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OF THREE-STATE NETWORKS
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Abstract

This paper is an investigation into the reliability and stochastic properties of three-state
networks. We consider a single-step network consisting of n links and we assume that
the links are subject to failure. We assume that the network can be in three states, up
(K = 2), partial performance (K = 1), and down (K = 0). Using the concept of the
two-dimensional signature, we study the residual lifetimes of the networks under different
scenarios on the states and the number of failed links of the network. In the process of
doing so, we define variants of the concept of the dynamic signature in a bivariate setting.
Then, we obtain signature based mixture representations of the reliability of the residual
lifetimes of the network states under the condition that the network is in state K = 2 (or
K = 1) and exactly k links in the network have failed. We prove preservation theorems
showing that stochastic orderings and dependence between the elements of the dynamic
signatures (which relies on the network structure) are preserved by the residual lifetimes
of the states of the network (which relies on the network ageing). Various illustrative
examples are also provided.
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1. Introduction

Most communication applications, such as rail roads, computer networks, communication
channels, etc., assume the availability of a reliable network. From a mathematical point of view
a network is a graph G(V,E) that consists of a set of nodes (vertices), V , and a set of links
(edges), E, that connect selected pairs of nodes. In a network the links or nodes are subject to
failure. The failure of the links or nodes may change the state of the network. A set of special
nodes are called terminals and the states of the network can be defined according to connections
between terminals. In most situations, whether terminals are connected or not, the networks
have several states, from perfect functioning (up state) to complete failure (down state). The
networks (systems) with several states are called the multi-state networks. In this case the states
of the network are usually denoted byK = 0, 1, . . . ,M , in which the stateK = 0 corresponds
to the complete failure and the state K = M corresponds to the complete performance of
the network. Of course, the definition of the states of the network as K = 0, 1, 2, . . . ,M
is not unique for a given network and the states can be defined differently by different users.
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For some recent related studies on reliability properties of multi-state networks and systems,
we refer the reader to [1], [10], [13], [14], [22], [24], [30], and [38].

Among the wide variety of approaches that have been employed for the evaluation of network
reliability, one approach is based on the notion of the signature, as introduced in [31]. The
concept of the signature is found to be a useful tool in the study of reliability and ageing
properties of networks and coherent systems having two states. For recent developments on
the reliability of the networks and coherent systems based on the notion of the signature, we
refer the reader to, among others, [3], [5], [7]–[9], [11], [12], [15], [16], [18], [25]–[29], and
[35]–[37].

This paper is an investigation on the reliability and stochastic properties of state lifetimes of
single-step three-state networks based on signatures. A network is said to be single-step if the
failure of one component (link or node) does not change the state of the network or changes
it by one. We consider a single step three-state network consisting of n links and assume that
the network can be in one of three states, up (K = 2), partial performance (K = 1), and down
(K = 0). Furthermore, we assume that the links are subject to failure and the nodes remain
certainly unfailed. This paper is based on the concept of the signature for multi-state networks
that was introduced in [17]. Let X1, X2, . . . , Xn be independent and identically distributed
(i.i.d.) continuous random variables representing the link lifetimes of the network and denote
X1 : n ≤ X2 : n ≤ · · · ≤ Xn : n to be the ordered lifetimes of the links. Let the network start to
function at time t = 0 in state K = 2. Denote T1 and T to be the times that the network enters
into state K = 1 and K = 0, respectively. Thus, T1 is the lifetime of the network that remains
in state K = 2 and T is the network lifetime.

We should mention that T1 and T can be represented as T1 = φ1(X1, . . . , Xn) and T =
φ2(X1, . . . , Xn), for some functions φ1 and φ2, such that P(T1 < T ) = 1. As an example,
consider a network with four links and four nodes in which all nodes are terminals. We define
the states of the network as follows: K = 2 when all terminals are connected,K = 1 when the
network is divided into two distinct parts, and K = 0 when the network is divided into more
than two distinct parts. For this scenario, it can be seen that, T1 = X2 : 4, and T = X3 : 4.

The two-dimensional signature of the network is defined to be a probability matrix S with
elements defined by

si,j = P(T1 = Xi : n, T = Xj : n), 1 ≤ i < j ≤ n.

Denote by S(1) = (s
(1)
1 , . . . , s

(1)
n ) and S(2) = (s

(2)
1 , . . . , s

(2)
n ) the marginal signature vectors

corresponding to the signature matrix S where s(1)i = P(T1 = Xi : n) and s(2)i = P(T = Xi : n).
The probability matrix S, similar to the signature vector of two-state systems, does not depend
on the lifetime distribution of the links and depends only on the structure of the network. In
fact, it can be shown that, for all values of i and j , si,j = ni,j /n!, where ni,j is the number of
ways that the failure of the ith and the j th links causes the states of the network to change from
K = 2 to K = 1 and from K = 1 to K = 0, respectively. In fact, si,j is the probability that
the links with lifetimesXi : n andXj : n, i < j , cause the transitions fromK = 2 toK = 1 and
from K = 1 to K = 0, respectively.

LetG(x) and Ḡ(x) be the common distribution and survival functions of the lifetimes of the
links. As the signature matrix S does not depend on the distribution ofXis, based on law of total
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probability, the joint reliability function of (T1, T ), denoted by Ḡ(t1, t), can be represented as

Ḡ(t1, t) =
n−1∑
i=1

n∑
j=i+1

si,jP(Xi : n > t1, Xj : n > t), (1.1)

where

P(Xi : n > t1, Xj : n > t) =
i−1∑
k=0

j−1∑
l=k

n!
k! (l − k)! (n− l)!G

k(t1)(G(t)−G(t1))
l−kḠn−l (t);

see [17].
Samaniego et al. [32] introduced the notion of the dynamic signature and studied some

ageing properties of binary systems based on this notion. In this paper we extend the notion
of the dynamic signature to the bivariate setting and study several dependence and stochastic
properties of residual lifetimes of the states of three-state networks based on the bivariate
dynamic signature. For this purpose, we organize the paper as follows. Section 2 presents
definitions and notations which are useful in the subsequent sections. Section 3 is devoted to
the situations under which the network at time t is in the up state and exactly k links have
failed. In Section 3 the notions of the dynamic signature and equivalent three-state networks
are introduced and then some ageing properties of the three-state networks are explored. Some
dependence and bivariate stochastic properties of the dynamic signature that are transferred
to the residual lifetimes of the network states are investigated. The residual lifetimes of the
network states under the condition that the network at time t is in the up state are also studied. In
Section 4, under the assumptions that the network at time t is in stateK = 1 and exactly k links
have failed, we obtain the reliability function of the lifetimes of the network states. Herein,
a variant of the dynamic signature is introduced. Based on this new variant the dependence
between residual and inactivity lifetimes of the network states is investigated. In this section,
using the definition of equivalent systems introduced by [29], several univariate stochastic
ordering results are presented. Finally, the residual and inactivity lifetimes of the network
states, under condition that the network at time t is in state K = 1, are studied. Various
examples are also provided.

2. Preliminaries

In this section we provide some concepts of stochastic orders and dependence measures
which will be used throughout the paper.

Definition 2.1. Let X and Y be two random variables with survival functions F̄ (x) and Ḡ(x),
and density functions f (x) and g(x), respectively.

(a) X is said to be smaller than Y in the usual stochastic order, denoted by X ≤st Y , if
F̄ (x) ≤ Ḡ(x) for all x.

(b) X is said to be smaller than Y in the hazard rate order, denoted byX ≤hr Y , if Ḡ(x)/F̄ (x)
is increasing in x.

(c) X is said to be smaller than Y in the reversed hazard rate order, denoted by X ≤rh Y , if
G(x)/F (x) is increasing in x.

(d) X is said to be smaller than Y in the likelihood ratio order, denoted by X ≤lr Y , if
g(x)/f (x) is increasing in x.
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(e) X is said to be new better than used (NBU) if it satisfies

F̄ (x + y) ≤ F̄ (x)F̄ (y), x, y > 0.

Definition 2.2. Let X and Y be two random vectors with survival functions F̄ and Ḡ, respec-
tively.

(a) X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y ) if

E(φ(X)) ≤ E(φ(Y ))

for every increasing function φ for which the expectations exist.

(b) X is said to be smaller than Y in the upper orthant order (denoted by X ≤uo Y ) if

F̄ (x) ≤ Ḡ(x) for all x.

For more details on various concepts of stochastic orders, we refer the reader to [33].

