The mitochondrial DNA diversity of captive ruffed
lemurs (Varecia spp.): implications for conservation
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Abstract Ruffed lemurs (Varecia variegata and Varecia
rubra) are categorized as Critically Endangered on the
IUCN Red List, and genetic studies are needed for assessing
the conservation value of captive populations. Using 280
mitochondrial DNA (mtDNA) D-loop sequences, we stud-
ied the genetic diversity and structure of captive ruffed le-
murs in Madagascar, Europe and North America. We
found 10 new haplotypes: one from the European captive
V. rubra population, three from captive V. variegata sub-
cincta (one from Europe and two from Madagascar) and
six from other captive V. variegata in Madagascar. We
found low mtDNA genetic diversity in the European and
North American captive populations of V. variegata. Several
founder individuals shared the same mtDNA haplotype and
therefore should not be assumed to be unrelated founders
when making breeding recommendations. The captive popu-
lation in Madagascar has high genetic diversity, including
haplotypes not yet identified in wild populations. We deter-
mined the probable geographical provenance of founders of
captive populations by comparison with previous studies; all
reported haplotypes from captive ruffed lemurs were iden-
tical to or clustered with haplotypes from wild populations
located north of the Mangoro River in Madagascar. Effective
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conservation strategies for wild populations, with potential-
ly unidentified genetic diversity, should still be considered
the priority for conserving ruffed lemurs. However, our
results illustrate that the captive population in Madagascar
has conservation value as a source of potential release stock
for reintroduction or reinforcement projects and that cross-
regional transfers within the global captive population could
increase the genetic diversity and therefore the conservation
value of each regional population.
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Introduction

t is often claimed that captive populations are important

for biodiversity conservation, especially given continuing
threats to wild populations and their habitats (Conde et al.,
2011; Barongi et al., 2015). However, this claim is regularly
challenged (Conway, 2003; Leader-Williams et al., 2007;
Balmford et al., 2011) because of issues prevalent within
zoos or in captive breeding programmes (Lacy, 2013).
Most captive populations have limited viability as a result
of low population sizes and inbreeding (Lees & Wilcken,
2009; Conway, 2011; Conde et al., 2013), low genetic diversity
(Munoz-Fuentes et al., 2008; Shen et al., 2009; Atkinson
et al, 2018) and limited or skewed breeding success
(Roullet, 2012; Kaumanns et al., 2013; Penfold et al., 2014;
Edwards et al., 2015). There are also uncertainties regarding
the taxonomy or geographical provenance of captive ani-
mals and issues related to subspecific or interspecific
hybridization (Hvilsom et al., 2013). Additional constraints
include diseases (Thompson et al., 2000), behavioural or
genetic adaptation to captivity (McPhee, 2004; Frankham,
2008) and the dominance of non-threatened species over
threatened species (Conde et al., 2013). Therefore, rigorous
and transparent criteria that are open to scrutiny are
required to justify the maintenance of captive populations
for conservation (Balmford et al., 1996; IUCN/SSC, 2014),
and existing captive populations need to be assessed for
their conservation value (Hvilsom et al, 2013; Gilbert
et al., 2017; Johann et al., 2018).
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Genetic studies are being used increasingly to help assess
captive populations (Ogden et al., 2020). Taxonomic uncer-
tainties can be evaluated (Hvilsom et al., 2013; Senn et al.,
2014), genetic diversity can be compared between captive
populations or with wild populations (El Alqamy et al.,
2012; Svengren et al., 2017), and levels of relatedness and in-
breeding can be quantified (Svengren et al., 2017; Atkinson
et al., 2018). Moreover, by using genetic information, the
probable geographical provenance of founder animals can
be ascertained. This can be particularly useful to help
with decision-making in relation to the suitability of cap-
tive populations or of individual captive animals for pro-
spective reintroduction or other release projects (Ogden
et al., 2018), especially of threatened species that have been
extirpated locally at some sites or that persist in isolated
populations at risk of losing genetic diversity (Farré et al.,
2022).

