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1. Introduction. A recent publication entitled "Magic 
Squares and Cubes", by W. S. Andrews, published by the Dover 
Publications, New York, is an excellent authoritative book on 
magic squares, and magic cubes. In fact, chapter XIV entitled 
,rMagic Octrahedroids", has shown examples of the extension 
into four-dimensional space. Andrews' method seems to be 
that of extending symmetrical considerations, which he calls 
revers ions , in forming higher dimensional forms of magic squares . 
Neither he, nor any other author, to the best of my knowledge, 
has extended magic squares to higher than four dimensions. 

La Hire must be given full credit for his method of 
breaking down magic squares into component squares , and 
conversely constructing magic squares from component squares. 
The approach of this author is to extend La Hire1 s method for 
n-dimensional space by means of a relation: 

(A , 1)| 1] = {aC j ] } , co l{m J } . . . ( 1 ) 
X X . . . X I X X . . . X 

1 2 n L i / 1 2 n-

whe re : 

a) A refers to the magic number to be assigned 
X X . . . X 5 B 

1 2 n 
to the coordinate position (x , , x . . . . ,x ). The magic numbers 

1 2 n 
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n 
a re of the set 1, 2, . . . , m , where m is the o rde r of the 
space, and n is the dimension. 

b) a refers to the component number assigned 
X X . . . X 

1 2 n 
to the coordinate position (x , x , . . . , x ), in the j ' t h 

1 2 n 
component hypercube. The component numbers a re taken 

n-1 
from m~ sets of 0, 1, . » . , m - 1 . The value j ranges 
from n - 1 , n -2 , . . . , 0. 

i n~ 1 n— 2 
c) { m } refers to vector (m* , rrT , . . . , m, 1). 

r* i 
d) {a } refers to vector: 

X1X2- • • Xn 

X X . . . X X X . . . X X X . . . X 

1 2 n ! 2 n 1 2 n 

Knowing that it would be cumbersome to have n different 
component hypercube s for any n-dimensional hypercube, a 
successful attempt was made in choosing the [0] component 
hypercube as a bas i s , and relating all other n-1 [j] component 
hypercube s to it. This was accomplished by a simple rotation 
of the basic [0] component hypercube about i ts main n-agonal^ 
n-1 t imes , and using these n hypercube s as components. 
Simply this reduces to: 

m [o] j [o] 
a = aL J = or . a 

x x^. . . x x .x^ . . . . x . x x . . . x 
1 2 n 1+j 2+j j 1 2 n 

where cr indicates the operation of one rotation, <r indicates 
0 

j rotations, (including o- meaning no rotations). A note must 
be mentioned here , that in the case of 2 dimensions, this so-
called rotation is a pure reflection ac ros s the main diagonal. 

* Use 2-agonal for square, 3-agonal for cube, n-agonal for 
hypercube. 
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Fur ther , in the case of a 3x3 magic square, this relation 
between the two components does not hold. However, some 
higher order squares , and all examples shown here (except 
figure 1) bear this relationship. Hence relation (1) reduces to 

(A , 1) f 1 \ = {<r J . a L J } . c o l { m J } . . . ( 2 ) 
X X . . . X X X . . . X 

1 2 n 1-1 J 1 2 n 

The construction of a component hypercube is relatively 
easy, ensuring that each i-row* and each n-agonal of the 
component hypercube total m ( m - l ) / 2 . For the case of a 6x6 
magic square, Tarey has shown that no Euler square of order 
6 exis ts , which shows that another type of component square 
other than an Euler square must be chosen. 

The magic hypercube of dimension n , and order m 
will contain: 

n 
a) The numbers 1, 2, . . . , m arranged in an ordered 

a r r ay , 

n-1 n-1 
b) n. m rows, that is m i - rows, each with a 

, _ _ m{m + 1) 
total of S = , the magic sum, 

n-1 
c) 2 n-agonals , running from corner to opposite 

corner through the center of the hypercube, each with a total S. 

2. Representation. Before exhibiting the 5 and 6-
dimensional examples, it would be worthwhile to show the 
2 and 3 dimensional examples, and a new representat ion, 
other than W. S. Andrews1 way, of the four dimensional 
example. 

* Define an i-row to be a row paral lel to the x. axis . 
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8 

Figure 1. The 2-dimensional magic hypercube 
of order 3. S = 15. Broken lines have been used 
only on the outline of the square. 

Figure 2. The 3-dimensional magic hypercube 
of o rder 3. S = 42. Broken lines have been used 
on the outline of the cube. 