Definition 2.3. (a) The random variables X and Y are positively quadrant dependent (PQD)
if, for every pair of increasing functions h1(x) and h2(x),

cov(h1(X), h2(Y )) ≥ 0.

This condition is equivalent to saying that P(X > x, Y > y) ≥ P(X > x)P(Y > y) for all
x and y. If the inequality sign is reversed, it is said that the random variables X and Y are
negatively quadrant dependent (NQD).

(b) The random variables X and Y are associated if, for every pair of functions h1(x, y) and
h2(x, y) which are increasing in each of the arguments,

cov(h1(X, Y ), h2(X, Y )) ≥ 0.

For more details on dependence notions, see [19] and [21].

3. The residual reliability of the network in state K = 2

Consider a network consisting of n links. Suppose that X1, . . . , Xn denote the lifetimes of
the links, where we assume that Xis are i.i.d. with a common continuous distribution function
G(x). Let the network be inspected at time t where it is found that it is in state K = 2 and
exactly k links have failed. In other words, assume that at the time of inspection the events
T1 > t and Ek = (Xk : n ≤ t < Xk+1 : n) have occurred. After the failure of the kth link,
assume that Ik (respectively Jk) denotes the number of links whose failures cause the network
to enter into state K = 1 (respectively K = 0). Under this assumption, we have

P(Ik = i, Jk = j) = P(T1 = Xi+k : n, T = Xj+k : n | T1 > t, Ek)

for i = 1, . . . , n− k and j = i + 1, . . . , n− k.
Suppose that u = max{i | s(1)i > 0} and assume that k ∈ {0, 1, . . . , u− 1}, X0 : n = 0, and

for such k, P(T1 > t, Ek) > 0.
The joint probability mass function of (Ik, Jk), which is denoted by S(n− k) is an (n− k)×

(n− k) matrix. In the following lemma we compute the elements of S(n− k).
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Lemma 3.1. For k ∈ {0, 1, . . . , u− 1},
P(Ik = i, Jk = j) = si+k,j+k

S̄
(1)
k

, i = 1, . . . , n− k, j = i + 1, . . . , n− k, (3.1)

where S̄(1)k = ∑n
i=k+1 s

(1)
i .

Proof. First note that

P(Xi : n > t | Ek) =
{

0, i = 1, . . . , k,

1, i = k + 1, . . . , n.
(3.2)

Thus, for i = 1, . . . , n− k and j = 1, . . . , n− k, we have

P(T1 = Xi+k : n, T = Xj+k : n | T1 > t, Ek)

= P(T1 = Xi+k : n, T = Xj+k : n)P(T1 > t, Ek | T1 = Xi+k : n, T = Xj+k : n)
P(T1 > t, Ek)

= si+k,j+kP(Ek, Xi+k : n > t)

P(T1 > t, Ek)

= si+k,j+kP(Xi+k : n > t | Ek)
P(T1 > t | Ek)

= si+k,j+k
P(T1 > t | Ek) ,

in which the second equality follows from the fact that the event (T1 = Xi : n, T = Xj : n)
depends only on the structure of the network (and does not depend on the lifetime distribution
of the links) and the forth equality follows from (3.2). Also, using the law of total probability

P(T1 > t | Ek) =
n∑
i=1

P(T1 = Xi : n | Ek)P(T1 > t | Ek, T1 = Xi : n)

=
n∑
i=1

s
(1)
i P(Xi : n > t | Ek)

=
n∑

i=k+1

s
(1)
i ,

where the second equality follows from the fact that the events (T1 = Xi : n) and (Xk : n ≤ t <

Xk+1 : n) are independent.

It is interesting to note that the conditional probability (3.1), which is distribution free, can
be considered as a bivariate extension of the dynamic signature introduced by [32]. We call the
matrix S(n− k) the dynamic signature matrix associated to the network.

In what follows, we explore the reliability and stochastic properties of the residual lifetimes
of T1 and T under the condition that (T1 > t, Ek). In other words, we are interested in the
following conditional random variables

T1;t,k = (T1 − t | T1 > t, Ek), Tt,k = (T − t | T1 > t, Ek). (3.3)

The following lemma, which can be easily established by the properties of order statistics, is
useful in obtaining the joint reliability function of (T1;t,k, Tt,k).
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Lemma 3.2. Let X1, . . . , Xn be i.i.d. continuous random variables. For k < i < j ≤ n, we
have

(Xi : n − t, Xj : n − t | Xk : n ≤ t < Xk+1 : n)
d= (Xti−k : n−k, X

t
j−k : n−k),

where ‘
d=’stands for equality in distribution andXti−k : n−k denotes the (i−k)th order statistics

from a random sample of size n − k with survival function Ḡ(x | t) = Ḡ(x + t)/Ḡ(t)

for t , x > 0.

Lemma 3.2 leads to the following result.

P(T1 − t > x1, T − t > x | T1 > t, Ek)

=
n∑
i=1

n∑
j=i+1

P(T1 − t > x1, T − t > x, T1 = Xi : n, T = Xj : n | T1 > t, Ek)

=
n∑

i=k+1

n∑
j=i+1

P(Ik = i − k, Jk = j − k)

× P(T1 − t > x1, T − t > x | T1 > t, Ek, T1 = Xi : n, T = Xj : n)

=
n∑

i=k+1

n∑
j=i+1

P(Ik = i − k, Jk = j − k)P(Xi : n − t > x1, Xj : n − t > x | Ek)

=
n∑

i=k+1

n∑
j=i+1

P(Ik = i − k, Jk = j − k)P(Xti−k : n−k > x1, X
t
j−k : n−k > x)

=
n−k∑
i=1

n−k∑
j=i+1

P(Ik = i, Jk = j)P(Xti : n−k > x1, X
t
j : n−k > x).

Before stating the main results of this section, we need to introduce the notion of equivalent
three-state networks, which is an extension of the notion of equivalent binary systems introduced
by Navarro et al. [29]. Hence, we have the following definition.

Definition 3.1. Consider two three-state networks with i.i.d. links whose lifetimes have com-
mon distribution G. Let (T (1)1 , T (1)) and (T (2)1 , T (2)) be the corresponding lifetimes of the
states. These two networks are said to be equivalent if (T (1)1 , T (1))

d= (T
(2)
1 , T (2)).

Let Ai,j : m be the m × m matrix such that the (i, j)th element is 1 and the other elements
are 0. Also, let Ci,j : n, n > m, be the n× n matrix such that its nonzero elements are defined
as

ci+k,j+l =
(
i − 1 + k

k

)(
j − i − 1 + l − k

l − k

)(
n− j − l

n−m− l

) / (
n

m

)
,

k = 0, . . . , n−m, l = k, . . . , n−m.

It is clear that

Ci,j : n =
n−m∑
k=0

n−m∑
l=k

ci+k,j+lAi+k,j+l : n.
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Using the above notation and Result 5.23 of [4], it can be shown that a network withm i.i.d.
links and signature matrix S is equivalent to the network having n i.i.d. links, n > m, with
signature matrix S∗ given by

S∗ =
m∑
i=1

m∑
j=i+1

si,jCi,j : n.

Let Sn(n − k) be the signature matrix of order n corresponding to the dynamic signature
matrix S(n− k), and let s̃i,j be the (i, j)th element of Sn(n− k).
Using the definition of equivalent networks, the reliability function of (T1;t,k, Tt,k) can be
represented as

P(T1 − t > x1, T − t > x | T1 > t, Ek) =
n∑
i=1

n∑
j=i+1

s̃i,jP(X
t
i : n > x1, X

t
j : n > x), (3.4)

where Xti : n and Xtj : n were introduced in Lemma 3.2.
Samaniego et al. [32] introduced the concepts of k-NBU and UNBU for the binary systems.

In the following definitions, we extend these notions for the three-state networks.

Definition 3.2. Consider a three-state network consisting of n i.i.d. links with continuous
lifetimes. Let T1 be the lifetime of the network in state K = 2 and T be the lifetime of
the network. Assume that (T1;t,k, Tt,k) as defined in (3.3). For fixed k ∈ {0, . . . , u − 1},
(T1, T ) is said to be k-bivariate new better than used (k-BNBU) if

(T1, T ) ≥st (T1;t,k, Tt,k) for all t > 0.

Definition 3.3. A three-state network is said to be uniformly bivariate new better than used
(UBNBU) if (T1, T ) is k-BNBU for all k = 0, . . . , u− 1.