Lemurs are one of the most threatened groups of pri-
mates (Schwitzer et al, 2014). Ruffed lemurs (including
the black-and-white ruffed lemur Varecia variegata and
the red ruffed lemur Varecia rubra) occur only in the eastern
rainforests of Madagascar (Fig. 1) and are particularly sensi-
tive to habitat loss and disturbance (Vasey, 2003). Both
species are categorized as Critically Endangered on the
IUCN Red List (Borgerson et al., 2020; Louis et al., 2020).
As with most lemur species, ruffed lemurs are threatened
by habitat loss because of deforestation and climate change
(Morelli et al., 2020), and hunting for food and live-trapping
for the illegal pet trade are additional threats (Golden, 2009;
Reuter & Schafer, 2017; Borgerson et al., 2022). Habitat pro-
tection remains the priority for ensuring the survival of
ruffed lemurs (King et al., 2013a,b; Schwitzer et al., 2013a),
with 10 sites supporting V. variegata and two sites support-
ing V. rubra populations, all listed as priority lemur conser-
vation sites in the IUCN lemur conservation strategy
(Schwitzer et al., 2013b). Nevertheless, large numbers of
ruffed lemurs are held in captivity, with > 800 V. variegata
and > 600 V. rubra reported globally (Schwitzer et al.,
2013a; Louis et al., 2020). Smaller numbers of both species
are also held in Madagascar in recognized facilities (includ-
ing 35 V. variegata according to a 2014 census) and illegally
(Schwitzer et al., 2013a; Reuter et al., 2016; Louis et al., 2020).
Therefore, the two species have been identified as having
high potential for integrating in situ and ex situ conser-
vation planning (Schwitzer et al., 2013a), with the North
American captive population of V. variegata having already
been used as a source of captive-born lemurs for reinforcing
one small, isolated wild population (Britt et al., 2004). An
assessment of the conservation value of the captive pop-
ulations of these two species would aid conservation
decision-making.

Unresolved subspecific taxonomy complicates the cur-
rent assessment of the conservation value of the captive
population of V. variegata (King et al., 2013a; Baden et al,,
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FiG. 1 Geographical distribution of ruffed lemurs. The red ruffed
lemur Varecia rubra occurs in the north-east, whereas the
black-and-white ruffed lemur Varecia variegata has a wider and
scattered distribution from north to south. Although three
subspecies of V. variegata are recognized (V. variegata variegata,
V. variegata subcincta and V. variegata editorum), the taxonomic
status and distribution of the subspecies are not fully resolved.

2014). Three subspecies are recognized (Louis et al., 2020):
V. variegata subcincta, V. variegata editorum and V. varie-
gata variegata. Varecia v. subcincta occurs in the north of
the species range, V. v. editorum in the south and V. v. var-
iegata in the area between V. v. editorum and V. v. subcincta
(Louis et al., 2020). Yet the most comprehensive genetic
study to date of wild V. variegata populations found a gen-
etic distinction between V. variegata populations located to
the north and to the south of the Mangoro River (Baden
et al., 2014). Although this is a major biogeographical barrier
for many taxa in Madagascar (Ganzhorn et al., 2006; Wilmé
et al., 2006), it is not traditionally considered to represent
the distributional limit between the two southern subspecies
of V. variegata. Current texts consider V. v. editorum to
occur on both sides of the Mangoro River, with the distribu-
tion limit and possible overlap with V. v. variegata located in
the general region of Zahamena National Park (Louis et al.,
2020), which is > 200 km north of the Mangoro River.
Additionally, genetic evidence suggests that V. v. subcincta
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may not be a valid subspecies (Baden et al., 2014; Louis et al.,
2020). Further work is underway to resolve these taxonomic
issues (Louis et al., 2020). However, previous genetic re-
search (Baden et al., 2014) provides a baseline for ascertain-
ing the geographical provenance of captive ruffed lemurs.
Work is also needed to determine the genetic diversity of
captive ruffed lemurs in Europe and Madagascar and their
relationships with ruffed lemurs in North America and in
the wild.

