0 , they may not in general be

satisfied for t € [0, a] .

Now, using a particular case of the trajectorial shifter along

rM(t, X, £) (see Definitions 2.1 and 2.3), we may formally convert the

Cauchy problem (2.3)-(2.5) into the problem of finding solutions of the

following purely integral equation introduced in [9]:

(2.6) / = A/ , t > tQ , fQ > 0 ,

Af ~= {fo}\ * f* Wf, f)}lde .
0 t0

Clearly this latter problem may or may not be equivalent to the earlier one

or the conventional one, especially regarding smoothness properties of

their solutions (see some comments below). Also note that, provided

C(/, /) is convergent for r € [0, <*>) , the equation (2.6) is usually
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meaningful for molecules with infinite total collision cross-section.

Suppose that C(f, f) can be split into a difference of two terms,

the creation-collision term \i{f, f) and the annihilation-collision term

j\)f , where the creation-collision operator y(*, •) and the collision

frequency operator v (•) are defined by the integrals

(2.7) u(<?, g) = ( Vg'g'dx£ ,
JftxE

(2.8) vg = f VgdadZ ,
Jfix»

(compare with (2.5)) which are both convergent although not necessarily

bounded, for example i f £-»•<». Then, using some t ra jec tor ia l shifters of

the same kind as in (2.6) , we can formally rewrite the Cauchy problem

(2.3)-(2.5) as the following integral equation ([70]):

(2.9) f = Bf , t > tQ , fQ > 0 ,

r fBf i {f}* expP f {v/}*&| + f {u(/, / )}*exPr f

The operator 8 is in several respects more useful for the existence

theory (including the theory for mixed problems) and its applications, than

A . Specifically, in applications of certain direct and semi-direct

schemes of successive approximations some of the advantages are:

(1) for a non-negative initial datum, 8 leads through non-

negative approximations to a non-negative solution (this is

not in general the case if one uses A );

(2) the mapping condition, 8/ € $ if / € $ , imposes usually

weaker restrictions on the time interval involved than does

an analogous condition for A ;

(3) there is a definite indication in the available applications

of reduced and/or modified versions of (2.9) that the first

few approximations using 8 give a much more precise picture

of the flow of a Boltzmann gas than those obtained using

A ;

(k) the so-called Knudsen iteration using the operator A fails

https://doi.org/10.1017/S0004972700023480 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023480


The MaxweII-Boltzmann equation 395

altogether in the case of certain (one-dimensional)

geometries. This fact was pointed out and partly explained

by Willis (for example, in [32] and [33]). For a short

explanation from a functional analysis view-point the reader

is advised to consult Cercignani [6, pp. 136, 20l»].

The feature (3) is not really surprising, considering the physical

interpretation of the equation (2.9). For example, see either Grad's

discussion for F H 0 in [7J], Section 19, or a direct (that is omitting

the conventional Maxwell-Boltzmann equation) physico-probabilistic

construction of the reduced version of (2.9) for a general mixed problem in

VaI lander's paper [30], the ideas and terminology of which remind one of

the so-called demographic method [21]. (it should be pointed out that [30]

has some serious mathematical omissions discussed in detail elsewhere.

Also Vallander's conclusion that the "Boltzmann kinetic equation is a

decidedly impoverished consequence of our equations" seems to be very much

exaggerated.)

Although as early as in 1958, Wi I I is mentioned (for example, in [33])

the possibility of utilizing other integral forms of the reduced Maxwell-

Boltzmann equation, it was not until 1972 that this idea was applied by

Arkeryd in his investigations of the initial-value problem for a

generalized spatially homogeneous Maxwell-Boltzmann equation. The

usefulness of such an idea in the case F ^ 0 is still an open question.

Before proceeding further, we shall make some suggestions towards more

precise terminology.

(Si) It is known (for example, see [6, p. 36]) that for the above-

mentioned splitting of C(f, f) to be permissible, a cut-off of the

intermolecular interaction has to be applied to eliminate contributions due

to the so-called weak or grazing collisions which produce the trouble-

some divergencies. (From the point of view of the scattering process,

l(V, 9) exhibits a nonintegrable singularity at the scattering angle

9 = 0 . ) Suppose that such a cut-off is introduced without specific

mention of any particular restriction(s) on the range of variables

appearing in the definition of the differential scattering cross-section,

and/or without reference to the kind of intermolecular interaction. (For

example, a functional bound may be imposed on the kernel of the collision
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integral such that it is feasible only if the total collision cross-section

is not infinite.) Then we may call such a cut-off unspecified or implicit,

adding this terminology to that of radial cut-off and angular cut-off as

introduced in 196? by Cercignani (for details of those cut-offs, see [6],

Chapter III). This gives us a terminology sufficiently complete to cover

all cut-offs used in the existence theory of the Maxwell-Boltzmann

equation. (Note that one may regard the application of any other cut-off,

except the radial one, as a mathematical trick producing a kind of modified

Maxwell-Boltzmann equation.)