Using this concept, we have the following theorem.

Theorem 3.1. Consider a network with n i.i.d. linksX1, . . . , Xn having a common continuous
distribution functionG(x) and survival function Ḡ. Let S and Sn(n−k) be the signature matrix
and dynamic signature matrix of order n, respectively. If G is NBU and

S ≥st Sn(n− k), for all k = 1, . . . , u− 1,

then the network is UBNBU.

Proof. Suppose that the residual random variable Xt = (X1 − t | X1 > t) has survival
function Ḡ(x | t) = Ḡ(x + t)/Ḡ(t). The condition G is NBU implies that Xi : n ≥st X

t
i : n for

all i = 1, . . . , n, where Xti : n is the ith order statistic from Ḡ(x | t). From Theorem 6.B.14 of
[33], we can conclude that (Xi : n,Xj : n) ≥st (X

t
i : n,X

t
j : n) for all 1 ≤ i < j ≤ n. Also, it is

clear that (Xi : n,Xj : n) is stochastically increasing in (i, j). Hence, from representations (3.4)
and (1.1) and Theorem 3.3 of [6], the assumption that S ≥st Sn(n− k), for k = 1, . . . , u− 1,
gives (T1, T ) ≥st (T1;t,k, Tt,k) for k = 1, . . . , u−1. Using the same argument and the fact that,
for k = 0, Sn(n) = S, (T1, T ) is 0-BNBU. Hence, (T1, T ) is k-BNBU for all k = 0, . . . , u− 1,
that is, the network is UBNBU.
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1

2

3

5

4

Figure 1: Network with five nodes and ten links.

Example 3.1. Figure 1 presents a network consisting of five nodes and ten links. Assume that
the links are subject to failure. The states of the network are defined as K = 2 if all nodes
are connected, K = 1 if nodes are divided into two disconnected sets, and K = 0 if nodes
are divided into at least three disconnected sets. The signature matrix of this network was
estimated in [17]. The dynamic signature matrices of order 10, S10(10 − k) for k = 1, . . . , 6,
are computed and given in Appendix A.

Assume that (Ĩ1, J̃1) and (I, J ) have probability matrices S10(9) and S, respectively. For
every increasing function ϕ(i, j), i, j ∈ {1, . . . , 10}, we have

E(ϕ(I, J ))− E(ϕ(Ĩ1, J̃1)) = 2.38ϕ(7, 8)+ 0.054ϕ(6, 8)− 0.1487ϕ(6, 7)

− 0.0003ϕ(5, 8)− 0.0626ϕ(5, 7)− 0.0238ϕ(5, 6)

− 0.0089ϕ(4, 8)− 0.0231ϕ(4, 7)− 0.0076ϕ(4, 6)

− 0.0078ϕ(3, 8)− 0.0072ϕ(3, 7)− 0.0019ϕ(3, 6).

Thus, from the fact that ϕ(i1, 8) ≥ ϕ(i, j)when i1 = 6, 7, i = 3, . . . , 6, j = 6, 7, 8, and that
the summation of the coefficients is 0, E(ϕ(I, J ))− E(ϕ(Ĩ1, J̃1)) ≥ 0. That is, S ≥st S10(9).
Using the same argument it can be shown that S ≥st S10(10−k) for all k = 1, . . . , 6. Therefore,
from Theorem 3.1, if the distribution of the lifetimes of the links is NBU then the network is
UBNBU.

In the sequel, we explore some dependence properties between the elements of the dynamic
signature that are transferred to the lifetimes of the network states.

Theorem 3.2. Consider a network consists of n i.i.d. links. Suppose that at time t the network
is in state K = 2 and exactly k links have failed.

(a) If Ik and Jk are PQD then T1;t,k and Tt,k are PQD.

(b) If Ik and Jk are associated then T1;t,k and Tt,k are associated.

Proof. (a) Note that for each pair of increasing functions ϕ(x) and ψ(x), we have

E(ϕ(T1;t,k)ψ(Tt,k)) =
n−k∑
i=1

n−k∑
j=i+1

P(Ik = i, Jk = j)E(ϕ(Xti : n−k)ψ(X
t
j : n−k))

≥
n−k∑
i=1

n−k∑
j=i+1

P(Ik = i, Jk = j)E(ϕ(Xti : n−k))E(ψ(X
t
j : n−k))
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a
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1

4

5

3

Figure 2: A bridge network.

≥
n−k∑
i=1

n−k∑
j=i+1

P(Ik = i, Jk = j)E(ϕ(Xti : n−k))

×
n−k∑
i=1

n−k∑
j=i+1

P(Ik = i, Jk = j)E(ψ(Xtj : n−k))

= E(ϕ(T1;t,k))E(ψ(Tt,k)),

in which the first inequality follows from the fact that Xti : n−k and Xtj : n−k are PQD and the
second inequality follows from the assumption that Ik and Jk are PQD and the fact that, for
every increasing function ψ , E(ψ(Xti : n−k)) is increasing in i, completing the proof of part (a).

(b) For each pair of increasing functions ϕ(x, y) and ψ(x, y), we have

E(ϕ(T1;t,k, Tt,k)ψ(T1;t,k, Tt,k))

=
n−k∑
i=1

n−k∑
j=i+1

P(Ik = i, Jk = j)E(ϕ(Xti : n−k, X
t
j : n−k)ψ(X

t
i : n−k, X

t
j : n−k)).

Thus, the proof follows using the same steps as in the proof of part (a) and the fact thatXti : n−k
and Xtj : n−k are associated.

As applications of Theorem 3.2, we give the following examples.

Example 3.2. Consider the bridge network presented in Figure 2 which has five links, 1, 2, 3,
4, 5, and four nodes, a, b, s, t . Assume that links are subject to failure. We define two states
for the network as follows.

(i) In the first state, we assume that the nodes s and t are considered as the terminals and
each link has capacity one. We also assume that the states of the network are defined as
the maximal flow that can be delivered from s to t . Clearly, if all five links function or
link 3 fails and other links function, the network is in stateK = 2. Also, when one of the
links 1, 2, 4, or 5 fails, then the flow from s to t reduces by one and, therefore, the state
of the network is K = 1. If there is no connection between s and t then K = 0. The
nonzero elements of the signature matrix of this network are given as (see Appendix B)

s1,2 = 1
5 , s1,3 = 7

15 , s1,4 = 2
15 , s2,3 = 2

15 , s2,4 = 1
15 .

We have si1,j1si2,j2 ≥ si1,j2si2,j1 for all i1 < i2, j1 < j2, which implies that (Ik, Jk),
k = 0, 1, is T P2 and, hence, Ik and Jk , k = 0, 1, are associated; see [19]. Therefore,
from Theorem 3.2(b), T1;t,k and Tt,k , k = 0, 1, are associated.

https://doi.org/10.1239/jap/1421763324 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763324


1008 S. ASHRAFI AND M. ASADI

(ii) Let the nodes s, t , and b be terminals. We assume that the network is in state K = 2 if
all terminals are connected, in state K = 1 if two terminals are connected and in state
K = 0 if all terminals are disconnected. For instance, if links 1 and 2 fail, terminals b
and t are connected, and in state K = 1. In this case, it can be seen that the nonzero
elements of the signature matrix of this network are given as

s2,4 = 2
15 , s2,5 = 1

15 , s3,4 = 7
15 , s3,5 = 7

30 , s4,5 = 1
10 .

It can be seen, in this case also, that, for k = 0, 1, 2, 3, Ik and Jk are associated and, hence,
T1;t,k and Tt,k are associated.

Example 3.3. Let us again consider Example 3.1 and assume that k = 4. It is easy to see that
S̄
(1)
4 = 0.9759 and the nonzero elements of the dynamic matrix S(6) are

s∗1,3 = 0.0196, s∗1,4 = 0.0769,

s∗2,3 = 0.0611, s∗2,4 = 0.2326, s∗3,4 = 0.6098.

This in turn implies that

n∑
l=i+1

n∑
m=max{l,j}+1

s∗l,m ≥
n∑

l=i+1

s
∗(1)
l

n∑
l=j+1

s
∗(2)
l , i = 1, 2, 3, j = 3, 4.

Thus, I4 and J4 are PQD. Using the same arguments, it can be shown that, for all k = 0, . . . , 6,
Ik and Jk are PQD. Therefore, T1;t,k and Tt,k are PQD for all k = 0, . . . , 6.

The following theorem gives stochastic orderings of the residual lifetimes of two networks
when their dynamic signatures are stochastically ordered.