Here we assess the mitochondrial genetic diversity of
captive ruffed lemurs in Madagascar, Europe and North
America, focusing primarily on V. variegata, using analyses
of new samples from lemurs in Madagascar and Europe and
data published previously on lemurs in North America. We
compare the results from captive lemurs with published data
from wild lemurs, with a particular emphasis on ascertain-
ing the geographical provenance of the founders of the
global captive population. Our findings will help inform
decision-making regarding the potential conservation
value and roles of captive populations and the integration
of ex situ and in situ conservation activities for ruffed
lemurs.

Methods

Molecular biology techniques

We obtained 51 new samples for this study, including nine
muscle samples from V. variegata in the CryoArks Biobank
at National Museums Scotland (derived from animals in
UK zoos during 1989-2012) and 42 hair (with follicle),
whole-blood and Whatman FTA card (Merk, Darmstadt,
Germany) blood samples from captive ruffed lemurs
collected by zoo and/or veterinary professionals in
Madagascar and Europe, including samples from V. rubra,
V. v. subcincta and V. variegata of undetermined subspecies
(but phenotypically not of V. v. subcincta; Supplementary
Table 1). In addition, we retrieved 229 mitochondrial
DNA (mtDNA) D-loop sequences (accession numbers
KJ700486-K]J700626, AF173507-AF173547, AF475865-
AF475904, AF493668-AF493671 and AYs584494) from
GenBank (we later removed AF173519, AF173521, AF173522
and AFi73530 from the analysis because of their short
sequence length).

We obtained DNA from hair, whole-blood and muscle
tissue samples using the GeneJET Genomic DNA
Purification Kit (ThermoFisher Scientific, Waltham, USA).
We obtained DNA from dried blood samples from
Whatman FTA cards following a custom method for DNA
extraction (Supplementary Material 1). We performed PCR
to amplify the mtDNA D-loop region of ruffed lemurs
using heavy strand dLps (5'-CCATCGWGATGTCTIT
ATTTAAGRGGAA-3'; Baker et al, 1993) and light strand
dLp15 (5'-GCACCCAAAGCTGARRTTCTA-3'; Wyner et al,

mtDNA diversity of captive ruffed lemurs

1999) primers following standard protocols, resulting in 536
base-pair fragments (Supplementary Material 1).

Data analysis

We analysed 276 DNA sequences of ruffed lemurs
(Supplementary Table 1). We aligned all sequences using
BioEdit 7.2.6 (Hall, 1999). We divided the sample into
nine groups (Table 1) for downstream analysis according
to the known species or subspecies classification, the geo-
graphical origin of wild V. v. editorum samples (north or
south of the Mangoro River), the status of the individuals
(wild or captive) and whether captive individuals were part
of the captive population in Madagascar, the European Asso-
ciation of Zoos and Aquaria Ex-situ Programme (EEP; former-
ly known as European Endangered Species Programme), the
North American Association of Zoos and Aquariums Spec-
ies Survival Plan Programmes (SSP) or a non-EEP European
population (samples from Fenn Bell Conservation Project;
FBC).

We imported DNA sequences into DnaSP 6.12.03 (Rozas
et al,, 2017). We obtained several DNA polymorphism indi-
ces in DnaSP, including number of segregating sites (S),
number of haplotypes (H), haplotype diversity (Hd),
nucleotide diversity (m) and average number of nucleotide
differences (k). We evaluated changes in population size
using Ramos-Onsins and Rozas” R, and Fu’s Fs values cal-
culated with DnaSP, with significance tested using the
coalescent process for a neutral infinite-sites model and as-
suming a large constant population size (1,000 replications).

