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NONCOMMUTATIVE DISC ALGEBRAS FOR SEMIGROUPS

KENNETH R. DAVIDSON AND GELU POPESCU

ABSTRACT. We study noncommutative disc algebras associated to the free product
of discrete subsemigroups of R*. These algebras are associated to generalized Cuntz
algebras, which are shown to be simple and purely infinite. The nonself-adjoint subal-
gebras determine the semigroup up to isomorphism. Moreover, we establish a dilation
theorem for contractive representations of these semigroups which yields a variant of
the von Neumann ineguality. These methods are applied to establish a solution to the
truncated moment problem in this context.

The starting point of this work is an old result of Douglas [15] establishing that
any properly isometric representation of the cone G* of a discrete subgroup of the real
line generates the same C*-algebra, and that the ordered semigroup may be recovered
from this algebra. We establish that the nonself-adjoint algebra generated by such a
representation is a function algebra, and that two such algebras are isomorphic if and
only if the semigroups are order isomorphic. Mlak [19] establishes a dilation theorem
for contractive representations of these semigroups. This yields a variant of the von
Neumann inequality. These results suggest thinking of these algebras as generalized disc
algebras, and in fact the computation of their maximal ideal space and Shilov boundary
make this connection even more compelling.

Motivated by earlier work of the authors [22, 23, 24, 25, 28, 11, 12], we are led
to consider non-commutative disc algebras associated to the free product of ordered
semigroups. We need to first establish some facts about generalized Cuntz C*-algebras
associated to these semigroups. The original Cuntz algebras [8] are associated to the
free product of n copies of N. A larger class based on the free product of n copies of
a countable dense subsemigroup of R* were investigated by Dinh [13, 14] motivated
by the work on semigroups of endomorphisms of B(H ), especially [4]. The fact that
both of these authors use n copies of a common semigroup allows them to make use
of the homogeneity. This is not possible in our case, but nevertheless the proof that
these algebras are simple and purely infinite follows the lines of Cuntz's original proof
closely. This leads us to the conclusion that the C*-algebra generated by any isometric
representation of the free product of ordered semigroups satisfying certain orthogonality
relations generates the reduced C* -algebra of the semigroup.

Lacaand Raeburn[17] have considered a class of C*-algebras associated to subsemi-
groups of groups with a semilattice structure introduced by Nica [20]. Their methods
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also yield the simplicity of the generalized Cuntz algebras that we consider (see [17,
Cor. 5.3]). Their methods are different and do not yield directly that the C*-algebras
are purely infinite. Apparently this fact has been observed independently by Laca[18].
However there are significant parallels with our methods, as there are with the original
argument of Cuntz.

Thisallowsusto establish the uniqueness of the corresponding nonself-adj oint algebra
for such a representation. We call these algebras noncommutative disc algebras. We
compute the set of characters, and this is an essential tool in establishing a complete
isomorphism invariant for these algebras which allows the recovery of the semigroup.

Frahzo [16], Bunce [6] and the second author [22] establish an isometric dilation
theorem for an n-tuple of (hon-commuting) operators (Ty, . . . , Tn) suchthat =L, TiTy <
I. Here we establish the analogous result for representations of n ordered semigroups
satisfying the corresponding norm condition. Thisyieldsan analogue of thevon Neumann
inequality for our noncommutative disk algebras. This extends related results such as
[34, 1, 23, 24, 25, 28].

In the last section, we consider the truncated moment problem for operator-valued
functions on these semigroups. The dilation theorem is the necessary tool to give a
complete answer in terms of the positivity of an associated Toeplitz kernel. Theseresults
are adirect analogy to well known results for the positive integers for measures on the
circle[2].

1. Disc algebrasfor ordered semigroups. Let G be any discrete subgroup of the
real line R, and let G* denote the positive cone G* = GN [0, co). We will be concerned
with the disc algebras associated to semigroups of this form. Consider the norm closed
algebra A(G*) generated by the |eft regular representation of G*. This represents G* as
a semigroup of isometries A(g) on £2(G*) with orthonormal basis {¢4 : g € G*} given
by

MO)éh = &gen fOrg.h e G'.