Theorem 3.3. Consider two networks each consisting of n links with i.i.d. lifetimesX1, . . . , Xn
and Y1, . . . , Yn, respectively. Assume that both networks are in state K = 2 and have exactly
ki , i = 1, 2, failed links at time t . Suppose that Si,n(n− ki), i = 1, 2, is the dynamic signature
matrix of order n, T (i)1 , i = 1, 2, is the lifetime in state K = 2, and T (i), i = 1, 2, is the
lifetime of the ith network. Let T (i)1;t,k and T (i)t,k , i = 1, 2, be defined as in (3.3).

(a) If X1 ≤hr Y1 and S1,n(n− k1) ≤uo S2,n(n− k2) then (T (1)1;t,k1
, T

(1)
t,k1
) ≤uo (T

(2)
1;t,k2

, T
(2)
t,k2
).

(b) If X1 ≤hr Y1 and S1,n(n− k1) ≤st S2,n(n− k2) then (T (1)1;t,k1
, T

(1)
t,k1
) ≤st (T

(2)
1;t,k2

, T
(2)
t,k2
).

Proof. Let Xt1 = (X1 − t | X1 > t) and Y t1 = (Y1 − t | Y1 > t) have survival functions
Ḡ1(x | t) and Ḡ2(x | t) and distribution functions G1(x | t) and G2(x | t), respectively. The
assumption X1 ≤hr Y1 gives Xti : n ≤st Y

t
i : n for all i = 1, . . . , n. Then using Theorem 6.B.14

of [33], we have (Xti : n,X
t
j : n) ≤st (Y

t
i : n, Y

t
j : n) for all 1 ≤ i < j ≤ n.

(a) Let s̃1,i,j and s̃2,i,j be the (i, j)th elements of S1,n(n−k1) and S2,n(n−k2), respectively,
and let S̄m,k,l = ∑n−1

i=k+1
∑n
j=max{i,l}+1 s̃m,i,j for m = 1, 2. Using representation (3.4),
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it can be seen that

P(T
(1)

1;t,k1
> x1, T

(1)
t,k1

> x)

=
n−1∑
k=0

n∑
l=k

S̄1,k,l
n!

k! (l − k)! (n− l)!
×Gk1(x1 | t)(G1(x | t)−G1(x1 | t))l−kḠn−l1 (x | t)

≤
n−1∑
k=0

n∑
l=k

S̄2,k,l
n!

k! (l − k)! (n− l)!
×Gk1(x1 | t)(G1(x | t)−G1(x1 | t))l−kḠn−l1 (x | t)

=
n−1∑
i=1

n∑
j=i+1

s̃2,i,jP(X
t
i : n > x1, X

t
j : n > x)

≤
n−1∑
i=1

n∑
j=i+1

s̃2,i,jP(Y
t
i : n > x1, Y

t
j : n > x)

= P(T
(2)

1;t,k2
> x1, T

(2)
t,k2

> x),

where the first inequality follows from the assumption that S1,n(n−k1) ≤uo S2,n(n−k2)

and the second inequality follows from the fact that (Xti : n,X
t
j : n) ≤st (Y

t
i : n, Y

t
j : n)

implies (Xti : n,X
t
j : n) ≤uo (Y

t
i : n, Y

t
j : n).

(b) From the fact that (Xti : n,X
t
j : n) ≤st (Y

t
i : n, Y

t
j : n) for all 1 ≤ i < j ≤ n and (Xti : n,X

t
j : n)

is stochastically increasing in i, j then the required result follows the assumption that
S1,n(n− k1) ≤st S2,n(n− k2) and Theorem 3.3 of [6].

The following result is an immediate consequence of Theorem 3.3.

Corollary 3.1. Let Sn(n− k) be the dynamic signature matrix of order n of a network.

(a) If Sn(n − k − 1) ≤uo Sn(n − k) for k = 0, . . . , u − 2 then P(T1;t,k > x1, Tt,k > x) is
decreasing in k ∈ {0, . . . , u− 1}.

(b) If Sn(n− k − 1) ≤st Sn(n− k) for k = 0, . . . , u− 2 then, for every increasing function
ψ(x, y), E(ψ(T1;t,k, Tt,k)) is decreasing in k ∈ {0, . . . , u− 1}.

Example 3.4. Let us consider Example 3.2. For the network with the structure in part (i),
suppose that at time t only one link has failed. The nonzero elements of the dynamic signature
matrix of order 5, S5(4) are

s̃1,2 = 2
5 , s̃1,3 = 4

15 , s̃1,4 = 2
15 , s̃2,3 = 2

15 , s̃2,4 = 1
15 .

For the network with the structure in Example 3.2(ii), suppose that at time t two links have
failed. The nonzero elements of the dynamic signature matrix of order 5, S∗

5 (3)are

s̃∗1,2 = 7
40 , s̃∗1,3 = 7

48 , s̃∗1,4 = 7
60 , s̃∗1,5 = 7

80 , s̃∗2,3 = 31
240 ,

s̃∗2,4 = 1
10 , s̃∗2,5= 17

240 , s̃∗3,4 = 1
12 , s̃∗3,5= 13

240 , s̃∗4,5 = 3
80 .
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Let (Ĩk, J̃k) and (Ĩ ∗
k , J̃

∗
k ) have probability matrices S5(4) and S∗

5 (3), respectively. It can be
seen that for every increasing function ϕ(i, j),

E(ϕ(Ĩ ∗
k , J̃

∗
k)− ϕ(Ĩk, J̃k)) = −0.225ϕ(1, 2)− 0.1208ϕ(1, 3)

− 0.0167ϕ(1, 4)+ 0.0875ϕ(1, 5)

− 0.0042ϕ(2, 3)+ 0.0333ϕ(2, 4)

+ 0.0708ϕ(2, 5)+ 0.0833ϕ(3, 4)

+ 0.0542ϕ(3, 5)+ 0.0375ϕ(4, 5).

Using the fact that the summation of the coefficient in the above expression is 0 and ϕ(i, j) is in-
creasing in (i, j), it can be seen that E(ϕ(Ĩ ∗

k , J̃
∗
k )) ≥ E(ϕ(Ĩk, J̃k)), which implies

S∗
5 (3) ≥st S5(4).

Consider the conditional random variables T1,t = (T1 − t | T1 > t) and Tt = (T − t | T1 >

t). In what follows some dependence and stochastic properties of (T1;t , Tt ) are explored based
on properties of the dynamic signature matrix. The reliability function of (T1;t , Tt ) can be
presented as

P(T1 − t > x1, T − t > x | T1 > t) =
u−1∑
k=0

pt (k)P(T1 − t > x1, T − t > x | T1 > t, Ek)

in which pt (k) := P(Ek | T1 > t). Let φ(t) = G(t)/Ḡ(t). Asadi and Berred [2] showed that

pt (k) = S̄
(1)
k

(
n
k

)
φk(t)∑n−1

k=0 S̄
(1)
k

(
n
k

)
φk(t)

.

Several properties of pt (k) were explored in [2].
In order to state our next results, we need the following definition (see [23]).

Definition 3.4. Suppose that at time t , the network is in state K = 2. Then (T1, T ) is said to
be bivariate new better than used (BNBU) if

(T1, T ) ≥st (T1;t , Tt ) for all t > 0.

Remark 3.1. We should point out that, if a network is UBNBU then it is also BNBU. This is
because, for every increasing function ϕ(x, y), we have

E(ϕ(T1;t , Tt )) =
u−1∑
k=0

pt (k)E(ϕ(T1;t,k, Tt;k)) ≤
u−1∑
k=0

pt (k)E(ϕ(T1, T )) = E(ϕ(T1, T )).

In the following theorem we explore dependence properties of T1;t and Tt .

Theorem 3.4. Consider a network consisting of n i.i.d. links. Suppose that at time t the network
is in an up state.

(a) If Sn(n− k − 1) ≤uo Sn(n− k) for all k = 0, . . . , u− 2 and Ik and Jk are PQD for all
k = 0, . . . , u− 1, then T1;t and Tt are PQD.