To estimate the genetic structure amongst the groups, we
obtained pairwise genetic differentiation (Fsr) values and
the numbers of net nucleotide substitutions per site between
groups (Da) using DnaSP. We carried out an analysis of mo-
lecular variance in Arlequin 3.5.2.2 (Excoffier et al., 2005).
We generated a phylogenetic network from the haplotypes
using PopART (Leigh & Bryant, 2015), with the Median
Joining algorithm selected.

Results

We obtained 51 new D-loop sequences belonging to the
genus Varecia (GenBank accession numbers MZ615228-
MZ615278; Supplementary Table 1). These included 23
from captive lemurs in Madagascar, of which three were
V. v. subcincta and 20 were V. variegata (unidentified sub-
species), four from the EEP V. rubra (from ZooParc de
Beauval), 20 from the EEP V. variegata, of which three
were V. v. subcincta (from Port Lympne Reserve) and 17
were V. variegata of undetermined subspecies but not
V. v. subcincta phenotypically (six from Howletts Wild
Animal Park, two from Marwell Zoo and nine from speci-
mens at National Museums Scotland), and four from
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TasLE 1 DNA polymorphism and population expansion test of ruffed lemurs (Varecia spp.). Bold indicates significant test of neutrality

(P < 0.05).

Species’ n’ s? H* Hd’ e K’ R Fs’

V. rubra (WC) 6 6 2 0.533 0.007 3.200

V. variegata subcincta (WC) 33 17 9 0.843 0.013 5.705

V. variegata editorum-S (W) 115 3 4 0.406 0.001 0.415 0.041 —4.766
V. variegata editorum-N (W) 32 11 4 0.768 0.012 5212 0.237 10.537
V. variegata variegata (W) 34 27 9 0.850 0.025 11.091 0.202 6.723
V. variegata-Madagascar (C) 20 20 10 0.911 0.026 11.705 0.201 1.299
V. variegata-EEP (C) 17 17 2 0.485 0.001 0.485 0.243 1.233
V. variegata-SSP (C) 15 26 7 0.781 0.017 7.676 0.139 2.275
V. variegata-FBC (C) 4 1 2 0.500 0.001 0.500

Total"® 276 44 36 0.877 0.023 10.278

"W, wild; C, captive; S/N, south/north of the Mangoro River; EEP, European Endangered Species Programme; SSP, Species Survival Plan Programmes; FBC,

Fenn Bell Conservation Project.

*n, number of sequences used. S, segregating sites. “H, number of haplotypes. *Hd, haplotype (gene) diversity. °x, Jukes-Cantor nucleotide diversity.
7k, average number of nucleotide differences. °R,, Ramos-Onsins and Rozas’ value. °Fs, Fu’s Fs value. '°Values calculated based on the full dataset of

DNA sequences.

captive V. variegata of undetermined subspecies held in
Europe but not included within the EEP (from FBC).

Genetic diversity

The DNA sequence alignment for the whole dataset (276
D-loop sequences) was 613 base pairs long and contained
455 sites (excluding gaps and missing data) from which
411 were invariable, 41 were informative and three were sin-
gletons. We found the highest Hd and n values in the sample
from captive V. variegata in Madagascar, and the lowest
values in the sample from wild populations of V. v. editorum
south of the Mangoro River (Table 1). Genetic diversity in
the sample from the EEP V. variegata was much lower
than in the SSP sample, and the EEP sample had the second
lowest diversity value across all groups (Table 1).

Consistent with the low genetic diversity values, we
found small pairwise differences between sequences in the
samples from wild populations of V. v. editorum south of
the Mangoro River and from the EEP V. variegata, whereas
other groups showed some larger pairwise differences, with
frequencies of 5-16% (Supplementary Fig. 1). None of the
R, and Fs values were significantly different from neutral
expectations, with there being no indications of sudden
population expansions or contractions except for the sample
from wild populations of V. v. editorum south of the Mangoro
River, which showed a significantly low and negative Fs
value (Table 1).