(S2) Despite considerable usage of the phrase "classical solution of

the Maxwell-Boltzmann equation" in recent literature, a specification of

the term "classical" is lacking. To the best of this author's knowledge of

the literature: a classical solution of the Maxwell-Boltzmann equation is

an L (H)-solution / of the equation V J' = C(f, f) , where V , is

defined by (2.2)2 in Remark 2.2, and so (according to Remarks 2.3) 3//3t ,

8//9X , and 8//3g exist separately in some sense; an L (E)-solution

f of the equation Vf = Cif, f) should be called a generalized solution

of the Maxwell-Bolt zmann equation, unless it has been shown that f is an

/ . Naturally, one may object on historical, physical, and logical grounds

to calling "classical" a solution J of V •£ = C(f, f) which (say)

attains some negative values, is such that Vf ? V ,/ (see Remark 2.k), and

whose energy moment is divergent. In particular, to be a probability

density function, f would have to be non-negative; also in all classical

phenomenological derivations of the Maxwell-Boltzmann equation, the motion

of the test molecule is first considered along its free-streaming

trajectory (that is, implicitly via V ) and only then the operator V is

replaced by 0, . Hence, for evident reasons, we propose the name

traditional solution for a non-negative classical solution / , satisfying

(2.2). with Vjf existing at least almost everywhere, and such that

Now, by slightly extending WiId's remark in [37] on the reduced

version of (2.9), one can statethat differentiable solutions of (2.6) or

(2.9) are also classical solutions of the conventional version of the

Cauchy problem (2.3)-(2.5) or, under some obvious assumptions, traditional
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solutions of (2.3)-(2.5). In the general case, however, it is not known

whether a solution-, / , of (2.6) or (2.9) has to he classical. While it

can usually be rather simply shown that Vf is defined in an appropriate

sense on the time interval of the existence of / and there satisfies

suitable conditions (as an illustration of this, see the proof of Theorem

3.2 below), the mere existence, in one sense or another, of the separate

derivatives 3//3t , 8//9x , and 3//8£ seems to require a number of

additional smoothness-boundedness restrictions to be imposed on certain of

the (distribution) functions involved (see examples of this in Grad's

papers [74] and [75]).

It is not yet clear to this author whether the recent approach of

Shizuta and others [27], 1261, leading to some types of classical solutions

for the reduced version of the Maxwell-Boltzmann equation with angularly

cut-off hard potential, is appropriate in the general case under

consideration, since that case involves non-trivial trajectorial shifters.

Also the passage from potentials with angular cut-offs to potentials with

radial cut-offs appears to be a subtle and insufficiently clarified matter.

However, in Shizuta's opinion [26, §8] his method should be applicable to

the standard mixed problem in the case of the radially cut-off hard

potentials and reduced Maxwell-Boltzmann equation. (No proof of this

conjecture was available in [26], but it looks very sound, in particular,

because the angularly cut-off hard potentials were intentionally introduced

by Grad as an 'analogy' to the billiard-ball molecular model [73, p. 31].)

We end this section by recalling that in the case when (2.6) is used

(say, as the basis for successive approximations), there is additional

difficulty in showing that the solution obtained (classical or generalized)

is non-negative.

3. A particular generalized initial-value problem

A. FORMULATION OF THE PROBLEM

Let (<2n> b, a, q, £/,,) be an arbitrary fixed point of R where

R+ E (0, =°) .

Henceforth we shall only consider the particular case of the initial-

value problem (2.3)-(2.5) specified by the following assumptions:
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(3.1) Axioms 1 and 2 (as given in Subsection 2.A) are valid in si

with T = tQ, tQ+q~ under the assumption that (for al l

X f X )

(3.1), F = - r— , where U is a sufficiently smooth function of x

alone such that

(3.1)2 inf U = Ut ;

x

(3.2) f d u s l i
o

(3 .3 ) / 0 € C(X x 5) ,

(3.U) O s fQeQ < aQ ,

where

(3.5) Q i c[E.2+2U) ;

that is, Q is proportional to the total mechanical energy of the test

molecule free-streaming in the field F .