(b) If Sn(n− k− 1) ≤st Sn(n− k) for all k = 0, . . . , u− 2 and Ik and Jk are associated for
all k = 0, . . . , u− 1, then T1;t and Tt are associated.
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Proof. We prove part (a). The proof of part (b) is similar. Let ϕ(x) and ψ(x) be increasing
functions. We have

E(ϕ(T1;t )ψ(Tt )) =
u−1∑
k=0

pt (k)E(ϕ(T1;t,k)ψ(Tt,k))

≥
u−1∑
k=0

pt (k)E(ϕ(T1;t,k))E(ψ(Tt,k))

≥
u−1∑
k=0

pt (k)E(ϕ(T1;t,k))
u−1∑
k=0

pt (k)E(ψ(Tt,k))

= E(ϕ(T1;t ))E(ψ(Tt )),

where the first inequality follows from Theorem 3.2, in which the condition Ik and Jk are
PQD implies that T1;t,k and Tt,k are PQD. From Corollary 3.1, the condition Sn(n− k−1) ≤uo
Sn(n−k), k = 0, . . . , u−2, gives P(T1;t,k > x1, Tt,k > x) is decreasing in k ∈ {0, . . . , u−1}
and, therefore, E(ϕ(T1;t,k)) and E(ψ(Tt,k)) are decreasing in k. Hence, the second inequality
follows from the fact that every single random variable is associated.

As an application of this theorem, we present the following example.

Example 3.5. (a) Consider the network presented in Example 3.1. From Example 3.3, for
k = 0, . . . , 6, Ik and Jk are PQD. Moreover, based on the results in Appendix A in which
the dynamic signature matrices of order 10 are given, similar to Example 3.1, it can be shown
that S10(10 − k) ≥st S10(10 − k − 1) for all k = 0, . . . , 5, which results in S10(10 − k) ≥uo
S10(10 − k − 1). Thus, from Theorem 3.4(a), T1;t and Tt are PQD.

(b) Let us consider again Example 3.2. We have shown that, for k = 0, 1, Ik and Jk are
associated. It can be seen that S ≥st S5(4). Therefore, from Theorem 3.4(b), T1;t and Tt are
associated.

In the following theorem the residual lifetimes of two networks are compared.

Theorem 3.5. Consider two networks with the same structure. Suppose that X1,1, . . . , X1,n
andX2,1, . . . , X2,n are their corresponding i.i.d. lifetimes of the links, respectively. IfX1,1 ≤hr
X2,1 and

(a) Sn(n− k− 1) ≤uo Sn(n− k) for all k = 0, . . . , u− 2 then (T (1)1;t , T
(1)
t ) ≤uo (T

(2)
1;t , T

(2)
t ).

(b) Sn(n− k− 1) ≤st Sn(n− k) for all k = 0, . . . , u− 2 then (T (1)1;t , T
(1)
t ) ≤st (T

(2)
1;t , T

(2)
t ).

Proof. We present the proof for part (a). Part (b) can be proved in a similar manner. Let
X1,1 and X2,1 have distribution functions G1(x) and G2(x), respectively, and

p
(i)
t (k) = S̄

(1)
k

(
n
k

)
φki (t)∑n−1

k=0 S̄
(1)
k

(
n
k

)
φki (t)

, i = 1, 2,
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in which φi(t) = Gi(t)/Ḡi(t). Now,

P(T
(1)

1 − t > x1, T
(1) − t > x | T (1)1 > t) =

u−1∑
k=0

p
(1)
t (k)P(T

(1)
1;t,k > x1, T

(1)
t,k > x)

≤
u−1∑
k=0

p
(2)
t (k)P(T

(1)
1;t,k > x1, T

(1)
t,k > x)

≤
u−1∑
k=0

p
(2)
t (k)P(T

(2)
1;t,k > x1, T

(2)
t,k > x)

= P(T
(2)
1 − t > x1, T

(2) − t > x | T (1)1 > t),

where the first inequality follows from Corollary 3.1 in which Sn(n − k − 1) ≤uo Sn(n − k),
k = 0, . . . , u− 2, gives P(T1;t,k > x1, Tt,k > x) is decreasing in k, and from [2, Theorem 3.4]
in which X1,1 ≤hr X2,1 gives

∑u−1
k=i p

(1)
t (k) ≥ ∑u−1

k=i p
(2)
t (k) for all i = 0, . . . , u − 1. The

second inequality follows from Theorem 3.3(a) in which X1,1 ≤hr X2,1 gives

P(T
(1)
1;t,k > x1, T

(1)
t,k > x) ≤ P(T

(2)
1 > x1, T

(2) > x).

4. The reliability of the network in state K = 1

In this section we assume that the network is in state K = 1 at time t and exactly k
links have failed at that time. In other words, we consider the events T1 < t < T and
Ek = (Xk : n ≤ t < Xk+1 : n). Let Ik be the number of failed links before the failure of the
kth link that causes the network to enter into stateK = 1. Let Jk be the number of failed links
after the failure of the kth link that causes the network to enter into state K = 0. Denoting
by S(n− k) the probability matrix corresponding to the random vector (Ik,Jk), we show that
S(n− k) is a dynamic signature. By using the same steps as in the proof of Lemma 3.1 and the
fact that

P(Xi : n < t < Xj : n | Ek) =
{

1, i = 1, . . . , k, j = k + 1, . . . , n,

0, otherwise,

we can show that

P(Ik = i, Jk = j) = P(T1 = Xi : n, T = Xj+k : n | T1 < t < T, Ek) = si,j+k
ξk

for i = 1, . . . , k and j = 1, . . . , n − k, in which ξk = ∑k
i=1

∑n
j=k+1 si,j . Let S(1) =

(s
(1)
1 , . . . , s

(1)
n ) and S(2) = (s

(2)
1 , . . . , s

(2)
n ) be the marginal signature vectors corresponding

to the signature matrix S, where s(1)i = P(T1 = Xi : n) and s(2)i = P(T = Xi : n). It can be
seen that ξk can also be presented as ξk = ∑n

i=k+1(s
(2)
i − s

(1)
i ). Let l∗ = min{i | s(1)i > 0} and

u∗ = max{i | s(2)i > 0}. Suppose that, for k ∈ {l∗, . . . , u∗ − 1}, P(T1 < t < T,Ek) > 0 and
ξk > 0.

In this section we study some dependence and stochastic properties of the inactivity lifetime
T1;t,k = (t−T1 | T1 < t < T, Ek) and the residual lifetime Tt,k = (T − t | T1 < t < T, Ek).
Before presenting the joint reliability function of (T1;t,k,Tt,k), we need the following lemma
whose proof is a simple exercise.
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Lemma 4.1. Let X1, . . . , Xn be i.i.d. continuous random variables from G(x). Consider
Xtj−k : n−k as the (j − k)th order statistics from a random sample of size n− k from Ḡ(x | t) =
Ḡ(x + t)/Ḡ(t), and X∗t

k−i+1 : k as the (k − i + 1)th order statistics from a random sample of
size k from Gt(x) = G(t − x)/G(t). It is easy to see that

P(t −Xi : n > x1, Xj : n − t > x | Xk : n ≤ t < Xk+1 : n)
= P(X∗t

k−i+1 : k > x1)P(X
t
j−k : n−k > x).

Based on Lemma 4.1, the joint reliability function of (T1;t,k,Tt,k) can be obtained as

P(t − T1 > x1, T − t > x | T1 < t < T, Ek)

=
k∑
i=1

n−k∑
j=1

P(Ik = i, Jk = j)P(X∗t
k−i+1 : k > x1)P(X

t
j : n−k > x).

It is clear that the reliability functions of T1;t,k and Tt,k can, respectively, be written as

P(t − T1 > x1 | T1 < t < T, Ek) =
k∑
i=1

P(Ik = i)P(X∗t
k−i+1 : k > x1)

and

P(T − t > x | T1 < t < T, Ek) =
n−k∑
j=1

P(Jk = j)P(Xtj : n−k > x).

Let S(1)(n− k) and S(2)(n− k) be the marginal signature vectors respective to S(n − k).
In other words, S(1)(n − k) and S(2)(n − k) are the probability mass functions of Ik and Jk ,
respectively. Also let S(1)n (n− k) = (s̃

(1)
1 , . . . , s̃

(1)
n ) and S(2)n (n − k) = (s̃

(2)
1 , . . . , s̃

(2)
n ) be the

signature vectors of order n corresponding to S(1)(n− k) and S(2)(n− k), respectively, which
can be calculated using [29, Corollary 2.8].

Using a similar method as in [29, Corollary 2.9] and by using the equation

P(Xk−i+1 : k > x) =
n−i+1∑
j=k−i+1

((
j − 1

k − i

)(
n− j

i − 1

) / (
n

k

))
P(Xj : n > x)

(see [34]), the reliability function of T1;t,k can be expressed as

P(t − T1 > x1 | T1 < t < T, Ek) =
n∑
i=1

s̃
(1)
i P(X∗t

n−i+1 : n > x1).