Genetic structure

We found significant pairwise Fg values amongst all groups
(Table 2). The values ranged from 20.0% between the sam-
ples from captive V. variegata in Madagascar and the

samples from wild populations of V. v. variegata, to 97.7%
between the samples from the EEP V. variegata and the
samples from wild populations of V. v. editorum south of
the Mangoro River. These values are even higher than
those from pairwise comparisons of different species (e.g.
V. rubra and V. variegata). We found the highest pairwise
divergence values (Da) to be between V. rubra and all V. var-
iegata groups followed by pairwise comparisons between
V. v. subcincta and V. v. variegata and V. v. editorum, and
we found the lowest Da values in pairwise comparisons be-
tween V. v. variegata and V. v. editorum (Table 3). The analysis
of molecular variance showed that 29.1% of the variation was
between wild vs captive animals, and 41.3% of the variation
was amongst groups and 29.5% was within groups.

The phylogenetic network reflected the taxonomic clas-
sification of ruffed lemurs (Fig. 2). The V. rubra and
V. v. subcincta haplotypes appeared separately from each
other and from other ruffed lemur groups by several muta-
tional steps, and V. v. editorum haplotypes appeared closer
together than to any other V. variegata haplotypes. The
remaining haplotypes showed a mix of small and large num-
bers of mutational steps obtained from samples from wild
populations of V. v. variegata and from the four groups of
captive V. variegata (in Madagascar, the EEP, the SSP and
FBC). The most common haplotypes were Hap_5 and
Hap_20 (with 84 and 29 sequences, respectively), all belong-
ing to the sample from wild populations of V. v. editorum
south of the Mangoro River, followed by Hap_4 (27 se-
quences) belonging to a mix of groups. The EEP and FBC
samples were represented by only two haplotypes (Hap_2
and Hap_4), whereas the SSP sample was represented by
seven haplotypes. The captive animals in Madagascar had
the highest haplotype diversity, with 10 different haplotypes.
Hap_12 was shared between the sample from wild popula-
tions of V. v. editorum north of the Mangoro River and the
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TaBLE 2 Pairwise differentiation values (Fsr) amongst groups of ruffed lemurs (Varecia spp.). Varecia variegata-Fenn Bell Conservation
Project (C) is not included because of small sample size.

Species’ 1 2 3 4 5 6 7 8
1 V. rubra (WC)

2 V. v. subcincta (WC) 0.598

3 V. v. editorum-S (W) 0.936 0.800

4 V. v. editorum-N (W) 0.782 0.579 0.627

5 V. v. variegata (W) 0.479 0.416 0.631 0.342

6 V. variegata-Madagascar (C) 0.545 0.464 0.706 0.397 0.200

7 V. variegata-EEP (C) 0.729 0.838 0.977 0917 0.670 0.784

8 V. variegata-SSP (C) 0.262 0.555 0.840 0.590 0.289 0413 0.270

'W, wild; C, captive; S/N = south/north of the Mangoro River; EEP, European Endangered Species Programme; SSP, Species Survival Plan Programmes.

TasLE 3 Pairwise divergence values (Da) amongst groups of ruffed lemurs (Varecia spp.). Varecia variegata-Fenn Bell Conservation Project
(C) is not included because of small sample size.