B. MAIN RESULTS

In what follows we denote by P{X) the set of functions F

satisfying the assumptions (3.1), 2
 a n d such that Axiom 2 is valid on RL

with T as given in (3.1). The set of functions /. satisfying

(3-3)-(3-5) will be denoted by $ Q U x =) .

In addition, we assume in the following that,

(3-6). unless otherwise stated, the variable t is restricted to the

interval j = [tQ, tQ+Bj , where 6 = const € (o, q'1) ,

and then introduce the scalar expressions ip and Q defined by

(3.7) $ = yd) = o[l-q[t-tQ)) ,
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(3.8) Q E [x-q{t-tJ)Q i

Of c o u r s e , i n view of ( 3 . 6 ) , ( 3 . 5 ) , and ( 3 . l ) p ,

( 3 . 9 ) i n f \ji > 0 , i n f Q > 0 , and i n f Q > 0 .

* ,x,5 «?^

For each a € (0, ft] , we denote by $ if the Banach space of
a[ TJ

functions f such that

(3.10)2 sup [\f\eQ] < - ,

where

(3.10)3 T B

with the basic norm, II* IL > given by
a

(3-10)^ | | / | | $ = sup (\f\eQ) .

In every $ i? we also introduce a certain class of norms,a{ TJ
II* IL » equivalent to ||«|| and defined by

« p ( t t )
(3.1D Il/llo = sup (|/|e ° ) ,

a ' (t,x,?)esj

p = const 6 R .

The equivalence of the norms follows immediately from

< ll/ll, 5 Il/H ,
a a ^ a

for a l l (a, p , / ) € (0, g] x i?+ x $ i? . (One needs to check
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71

the equivalence since each $ li? i s infinite-dimensional. For a f ini te-

dimensional space a l l norms are equivalent.)
Let $ n lif

7 be the closed subset of $ lif'l such thata[ TJ

( 3 . 1 2 ^ f> 0 ,

(3.12)2 llfH 5 a± , a = const > 0 .

Clearly $ I if i s not a Banach space, as i t i s not closed under

addition, but i t i s a complete metric space under the metric induced by any

of the norms II'IL . » p € [0, ») .

REMARK. Note that the set C^ in Theorem 3 (a) of [70] should be
o

understood as $ i? with a restricted to a certain range. It is
a,i^ xj

proper to mention here that some sloppiness in the introduction of the

notation R in [9] (see also [70], Section 2) resulted in subsequent
o

sloppiness in some parts of [9] and [70]. Since appropriate corrections of

[9] and [70] are simple and can be easily deduced either directly from

those papers, or by comparison with the present one, we shall not elaborate

upon them separately.

REMARK 3.1. In the proofs of the lemmas and theorems of this section

we shall frequently use the fact that

(3.13) any function of Q alone is invariant under the operation

{•} fwhere {•} is the trajectorial shifter introduced in
s v s

Definitions 2.3) .

This property can be immediately deduced from the comment following the

definition (3.5).

The following lemma, to be used later in our investigations,

represents an improvement of a result contained in [70]. (We remind the

reader that in this section we restrict our attention to the strengthening
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of the results of LI01.) Since appropriate parts of the proof of the

result as given in that paper are too condensed, and since some estimates

needed for the lemma are scattered throughout [9] and LI01, the basic

steps of the proof of the lemma are given below. (Note changes in the

notation compared with [9] and [70].)

LEMMA 3.1. Given

(i) a point [a , a , b, $, c, q, t ) € R x R where a > aQ

and 6"1 > q ,

(ii) f € $ (X x =) , and

(Hi) F € P(X) ,

there is a largest constant y € (0, B] such that, for any a. € (0, y]

and dm £ b , 8$ i? c $ i?' for the operator 8 as defined in

(2.9). The constant y satisfies the inequality

(3.lit) y > t* - tQ ,

where t* is the largest constant from the interval (*_, * n + ^ such that

(3.15) sup n(**, Q) 5 -—- [a^-a^ .

Here

-q[t-to)Q

where

(3.15)2 <t>(y) = 2

(3.15)3 V =

REMARK. An easy proof that such a constant t* does exist is left to

the reader.