Also, directly from [29, Corollary 2.8], the reliability function of Tt,k can be written as

P(T − t > x | T1 < t < T, Ek) =
n∑
j=1

s̃
(2)
j P(Xtj : n > x).

In the following remark, an ageing property of the networks is investigated.
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Remark 4.1. Consider a network with n i.i.d. links. From [32, Theorem 3.8], if the distribution
of the lifetimes of the links is NBU and

S(2) ≥st S(2)n (n− k) for k = l∗, . . . , u∗ − 1,

then T ≥st (T − t | T1 < t < T, Ek) for k = l∗, . . . , u∗ − 1; hence, from [32, Remark 3.4],
T ≥st (T − t | T1 < t < T ).

In the sequel, some dependence and stochastic properties of T1;t,k and Tt,k are studied. The
following theorem shows that if the dependence relationship between Ik and Jk is positive then
the dependence relationship between T1;t,k and Tt,k is negative.

Theorem 4.1. If Ik and Jk are PQD then T1;t,k and Tt,k are NQD.

Proof. Note that P(X∗t
k−i+1 : k > x1) is decreasing in i and P(Xtj−k : n−k > x) is increasing

in j .
From the assumption that Ik and Jk are PQD, we have

P(T1;k,t > x1, Tk,t > x) =
k∑
i=1

n−k∑
j=1

P(Ik = i, Jk = j)P(X∗t
k−i+1 : k > x1)P(X

t
j : n−k > x)

≤
k∑
i=1

n−k∑
j=1

P(Ik = i, Jk = j)P(X∗t
k−i+1 : k > x1)

×
k∑
i=1

n−k∑
j=1

P(Ik = i, Jk = j)P(Xtj : n−k > x)

= P(T1;t,k > x1)P(Tt,k > x).

Hence, T1;t,k and Tt,k are NQD.

Example 4.1. Let us again consider Example 3.2. For the structure of part (i) (Ik,Jk) for
k = 1, 2, 3 is T P2 because si1,j1si2,j2 ≥ si1,j2si2,j1 for all i1 < i2, j1 < j2. Thus, Ik and Jk
for k = 1, 2, 3 are PQD; see [19]. Therefore, for k = 1, 2, 3, T1;t,k and Tt,k are NQD. It can
be seen that the same result is also true for part (ii) when k = 2, 3, 4.

In the following theorem, the performance of two networks is compared based on their
dynamic signature matrices.

Theorem 4.2. Consider two networks each consisting of n i.i.d. links with lifetimesX1, . . . , Xn
and Y1, . . . , Yn, respectively. Assume that both networks at time t are in stateK = 1 and have
exactly k1 and k2 failed links, respectively. Suppose that S(1)n,i (n − k1) and S(2)n,i (n − k2), for
i = 1, 2, are the marginal dynamic signature vectors of order n of the ith network.

(a) If S(1)n,1(n− k1) ≤st S(1)n,2(n− k2) and X1 ≤rh Y1 then T (1)
1;t,k1

≥st T (2)
1;t,k2

.

(b) If S(2)n,1(n− k1) ≤st S(2)n,2(n− k2) and X1 ≤hr Y1 then T (1)
t,k1

≤st T (2)
t,k2

.

(c) If S(1)n,1(n− k1) ≤hr(lr) S(1)n,2(n− k2) and X1
d= Y1 then T (1)

1;t,k1
≥rh(lr) T (2)

1;t,k2
.

(d) If S(2)n,1(n− k1) ≤hr(lr) S(2)n,2(n− k2) and X1
d= Y1 then T (1)

t,k1
≤hr(lr) T (2)

t,k2
.

Proof. Let X∗t
1 = (t −X1 | X1 < t) and Y ∗t

1 = (t − Y1 | Y1 < t).
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(a) It can be seen that X1 ≤rh Y1 implies Y ∗t
1 ≤st X

∗t
1 , and so Y ∗t

n−i+1 : n ≤st X
∗t
n−i+1 : n. Using

the fact that P(Y ∗t
n−i+1 : n > x) is decreasing in i and the assumption that S(1)n,1(n − k1) ≤st

S(1)n,2(n− k2), we have

P(T (1)
1;t,k1

> x) =
n∑
i=1

s̃
(1)
1,i P(X

∗t
n−i+1 : n > x)

≥
n∑
i=1

s̃
(1)
1,i P(Y

∗t
n−i+1 : n > x)

≥
n∑
i=1

s̃
(1)
2,i P(Y

∗t
n−i+1 : n > x)

= P(T (2)
1;t,k2

> x).

(b) The proof of part (b) is the same as part (a) and, hence, is omitted.

(c) It is well known that Xn−i+1 : n ≥lr Xn−i : n. Then, for i = 1, . . . , n, we have

X∗t
n−i+1 : n ≥lr X

∗t
n−i : n,

which also implies rh-ordering. Thus, from the assumption that S(1)n,1(n− k1) ≤hr S(1)n,2(n− k2),
using [20, Theorem 2.2], we have T (1)

1;t,k1
≥rh T (2)

1;t,k2
. The proof for lr-ordering is the same by

using [20, Theorem 3.5].

(d) This part can be established in the same way as part (c) by using [33, Theorems 1.B.14 and
1.C.17] for hr- and lr-orderings, respectively.

Corollary 4.1. Let Sn(n− k) be the dynamic signature matrix of order n of a network.

(a) If S(1)n (n−k−1) ≤st S(1)n (n−k) for k = l∗, . . . , u∗ −2 then P(T1;t,k > x) is increasing
in k ∈ {l∗, . . . , u∗ − 1}.

(b) If S(2)n (n− k− 1) ≤st S(2)n (n− k) for k = l∗, . . . , u∗ − 2 then P(Tt,k > x) is decreasing
in k ∈ {l∗, . . . , u∗ − 1}.

Example 4.2. (a) Let us consider the bridge network with the structure presented in Exam-
ple 3.2(i). It is easy to see that ξ1 = 4

5 , ξ2 = 4
5 , and ξ3 = 1

5 . The first marginal dynamic signature
vectors are

S(1)(4) = (1), S(1)(3) = ( 3
4 ,

1
4

)
, S(1)(2) = ( 2

3 ,
1
3 , 0

)
.

The corresponding signature vectors of order 5 are given as

S(1)5 (4) = ( 1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)
, S(1)5 (3) = ( 3

10 ,
1
4 ,

1
5 ,

3
20 ,

1
10

)
, S(1)5 (2) = ( 2

5 ,
3

10 ,
1
5 ,

1
10 , 0

)
.

It can be seen that S(1)5 (2) ≤st S(1)5 (3) ≤st S(1)5 (4).

(b) Let us consider Example 3.1. It can be seen that ξ4 = 0.0241, ξ5 = 0.1183, ξ6 = 0.4049,
and ξ7 = 0.9166. The second marginal dynamic signature vectors are

S(2)(6) = (0, 0, 0.195, 0.805, 0, 0), S(2)(5) = (0, 0.2012, 0.7988, 0, 0),

S(2)(4) = (0.206, 0.794, 0, 0), S(2)(3) = (1, 0, 0).
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The corresponding signature vectors of order 10 that are computed using MATLAB® software
are given as

S(2)10 (6) = (0, 0, 0.0325, 0.1132, 0.2090, 0.2671, 0.2439, 0.1342, 0, 0),

S(2)10 (5) = (0, 0.0447, 0.1225, 0.1905, 0.2221, 0.2062, 0.1474, 0.0666, 0, 0),

S(2)10 (4) = (0.0824, 0.1608, 0.1931, 0.1898, 0.1610, 0.1174, 0.0690, 0.0265, 0, 0),

S(2)10 (3) = (0.3, 0.2333, 0.175, 0.125, 0.0833, 0.05, 0.025, 0.0083, 0, 0).

It can be shown that S(2)10 (3) ≤st S(2)10 (4) ≤st S(2)10 (5) ≤st S(2)10 (6).