Species 1 2 3 4 5 6 7 8
1 V. rubra (WC)

2 V. v. subcincta (WC) 0.016

3 V. v. editorum-S (W) 0.033 0.029

4 V. v. editorum-N (W) 0.033 0.025 0.008

5 V. v. variegata (W) 0.032 0.026 0.018 0.015

6 V. variegata-Madagascar (C) 0.031 0.023 0.011 0.009 0.003

7 V. variegata-EEP (C) 0.034 0.029 0.017 0.010 0.018 0.012

8 V. variegata-SSP (C) 0.030 0.023 0.013 0.006 0.008 0.005 0.001

'W, wild; C, captive; S/N = south/north of the Mangoro River; EEP, European Endangered Species Programme; SSP, Species Survival Plan Programmes.

captive samples from Madagascar and the SSP, which indi-
cates that those captive animals from Madagascar and
the SSP not identified to subspecies level could have a
V. v. editorum maternal origin. Furthermore, several hap-
lotypes belonging to wild V. v. variegata and to captive
V. variegata from Madagascar, the EEP, the SSP and FBC
were distantly related to other V. v. variegata haplotypes.
Specifically, Hap_9, Hap_10 and Hap_u (all from wild
V. v. variegata) were separated by eight mutational steps
and distantly related to all other haplotypes.

Discussion

We assessed the mitochondrial genetic diversity of captive
ruffed lemurs in Madagascar, Europe and North America
and compared this to published data from wild lemurs to
ascertain the geographical provenance of the founders of
the global captive population. The results could inform
decision-making regarding the potential conservation
value and roles of the captive ruffed lemur populations
and the potential integration of ex situ and in situ conserva-
tion practices for ruffed lemurs. We report 10 mtDNA hap-
lotypes that have not yet been recorded from wild or captive
Varecia populations. We found one of the novel haplotypes
in the four samples from the European captive V. rubra
population but there was only one published V. rubra
haplotype from wild populations for comparison, with
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which the captive haplotype clustered. All three haplotypes
found in captive V. v. subcincta (one from the European
captive population and two from Madagascar) have not
been reported previously but clustered with the six pub-
lished haplotypes from wild V. v. subcincta populations.
We found only two other mtDNA haplotypes in the
European captive V. variegata population, both of which
were identical to previously published haplotypes from
wild populations. Conversely, out of 10 mtDNA haplotypes
present in the non-V. v. subcincta captive population in
Madagascar, only four had been reported previously from
wild populations and six are newly reported here.

There are 18 recognized founders of the non-subcincta
EEP population and four founders of the V. v. subcincta
EEP population (Johann et al., 2018; Louis et al.,, 2020).
Seven of the 18 founders of the non-subcincta EEP popu-
lation were female, of which we were able to sample four
indirectly in this study through their descendants along
uninterrupted maternal lines. As several of the founders
of the EEP population are also founders of the North
American captive population (SSP), another seven of
the EEP founders had been sampled previously in a
study of the SSP population (Wyner et al,, 1999), including
one female founder sampled indirectly through a maternal-
line descendant and six male founders sampled directly.
Therefore, we have been able to identify the mtDNA
haplotypes of 11 of the 18 founders of the EEP captive

doi:10.1017/50030605322000643
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population. Studbook analysis illustrates that these 11
founders have contributed 72% of the genetic diversity
of the EEP population, illustrating that despite sampling
only a small proportion of the EEP population our results
are representative of the majority of the living population.

We identified only four different mtDNA haplotypes
within the historic non-subcincta EEP population (includ-
ing only two within contemporary samples), despite having
sampled 11 of the 18 founder animals directly or indirectly.
Six of the sampled founders share Hap_4 (founders 4, 5, 11,
13, 21 and 25) and three share Hap_2 (founders 14, 15 and 35).
Putative founders having the same haplotype suggests they
could share common maternal ancestry, and if so, perhaps
should not be considered as unrelated founders for the pur-
poses of the analysis of theoretical summary genetic statis-
tics for captive populations or for the purposes of calculat-
ing mean kinship and founder representation, and for mak-
ing breeding recommendations. We recommend additional
genetic analysis to ascertain the true levels of relatedness
of the putative founders of the captive ruffed lemur popula-
tions, as has been done for other species in captivity
(Svengren et al., 2017; Atkinson et al., 2018). This would
allow a more accurate assessment of the genetic diversity
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of the original founder populations, with implications for
our understanding of the conservation value of the existing
captive populations and of the specific breeding recommen-
dations to maximize their conservation potential.