REMARKS 3.2. We draw attention to the importance of the properties

(3.9) in the proofs of this section. Henceforth, to avoid repetition,

direct references to (3.9) will usually be omitted. For brevity, we shall
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also omit direct references to the definitions given in Subsection 2.A.

Proof of Lemma 3.1. In view of (2.7)-(2.9), (3.1*), (3.10)^,

(3.12) 2, the property (3.13) and other (more elementary) properties of

the trajectorial shifter, we may write (for all t f TR J

t f*

° *0 >tn

Since, by the conservation law (2.5)c and the definitions (2.7) and (2 .8) ,

we have

(3.16) u(e"«, e~Q) = e"^v(e-^) ,

the preceding inequality can be replaced by:

(3.17) 0 5 B/ £ aQe \ |

for a l l t € x_ .
p

Using the assumption (3.2), the estimate V £ £ + % (see (2.5)2), the

definition (3.8), and the property (3.13), we can show that

(3.18) f {eMe^du < ifc f {«-(5l

f* q{-0
5 -nbe *

where £/*, <j>, and ^* are defined by (3.l)2> (3.15)2, and (3.15L,

respectively. Hence, by (3.8) and (3.18) , (3.17) implies
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i 2 ,t qiu-
\a *nafb e
1 J*0

(3.19) 0 s eHf < e

*0

Let us now restrict attention to times t in the interval C^n' **J '

where t* is as specified above in the statement of the lemma, and denote

\j)(t*) by ^ . Then (for all t i. [t , t*\ ) we have, using in

particular

(i) the evident monotonicity with respect to t of some

functions on the right-hand side of (3.19) and

(ii) the definition (3.15^,

(3,.20) 0

Therefore

(3..21)

- &

by

"8.

(3

f < a

5 a

= a

• 15),

0 +

0 +

0 +

j [ t - t ^ Q . - l

qQ

-q[t*-tQ)Q

, Q) .

0 < e%f 5

for a l l f € $ L>T and a € (o,

To complete the proof of the lemma, we shall show that 8 / i s

f 7)continuous for every / € $ i? , where a f (0, 6] . We notice f i r s t

that i t is sufficient i f we prove that vf and u ( / , / ) are continuous

functions for any such / . This follows by using assumptions (3.1) and

(3.6) in association with Lemmas 2.1 and 2.2, and by referring to the

definitions of the operators v , \i , and 8 (see (2 .7)- (2 .9)) ; also note

(3.3).

We shall only outline the proof of the continuity of vf , as i t wil l

be seen that the proof for \i(f, f) i s similar, in view of (3.12)p and

(3-l6) . Now, given C € H , we choose an open ba l l B in 5 , with centre
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at the origin of H and such that £ € B , and we define the function g

on the set T Q X X x B x H by the identity g(t, X, £, £) = //(£, X, £) .
p

Then, using the inequality V 5 £ + 5 and the assumption (3.12)p, we

obtain a functional bound for g which depends only on f (strictly

speaking, only on £ ) and is integrable on E . On the basis of this and

some other (more evident) properties of g , we can deduce the required

continuity of vf by applying the Lebesgue dominated convergence theorem.

The lemma now follows from the preceding considerations on taking into

account the nature of the above estimates which lead to (3.21).

REMARK 3.3. The above proof of the continuity of 8/ is of course

f 7l
valid for every f € $ i? - a fact which is used in a forthcoming paper.

It has been proved in [70] that the operator 8 satisfies in terms of

the '1)3810' metric induced by ||>|L a Lipschitz condition on $ . i?
a ' v. J

for each a € (0, 3] > but to show that 8 is a contraction on $ .. \R \ ,

it is additionally assumed in [70] that a is sufficiently small. In

Theorem 3.1 below we present a much stronger result which is mainly due to

the introduction in $ # of the class of equivalent norms II*IL »

p € R , defined by (3.11). For convenience, we denote by $ , the

f 7lcomplete metric space which consists of the set $ B equipped with

the metric induced by the equivalent norm II'IL

a'P

REMARK 3.4- It is of basic importance for what follows to realise

that the introduction of the equivalent norms (3.11) does not affect

. Therefore we can be free in our selection of a suitable p , or

a suitable range for p .