In the following, some dependence and stochastic properties of the conditional lifetimes
T1;t = (t − T1 | T1 < t < T ) and Tt = (T − t | T1 < t < T ) are studied based on properties
of the dynamic signature matrix. First, we have

P(t − T1 > x1, T − t > x | T1 < t < T )

=
u∗−1∑
k=l∗

qt (k)P(t − T1 > x1, T − t > x | T1 < t < T, Ek)

in which qt (k) := P(Ek | T1 < t < T ). It can be seen that

qt (k) =
(
n
k

)
ξkφ

k(t)∑n−1
r=1

(
n
r

)
ξrφr(t)

,

where φ(t) = G(t)/Ḡ(t). It is clear that qt (k) represents the probability that k links have failed
until time t when at time t the network is in state K = 1.

Using Theorem 4.1, Corollary 4.1, and the same steps as the proof of Theorem 3.4, the
following theorem can be established.

Theorem 4.3. If Ik and Jk are PQD for k = l∗, . . . , u∗ −1 and S(i)n (n−k−1) ≤st S(i)n (n−k)
for i = 1, 2, k = l∗, . . . , u∗ − 2, then T1;t and Tt are NQD.

Remark 4.2. Asadi and Berred [2] showed that the ratio

h(t) =
∑n−1
i=k

(
n
i

)
ξi t

i∑n−1
i=1

(
n
i

)
ξi t i

is increasing in t . Assume that φi(t) = Gi(t)/Ḡi(t), for i = 1, 2. Since,

Q̄
(i)
k (t) =

n−1∑
j=k

qt (j) = h(φi(t))

for i = 1, 2, if Ḡ1(t) ≤ Ḡ2(t) then Q̄(1)
k (t) ≥ Q̄

(2)
k (t).

Following the same steps as the proof of Theorem 3.5 and by using Theorem 4.2, Corol-
lary 4.1, and Remark 4.2, we can establish the following theorem.
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Theorem 4.4. Consider two networks with the same structure. Suppose that X1, . . . , Xn and
Y1, . . . , Yn are their corresponding i.i.d. lifetimes of the links, respectively.

(a) If S(1)n (n−k−1) ≤st S(1)n (n−k) for k = l∗, . . . , u∗−2 andX1 ≤rh Y1 then T (1)
1;t ≥st T (2)

1;t .

(b) If S(2)n (n−k−1) ≤st S(2)n (n−k) for k = l∗, . . . , u∗−2 andX1 ≤hr Y1 then T (1)
t ≤st T (2)

t .

5. Conclusions

In this paper we considered a three-state network with states K = 0, 1, 2, where K = 2
corresponds to the perfect performance of the network, K = 1 shows the partial performance,
and K = 0 corresponds to failure of the network. We have considered situations under which
the network at time t is in the up state (K = 2) and exactly k links have failed. Under this
condition, we defined the notion of the dynamic signature and explored some ageing properties
of the networks. Dependence and bivariate stochastic properties of the dynamic signature that
are transferred to the residual lifetimes of the network states have been investigated. Then,
under the assumptions that the network at time t is in state K = 1 and exactly k links have
failed, and using a variant of the dynamic signature, we obtained a reliability function of the
residual and the inactivity lifetimes of the network states. The dependence relationship between
residual and inactivity lifetimes of the network states have been explored. Finally, based on
the definition of equivalent systems, introduced in [29], several univariate stochastic ordering
results were presented. An interesting problem which can be considered for future study is to
extend the results of this paper to networks with more than three states.

Appendix A. Computation of the signature and dynamic signature in Example 3.1

The nonzero elements of the signature matrix S of Example 3.1, are estimated by [17] as
follows.

s4,7 = 0.0047, s4,8 = 0.0194, s5,7 = 0.0191, s5,8 = 0.0751,

s6,7 = 0.0596, s6,8 = 0.227, s7,8 = 0.5951.

From this, the dynamic signature matrices of order 10, S10(10 − k) can be calculated using
MATLAB® software as follows:

(I) The nonzero elements of S10(9) are

s̃3,6 = 0.0019, s̃3,7 = 0.0072, s̃3,8 = 0.0078, s̃4,6 = 0.0076,

s̃4,7 = 0.0278, s̃4,8 = 0.0284, s̃5,6 = 0.0238, s̃5,7 = 0.0817,

s̃5,8 = 0.0754, s̃6,7 = 0.2083, s̃6,7 = 0.1730, s̃7,8 = 0.3571.

(II) The nonzero elements of S10(8) are

s̃2,5 = 0.0010, s̃2,6 = 0.0038, s̃2,7 = 0.0058, s̃2,8 = 0.0043, s̃3,5 = 0.0042,

s̃3,6 = 0.0142, s̃3,7 = 0.0195, s̃3,8 = 0.0135, s̃4,5 = 0.0132, s̃4,6 = 0.0407,

s̃4,7 = 0.0495, s̃4,8 = 0.0314, s̃5,6 = 0.1005, s̃5,7 = 0.1081, s̃5,8 = 0.0636,

s̃6,7 = 0.2116, s̃6,8 = 0.1166, s̃7,8 = 0.1984.

https://doi.org/10.1239/jap/1421763324 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763324


1018 S. ASHRAFI AND M. ASADI

(III) The nonzero elements of S10(7) are

s̃1,4 = 0.0008, s̃1,5 = 0.0028, s̃1,6 = 0.0048, s̃1,7 = 0.0052, s̃1,8 = 0.0032,

s̃2,4 = 0.0032, s̃2,5 = 0.0098, s̃2,6 = 0.0146, s̃2,7 = 0.0141, s̃2,8 = 0.0079,

s̃3,4 = 0.0099, s̃3,5 = 0.0271, s̃3,6 = 0.0349, s̃3,7 = 0.0303, s̃3,8 = 0.0157,

s̃4,5 = 0.0645, s̃4,6 = 0.0717, s̃4,7 = 0.0570, s̃4,8 = 0.0278, s̃5,6 = 0.1309,

s̃5,7 = 0.0972, s̃5,8 = 0.0450, s̃6,7 = 0.1537, s̃6,8 = 0.0685, s̃7,8 = 0.0992.

(IV) The nonzero elements of S10(6) are

s̃1,3 = 0.0033, s̃1,4 = 0.0092, s̃1,5 = 0.0138, s̃1,6 = 0.0147, s̃1,7 = 0.0115,

s̃1,8 = 0.0055, s̃2,3 = 0.0102, s̃2,4 = 0.0243, s̃2,5 = 0.0306, s̃2,6 = 0.0288,

s̃2,7 = 0.0206, s̃2,8 = 0.0092, s̃3,4 = 0.0552, s̃3,5 = 0.0579, s̃3,6 = 0.0493,

s̃3,7 = 0.0328, s̃3,8 = 0.0140, s̃4,5 = 0.0958, s̃4,6 = 0.0761, s̃4,7 = 0.0482,

s̃4,8 = 0.0198, s̃5,6 = 0.1092, s̃5,7 = 0.0668, s̃5,8 = 0.0267, s̃6,7 = 0.0886,

s̃6,8 = 0.0346, s̃7,8 = 0.0436.

(V) The nonzero elements of S10(5) are

s̃1,2 = 0.0150, s̃1,3 = 0.0308, s̃1,4 = 0.0360, s̃1,5 = 0.0333, s̃1,6 = 0.0256,

s̃1,7 = 0.0156, s̃1,8 = 0.0061, s̃2,3 = 0.0656, s̃2,4 = 0.0609, s̃2,5 = 0.0499,

s̃2,6 = 0.0355, s̃2,7 = 0.0206, s̃2,8 = 0.0078, s̃3,4 = 0.0857, s̃3,5 = 0.0665,

s̃3,6 = 0.0455, s̃3,7 = 0.0255, s̃3,8 = 0.0094, s̃4,5 = 0.0830, s̃4,6 = 0.0554,

s̃4,7 = 0.0305, s̃4,8 = 0.0111, s̃5,6 = 0.0654, s̃5,7 = 0.0355, s̃5,8 = 0.0128,

s̃6,7 = 0.0404, s̃6,8 = 0.0144, s̃7,8 = 0.0161.

(VI) The nonzero elements of S10(4) are

s̃1,2 = 0.1333, s̃1,3 = 0.1000, s̃1,4 = 0.0714, s̃1,5 = 0.0476, s̃1,6 = 0.0286,

s̃1,7 = 0.0143, s̃1,8 = 0.0048, s̃2,3 = 0.1000, s̃2,4 = 0.0714, s̃2,5 = 0.0476,

s̃2,6 = 0.0286, s̃2,7 = 0.0143, s̃2,8 = 0.0048, s̃3,4 = 0.0714, s̃3,5 = 0.0476,

s̃3,6 = 0.0286, s̃3,7 = 0.0143, s̃3,8 = 0.0048, s̃4,5 = 0.0476, s̃4,6 = 0.0286,

s̃4,7 = 0.0143, s̃4,8 = 0.0048, s̃5,6 = 0.0286, s̃5,7 = 0.0143, s̃5,8 = 0.0048,

s̃6,7 = 0.0143, s̃6,8 = 0.0048, s̃7,8 = 0.0048.