Studbook analysis illustrates that the six founders sharing
Hap_4 have contributed 46% of the genetic diversity of the
non-subcincta EEP population and the three founders shar-
ing Hap_2 have contributed 19% of this genetic diversity.
Therefore, these nine founders sharing only two mtDNA
haplotypes have contributed 65% of the genetic diversity
of the EEP population. At over 300 individuals (Johann
et al, 2018), the European captive population of non-
subcincta V. variegata is relatively large but our results
show that mitochondrial genetic diversity is relatively low
and that the founders of the population represent only a
small proportion of the genetic diversity of the species.
Nevertheless, one haplotype in the non-subcincta EEP
population is not represented in the captive population
from Madagascar, and exchanges between the various
regional captive populations could increase the genetic diver-
sity of each and therefore increase their conservation value.
The genetic diversity of the global V. rubra captive population
is also considered to be low (Borgerson et al., 2020).

doi:10.1017/50030605322000643
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Geographical origins of captive ruffed lemurs

All mtDNA haplotypes reported from captive ruffed lemurs
were either identical to or clustered with published haplo-
types originating from wild Varecia populations located
north of the Mangoro River. There is currently no evidence
for the presence of lemurs from south of the Mangoro River
being incorporated into global captive populations. More-
over, the distantly related haplotypes within V. variegata
and specifically those seen in wild V. v. variegata suggest
a cryptic genetic structure in ruffed lemurs, warranting
further genetic characterization of individuals in the wild.

Our results confirm the low haplotype diversity found in
a previous genetic study (Wyner et al., 1999) but contradict
the conclusion from that study that the captive-born V. var-
iegata from North American zoos, which were released into
Betampona Reserve from 1997 to 2001 to reinforce a small,
isolated wild population (Britt et al., 2004), probably origi-
nated from the south of the species’ range and therefore
were not particularly appropriate for release in this
Reserve because of its location in the northern part of the
species range (Wyner et al, 1999). This previous study
used population aggregation analysis to test for phylogenetic
clusters based on diagnostic nucleotide positions and used a
restricted baseline from wild populations for comparison.
Instead, our results show that the mtDNA of the North
American captive population originates from wild popula-
tions north of the Mangoro River and therefore that the le-
murs released were more suitable genetically for the
population reinforcement project than suggested previously
(Wyner et al.,, 1999). Should further releases of captive V.
variegata be considered appropriate in Madagascar within
the context of integrating in situ and ex situ lemur conser-
vation (King et al., 2013a; Schwitzer et al., 2013a), our results
suggest that the current global captive population would be
more suitable from a genetic perspective for releases in sites
located north of the Mangoro River. However, there are
many other issues that would need to be considered prior
to any potential releases, including behavioural assessments
such as potential naivety to predators, disease risk analyses
and socioeconomic considerations, as detailed in inter-
national guidelines (IUCN/SSC, 2013).

The most prevalent mtDNA haplotype in the European
captive EEP population (Hap_4) has been reported in the
wild only from Zahamena National Park (Baden et al,
2014), suggesting that much of the genetic diversity of the
EEP probably originated from this part of the species’ range.
The second most prevalent haplotype (Hap_2) has been re-
ported in the wild from Betampona Reserve only, but the
wild samples were collected after the release of captive-bred
lemurs from the North American captive SSP population,
so this haplotype could be derived from the released lemurs
rather than the original wild population of Betampona
Reserve. This haplotype is similar to Hap_4 and so could