In the example of the 3-dimensional magic hypercube of 
o rder 3, (magic cube). All 1-rows may be considered paral le l 
to a set such as 1, 17 and 24; all 2-rows may be considered 
para l le l to a set such as 1, 23, 18; all 3-rows may be considered 
paral le l to a set such as 1, 15, and 26. There a re four 3-agonals 
defined by the sets | l , 14, 27 j , {18, 14, 10 j , | 2, 14, 261 , 
and 124, 14, 4 | . 

In the example of the 4-dimensional magic hypercube of 
o rder 3, (magic t e s sa rac t ) , all 1-rows may be considered 
paral le l to a set such as 1, 80, 42; all 2-rows may be 
considered paral le l to a set such as 1, 72, 50; all 3-rows 
may be considered para l le l to a set such as 1, 54, 68; 
all 4- rows may be considered para l le l to a set such as 
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1, 78, 44. There are eight 4-agonals defined by the sets 
| l , 41 , 8 l | , |44, 41 , 38 | , 157, 41 , 25 | , 150, 41 , 32J , 
| 6 l , 41 , 2 l | , 114, 41 , 681 , 173, 41 , 9 | and | 42, 41, 401 . 
It is interesting to note that this example of the 4-dimensional 
magic hyper cube of o rder 3 is different than the example given 
by W. S. Andrews. 

The Magic Tessarac t (3rd order) 

Figure 3. The 4-dimensional magic hyper cube 
of order 3. S = 123. Broken lines have been 
used on the outline of the t essa rac t . 
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Although W. S. Andrews in his book states on page 351, 
"for rows of numbers can be a r ranged side by side to represen t 
a visible, square, squares can be piled one upon another to 
make a visible cube, but cubes cannot be so combined in 
drawing as to picture to the eye thei r higher re la t ions" , 
figure 3, in the opinion of the author, seems to "picture to the 
eye the higher relation". 

In considering figure 4, consider figures 4a, 4b and 4c 
as one diagram. A 3-dimensional model could be made by 
placing 4a, 4b, and 4c one upon another, and joining the 
numbers with ver t ica l broken l ines, 

In the example of the 5-dimensional magic hypercube of 
o rder 3, all 1-rows may be considered paral le l to a set such 
as 1, 212, 153; all 2-rows may be considered paral le l to a 
set such as 1, 206, 159; all 3-rows may be considered 
paral le l to a set such as 1, 132, 233; all 4 - rows may be 
considered para l le l to a set such as 1, 150, 215; and all 
5-rows may be considered paral le l to a set such as 1, 152, 213. 
The 16 5-agonals may be defined by the sets | l , 122, 243 | , 
[215, 122, 29 | , 110, 122, 234| , j 159, 122, 851 , 1153, 122, 91 f , 
|4 , 122, 240J , j 162, 122, 821 , 1191, 122, 53 J , ( 99, 122, 1451 , 
|49, 122, 195 J , J 227, 122, 17 { , J 31, 122, 2131, {233, 122, l l | , 
j 87, 122, 157 j , j 242, 122, 2J and 128, 122, 2 l6 j . 

On the pages that follow is represented figure 5 in totality. 
To gain a g rea te r appreciation of figure 5, figures 5(1, 1} to 
figures 5(3, 3) should be laid out in the following pat tern: 

figure 5 
( l . D 

figure 5 
(2.D 

figure 5 
(3 .1 ) 

figure 5 
(1 ,2 ) 

figure 5 
(2,2) 

figure 5 
(3,2) 

figure 5 
(1 ,3 ) 

figure 5 
( 2 , 3 ) 

figure 5 
(3.3) 

Schematic diagram for illustrating figure 5. 
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In the example of the 6-dimensional magic hypercube of 
order 3, figure 5, all 1-rows may be considered parallel to a 
set such as 1, 719, 375; all 2-rows may be considered paral lel 
to a set such as 1, 639, 455; all 3-rows may be considered 
paral lel to a set such as 1, 483, 611; all 4-rows may be 
considered paral lel to a set such as 1, 699, 395; all 5-rows 
may be considered paral lel to a set such as 1, 647, 447; and 
all 6-rows may be considered parallel to a set such as 
1, 459, 635. 

In the 6-M3 portrayed, the 6-agonals defined by: 
1 ,365,729 |455,365,275 |395,365,335 |489,365,241 |375,365,355 | 
556,365,174 |649,365,81 |131,365,599 |611,365,119 |57 ,365,673j 
186,365,544 |367,365,363 |217,365,513[347,365,383 |287,365,443 | 
705,365,25(447,365,283(628,365,102[505,365,225(203,365,527| 
548,365,182 |183,365,547(123,365,607 |304,365,426[73,365,657 | 
419,365,311 |359,365,371j561,365,169j339,365,391j520,365,210 | 
721, 365, 9 | and 95, 365, 635 all add to a common total of 1095. 

A 4-dimensional magic hypercube of order 4 was also 
constructed by this technique, but has not been shown here . 
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