Appendix B. Computation of the signature in Example 3.2

We show the computation regarding part (i). The number of possible orderings of the link
failures is 5! = 120. We can easily verify that in 24 situations out of 120, the first and second
failure links cause the states of the network change fromK = 2 toK = 1 andK = 1 toK = 0,
respectively; that is, n1,2 = 24. Similarly, it can be seen that n1,3 = 56, n1,4 = 16, n2,3 = 16,
n2,4 = 8. Hence, based on the fact that si,j = ni,j /n!, the nonzero elements of the signature
matrix of this network are given, respectively, as s1,2 = 24

120 , s1,3 = 56
120 , s1,4 = 16

120 , s2,3 = 16
120 ,

s2,4 = 8
120 .

The computation for part (ii) can be achieved in a similar way; hence, we omit the details.

https://doi.org/10.1239/jap/1421763324 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763324


Dynamic reliability modeling of three-state networks 1019

Acknowledgements

We would like to express our sincere thanks to an associate editor and an anonymous referee
for their constructive comments and suggestions which improved the presentation of this paper.
M. Asadi’s research was carried out in IPM Isfahan branch and was in part supported by a grant
from IPM (grant number 92620411).

References

[1] Amari, S. V., Zuo, M. J. and Dill, G. (2009). A fast and robust reliability evaluation algorithm for generalized
multi-state k-out-of-n systems. IEEE Trans. Reliab. 58, 88–97.

[2] Asadi, M. and Berred, A. (2012). On the number of failed components in a coherent operating system. Statist.
Prob. Lett. 82, 2156–2163.

[3] Asadi, M. and Goliforushani, S. (2008). On the mean residual life function of coherent systems. IEEE Trans.
Reliab. 57, 574–580.

[4] Balakrishnan, N. (2007). Permanents, order statistics, outliers, and robustness. Rev. Mat. Complut. 20, 7–107.
[5] Balakrishnan, N. and Asadi, M. (2012). A proposed measure of residual life of live components of a coherent

system. IEEE Trans. Reliab. 61, 41–49.
[6] Belzunce, F., Mercader, J.-A., Ruiz, J.-M. and Spizzichino, F. (2009). Stochastic comparisons of

multivariate mixture models. J. Multivariate Anal. 100, 1657–1669.
[7] Boland, P. J., Samaniego, F. J. and Vestrup, E. M. (2003). Linking dominations and signatures in network

reliability theory. In Mathematical and Statistical Methods in Reliability, World Scientific, River Edge, NJ,
pp. 89–103.

[8] Da, G. and Hu, T. (2013). On bivariate signatures for systems with independent modules. In Stochastic Orders
in Reliability and Risk, Springer, New York, pp. 143–166.

[9] Eryilmaz, S. (2010). Conditional lifetimes of consecutive k-out-of-n systems. IEEE Trans. Reliab. 59, 178–182.
[10] Eryilmaz, S. (2010). Mean residual and mean past lifetime of multi-state systems with identical components.

IEEE Trans. Reliab. 59, 644–649.
[11] Eryilmaz, S. (2010). Mixture representations for the reliability of consecutive-k systems. Math. Comput.

Modelling 51, 405–412.
[12] Eryilmaz, S. (2010). Number of working components in consecutive k-out-of-n system while it is working.

Commun. Statist. Simul. Comput. 39, 683–692.
[13] Eryilmaz, S. (2011). Dynamic reliability and performance evaluation of multi-state systems with two

components. Hacet. J. Math. Statist. 40, 125–133.
[14] Eryilmaz, S. and İşçioğlu, F. (2011). Reliability evaluation for a multi-state system under stress-strength

setup. Commun. Statist. Theory Meth. 40, 547–558.
[15] Eryilmaz, S. and Zuo, M. J. (2010). Computing and applying the signature of a system with two common

failure criteria. IEEE Trans. Reliab. 59, 576–580.
[16] Feng, X., Zhang, S. and Li, X. (2013). A note on the mixture representation of the conditional residual lifetime

of a coherent system. J. Appl. Prob. 50, 475–485.
[17] Gertsbakh, I. B. and Shpungin, Y. (2012). Stochastic models of network survivability. QTQM 9, 45–58.
[18] Goliforushani, S., Asadi, M. and Balakrishnan, N. (2012). On the residual and inactivity times of the

components of used coherent systems. J. Appl. Prob. 49, 385–404.
[19] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.
[20] Khaledi, B.-E. and Shaked, M. (2010). Stochastic comparisons of multivariate mixtures. J. Multivariate Anal.

101, 2486–2498.
[21] Lai, C.-D. and Xie, M. (2006). Stochastic Ageing and Dependence for Reliability. Springer, New York.
[22] Li, W. and Zuo, M. J. (2008). Reliability evaluation of multi-state weighted k-out-of-n systems. Reliab. Eng.

Syst. Saf. 93, 160–167.
[23] Li, X. and Pellerey, F. (2011). Generalized Marshall–Olkin distributions and related bivariate aging properties.

J. Multivariate Anal. 102, 1399–1409.
[24] Lisnianski, A. and Levitin, G. (2003). Multi-State System Reliability: Assessment, Optimization and

Applications. World Scientific, River Edge, NJ.
[25] Navarro, J. and Rychlik, T. (2007). Reliability and expectation bounds for coherent systems with exchangeable

components. J. Multivariate Anal. 98, 102–113.
[26] Navarro, J., Balakrishnan, N. and Samaniego, F. J. (2008). Mixture representations of residual lifetimes of

used systems. J. Appl. Prob. 45, 1097–1112.
[27] Navarro, J., Samaniego, F. J. and Balakrishnan, N. (2010). The joint signature of coherent systems with

shared components. J. Appl. Prob. 47, 235–253.

https://doi.org/10.1239/jap/1421763324 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763324


1020 S. ASHRAFI AND M. ASADI

[28] Navarro, J., Samaniego, F. J. and Balakrishnan, N. (2011). Signature-based representations for the reliability
of systems with heterogeneous components. J. Appl. Prob. 48, 856–867.

[29] Navarro, J., Samaniego, F. J., Balakrishnan, N. and Bhattacharya, D. (2008). On the application and
extension of system signatures in engineering reliability. Naval Res. Logistics 55, 313–327.

[30] Ramirez-Marquez, J. E. and Coit, D. W. (2005). A Monte-Carlo simulation approach for approximating
multi-state two-terminal reliability. Reliab. Eng. Syst. Saf. 87, 253–264.

[31] Samaniego, F. J. (1985). On closure of the IFR class under formation of coherent systems. IEEE Trans. Reliab.
34, 69–72.

[32] Samaniego, F. J., Balakrishnan, N. and Navarro, J. (2009). Dynamic signatures and their use in comparing
the reliability of new and used systems. Naval Res. Logistics 56, 577–591.

[33] Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.
[34] Sillitto, G. P. (1964). Some relations between expectations of order statistics in samples of different sizes.

Biometrika 51, 259–262.
[35] Zarezadeh, S. and Asadi, M. (2013). Network reliability modeling under stochastic process of component

failures. IEEE Trans. Reliab. 62, 917–929.
[36] Zarezadeh, S., Asadi, M. and Balakrishnan, N. (2014). Dynamic network reliability modeling under

nonhomogeneous Poisson processes. Europ. J. Operat. Res. 232, 561–571.
[37] Zhang, Z. (2010). Mixture representations of inactivity times of conditional coherent systems and their

applications. J. Appl. Prob. 47, 876–885.
[38] Zuo, M. J. and Tian, Z. (2006). Performance evaluation of generalized multi-state k-out-of-n systems. IEEE

Trans. Reliab. 55, 319–327.

https://doi.org/10.1239/jap/1421763324 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763324

	1 Introduction
	2 Preliminaries
	3 The residual reliability of the network in state K=2
	4 The reliability of the network in state K=1
	5 Conclusions
	A Computation of the signature and dynamic signature in Example 3.1
	B Computation of the signature in Example 3.2
	Acknowledgements
	References