mtDNA diversity of captive ruffed lemurs

have originated from closer to Zahamena National Park; a let-
ter from the 1970s regarding one of the founders with Hap_2
(ISB35) claims that this individual was captured 50 miles
north-east of Ambatondrazaka, which would be in or near
Zahamena National Park. Betampona Reserve and Zahamena
National Park are at similar latitudes in the species’ range,
so the distinction is unlikely to be significant from an
evolutionary perspective. Of the two remaining haplotypes
identified from the EEP founders, Hap_26 has not been
reported from wild populations but is also similar to
Hap_4 from Zahamena National Park, whereas Hap_12 is
different and has been obtained from wild lemurs identi-
fied as V. v. editorum in the Mantadia, Andasibe and
Torotorofotsy sample sites at the southern end of the
Ankeniheny-Zahamena Corridor (Baden et al., 2014). The
three haplotypes that probably originated from in or around
Zahamena National Park can be traced back to 10 founder
individuals who have contributed at least 60% of the genetic
diversity of the EEP population, providing strong evidence
for the probable geographical origins of a large propor-
tion of the captive EEP population.

Using mtDNA, this study has helped to ascertain the geo-
graphical provenance of several of the founders of the global
captive ruffed lemur population, provided insights into
the taxonomic classification of captive individuals and de-
termined the genetic diversity of captive ruffed lemurs.
Although the use of mtDNA has limitations in comparison
with other molecular markers (Nielsen et al., 2020), it is use-
ful for species identification and for wildlife forensics (Alacs
et al., 2010). The use of mtDNA to identify the probable
population of origin of captive animals in Madagascar
could help us to understand where ruffed lemurs or other
species are being captured illegally from wild populations
(Reuter et al., 2016; Reuter & Schafer, 2017). Our results il-
lustrate that several captive ruffed lemurs in Madagascar
have mtDNA haplotypes that have not yet been identified
from wild populations. Therefore, we recommend prioritiz-
ing the genetic analysis of wild populations that have not yet
been sampled, including utilizing historical museum speci-
mens of known origin if available and non-invasive samples
from populations under community-based conservation
initiatives such as the Andriantantely lowland forest and
the western Ankeniheny-Zahamena Corridor (King et al.,
2013b,¢; Louis et al., 2020). This would provide us with a bet-
ter understanding of the genetic diversity of wild ruffed
lemur populations and could provide baseline genetic diver-
sity for identifying where lemurs are being captured illegally,
especially if there is a particular sampling focus on areas
where illegal capture is most likely to be occurring (e.g. for-
ests within relatively easy reach of the major markets in
Toamasina). Areas that are identified as probable sites of
illegal captures or of other threats to ruffed lemurs or their
habitats should also be considered for urgent conservation
interventions to mitigate these threats. Community-based

Oryx, 2023, 57(5), 649-658 © The Author(s), 2023. Published by Cambridge University Press on behalf of Fauna & Flora International  doi:10.1017/50030605322000643

https://doi.org/10.1017/50030605322000643 Published online by Cambridge University Press

655


https://doi.org/10.1017/S0030605322000643

656

R. Vega et al.

conservation of forests and lemurs is a well-established model
in Madagascar (King et al., 2013b,c; Rasolofoharivelo et al.,
2013; Ravaloharimanitra et al., 2015; Louis et al., 2020) and
could be implemented or increased for any remaining wild
ruffed lemur populations through appropriate local com-
munity support.

Conclusion

Given the continuing crisis facing rainforests and ruffed le-
murs in Madagascar (Jenkins et al., 2011; Seaman et al., 2018;
Morelli et al., 2020), the use of all available tools to tackle
these issues should be considered an urgent priority for
lemur conservation. Genetic analyses, such as those
presented here, can help to inform conservation decision-
making. The results of this study indicate that the large
global captive population of ruffed lemurs could have some
value as a source of potential release stock for reintroduction
or reinforcement projects, that the much smaller captive
population in Madagascar has higher genetic diversity and
greater potential for contributing suitable release candidates,
and that effective conservation of wild populations should
be considered the highest priority for the conservation of
ruffed lemurs and their remaining genetic diversity.
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