THEOREM 3.1. If

(i) [a , a , b, fl, a, q, tQ) is a point of R+ x R such that

e"1 > q ,
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(ii) fQ (. <bQ{X x =) , and

(Hi) F € P(X) ,

then for each a € (0, f$] there exists a constant p € J?+ such that the

operator B is a contraction on $ for any p > p , provided
cx»J-»P ot

(iv) din S b .dm £

f 7l
P r o o f . For any / , , / % > € $ iK" where a € ( 0 , [5] , we h a v e ( s e e

[JO], Section 3 ) ,

(3.22)

*0 *0

Denote successive terms on the right-hand side of (3.22) by

X (/ , /2) , xAf^, f2) , and K-[f', /„) ; then using the definition (3.11)

as well as some further manipulations and estimates similar to those used

i n [9]> ['0]> and in the proof of Lemma 3.1, we may write for any

a € (0, g] the following estimates:

it
(3.23)

a' tQ

- l J 2 " $ a ; p

where

(3.2U) \j> = inf ip = i{)(tr.'
|a]
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and

(3.25) MAt, Q; p) B iraQbe ° ° <l£2* * J *

(3.26) X (/ / ) 5 2a H/ - / || f* {e-\{e-%P[t

,t (qQ+p)[u-t)

V
V2(t, Q; p)* lUi-Ja"* ;P •

a ̂

where

(3.27) W2(t, «; p) = 2vaxbe
 a *„ •[*J*J

and, using the estimate of {\>\f -f2\}^ds available in (3-23),

*0

(3.28)

'*0

*a;p

where

— -
(3.29) Af-(t, «; p) = — M A t , Q; p)eQ f {e~Qv{e~Q)\ldu .

3 aQ 1 J^ M

Now, by (3.5), (3.9), (3.15)2 3> (3.2l»), and the estimate
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f
qQ

(which is evident from the estimates (3.17)-(3.20)), it follows from

(3.25), (3.27), and (3.29) that AT,(«, •, •) , i = 1, 2, 3 , are bounded

functions on T x [2aU^, °°) x R+ . Subsequently, using the estimates

(3.23), (3.26), (3.28), and the definition (3.11) (on taking into account

f 7l
the continuity of 8/ for / € $ \R \ with a € (0, f$] as shown in the

proof of Lemma 3.l) , we obtain from (3.22),

(3.30) p f j - B / ^ 5 ^ ( p ) ! ! / - ^ ! ^ . »

where

3
(3.31) eAp) = T, M*(p) ,

(S.SIJ-L M*.Ap) = sup M t ^ ' Q> P^ > "i = 1, 2, 3 ,

A?* (p) f ini te (and greater than 0 ) for a l l (a, p) € (0, 6] x i?+ .

Moreover,

(3-32) Wia
(#) * ° f o r V * °° ' i = 1, 2, 3 .

Hence, by (3 .3l) - (3 .32) ,

(3.33) for each a € (0, B] , there exists

Pa « * + I (P « (P a . m) =* 0 < ea(P> < l ) •

This completes the proof.

REMARK. As is seen from its proof, Theorem 3.1 can be replaced by a

more general one if needed.

REMARK 3.5. Clearly, the abstract Lipschitz condition (3.30) remains

valid for p = 0 ; that is, for the basic norm II"II* and with the

Lipschitz constant e (0 ) .

The following lemma will help to establish property (iv) in Theorem
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3.2 below. (we remind the reader that the operator B is defined in

(2.9)-) For brevity in the statement of the lemma e (0) is taken to

denote e(0 ) .

LEMMA 3.2. If B(«, •) denotes the operator defined by

(3.3U) B(/Q, /) i Bf ,

then, under the assumptions (i), (Hi), and (iv) of Theorem 3.1,

Il8(fo, f)-B{g0, g)\\^.p 5 ll^o-^oll^.p +

for any fQ, gQ € $QU x H) , any f, g i $a ARJA , and any p € [0, «.)

Proof. We begin from the following estimate which is a

'generalization' of (3-22):

(3.35) |B(/Q, f)-B{gQ, g) \ < K[fQ, gQ, f, g) + K^f, g) + K^f, g) ,

i -»r-r

where

(3.36) K[fQ, gQ, f, g) =

*0

and where K.A.', •) and X,(*, •) are as defined in the first statement

after (3.22).

Applying now to K(fQ, gQ, f, g) the inequality

and next using

(i) the bound (3-1*),

( i i ) the estimate

£ f ^jj | J]| |
*o *o *o

and
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(iii) some simple properties of the trajectorial shifter, we

obtain from (3.36)

(3.37) K{fQ, gQ, f, g] s K±(f, g)

{Qq*p){t-tA
Since / , g € $(X x H) and [e } = 1 , we have on the

U U • U c\

basis of (3.8), (3.11), and the property (3.13),

(3-38) l ^

°Vo-*o"Vp -

for all p € [0, oo) .

The result to be proved follows easily from

(i) (3.35)-(3.38),

(ii) those estimates in the proof of Theorem 3.1 which lead to

(3.30), and

(iii) Remark 3.5.

We are now ready to prove the principal result of this section.

THEOREM 3.2. Let (aQ, a^ b, 6, a, q, tQ) be a point of IC+ * R

such that a > a and B"1 > q , and let F belong to P(X) . Then for

each a € (0, y] > where y is ae specified in Lemma 3.1, the Cauchy
problem (2.3)-(2.5) with an arbitrary f € *Q(* x =) •» aru^ under the 'aut-

{ 7loff assumption (3.2), has in * f? a unique solution f = f .

Specifically [for each a € (0, Y] )•

(i) f is differentiable along the R^-trajectorres;

(ii) Vf and C(f, f) are identical bounded continuous functions
vanishing for £ •* » ;

(iii) f = lim fn , where fn+1 = Bfn (n = 1, 2, . . . ) , and f
n-w>
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is an arbitrary element of $ i? ; there exists a

number p € R+ such that for any p > p the error

estimate of the successive approximations may be given by

where e^ip) € (0,1) and is defined by (3.31), (3.31)^

(iv) for any number p > inf{p } , f satisfies an abstract

Lipschitz condition on $ (X x E) for the norm 11*11*

with a Lipschitz constant greater than or equal to

(l-e (p)) uniformly with respect to the set

{(i0, *) I *Q e R'> * e T } •>' ^n particular, within

$ (AT x E) the solution f depends continuously on f

with respect to any norm ||*|L _ where p > inf{p }

Proof. On the basis of Lemma 3.1, Theorem 3.1, and the principle of

contracting mappings, it immediately follows that the operator B has, for

( f)
each a € (0, y] , a unique fixed point f = f in $ -, # •

a>-H TJ

Applying

the operator V (for example, via Remark 2.6) to both sides of the

identity f = Bf , and using in particular Lemma 2.2 and Lemma 2.3, we

establish the existence of the total derivative Vf by establishing the

7

differentiability along the R -trajectories of various factors and terms

appearing in the expansion of 08/ . Moreover, we ultimately obtain that

jTgjt1 = -f\)f + p(/, f) = C{f, f) . In such a way we arrive at the conclusion

that / satisfies the Cauchy problem (2.3)-(2.5). More precisely, since

we have already shown in the proof of Lemma 3.1 that for any / 6 $ i?

both fvf and \i{f, f) are non-negative continuous functions bounded by

-(e+2* Ut) _2 f i I
TiaJbe 4> <\>W £* , where a., b, \\> , V A are positive numbers and

£*, (ji are defined by (3.15)j, ,, the solution / has the property (ii) .
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The statement (iii) is obviously an appropriate (taking account of

(3.30)-(3.33)) version of a standard statement contained in the principle

of contracting mappings.

To prove (iv) we consider two solutions, f and g say, of the

Cauchy problem (2.3)-(2.5) in $ .\R which correspond respectively to

some arbitrarily chosen initial conditions f and g belonging to

$0(j x H) . Of course, f and g can be obtained as limits, for n •*• °° ,

of the iterative scheme described in (iii) , with B/ replaced by

> / ) and 8 ( ^ Q , g ) , respectively, and with arbitrary

( 7)
f , g € $ \R \ ; see (3-31*) for the definition of B(«, •) . Now put
1 1 Ô sll, Ĵ

/_. = / and g = g . Then by this 'new1 iterative scheme and Lemma 3.2,

and, in a similar manner, we obtain by induction

In view of (3.33), the required Lipschitz condition follows immediately for

p > inf{p } , where p is that of the statement (iii) , by letting

n •* °° . This ends the proof of the theorem.

REMARKS. The above list of properties of / is not meant to be

exhaustive or to include full particulars. For example, we could add a

statement on the existence of moments of / and be more specific in

assertion (ii) of the theorem. Some of the omitted details and properties

(in particular, those connected with the concept of the H-function) will

be presented in a later paper.
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