We also consider the reduced C*-algebra C;(G*) of this semigroup given by the C*-
algebra generated by the left regular representation.

When G = Zand G* = N, itiseasy to seethat A(1) isthe unilateral shift. ThusA(N)is
completely isometrically isomorphic to the disc algebra A (D) of all continuousfunctions
ontheclosed unit disc D which are analytic on theinterior. And the envel oping C* -algebra
is the Toeplitz algebra on the unit circle C;(N) = T (C(T)). This algebra has a unique
minimal ideal, namely the compact operators K , which is the commutator ideal and the
quotient C;(N) /K ~ C(T). The reason that the circle appearsisthat T = 7 is the dual
group of Z. Moreover, the disc algebrais afunction algebrawith maximal ideal spaceD
and Shilov boundary T. By the Wold decomposition and Coburn’s Theorem [7], every
isometric representation of N generates a C*-algebra which is a quotient of T (C(]T)).
We shall seethat these results have direct parallels for all subgroups of R.

The main step in this direction was obtained by Douglas[15].
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THEOREM 1.1 (DOUGLAS). Let G be any discrete subgroup of R. The C*-algebra
generated by any representation of G* as proper isometries is canonically isomor phic
to C;(G*). Moreover, the commutator ideal Cg of this algebrais simple and the quotient
C/(G")/Co ~ C(G), where G isthe compact dual group of the discretegroup G. The C*-
algebra generated by an arbitrary isometric representation of G* is either isomorphic
to C*(G*) or to a quatient of C(G).

It follows that the norm-closed algebra generated by any representation of G* as
proper isometriesis completely isometrically isomorphic to A(G*) viaits identification
with the nonself-adjoint subalgebraof C;(G*) determined by the generators.

Douglas also proved that the semigroup can be recovered from its C*-algebra:

THEOREM 1.2 (DOUGLAS). Let G; and G, be two discrete subgroups of R. The C*-
algebras C;(G7) and C;(G3) areisomorphicif and only if G; and G, areisomorphic as
ordered groups.

We also need to know that a basic result from dilation theory generalizes from N to
arbitrary cones G*. The famous isometric dilation theorem of Sz. Nagy [31] states that
if T isacontraction on a Hilbert space H , then there is an unitary operator U acting on
aspaceK =K~ @ H @ K* suchthat Py U"|y ~ T" for n > 0. There is an obvious
bijective correspondence between contractions T and the contractive representations of
N given by p(n) = T" for n > 0. The dilation theorem states that every contractive
representation of Z* dilates to a unitary representation of Z on alarger space. Mlak [19]
established the corresponding result for arbitrary subgroups of R.

THEOREM 1.3 (MLAK). Let G be any discrete subgroup of R. Then every contractive
representation p of G* can be dilated to a unitary representation o of G on a Hilbert
space K containing H such that

p(@) ~ Pyo(Qly forgeG’

Mlak's elegant proof bears repeating here. By a Theorem of Sz. Nagy [32] (see [33,
Theorem 1.7.1]), it suffices to show that the function defined on G by T(g) = p(g) and
T(—9) = p(9)* for g € G" ispositive definitein the sensethat the matrix [T(g; — gi)] > O
for every finite subset {g;} of G. Since this only concerns differences, we may assume
the listisgivenby 0 = go < g1 < --+ < gn. Mlak observes that if W is the upper
triangular operator with entries

Wj=T(g—g) for0<i<j<n
and D = diag(Deo. . . . , Dn) isthe diagonal operator with entries
Do=I and Di=1-T(g —g-1)"T(G —g-1) forl<i<n.

then [T(g; — 9i)] = W*DW is positive as needed.
Our first result shows that A(G") is a function algebra, and identifies the maximal
ideal space and Shilov boundary.

https://doi.org/10.4153/CJM-1998-015-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-015-5

NONCOMMUTATIVE DISC ALGEBRAS FOR SEMIGROUPS 293

THEOREM 1.4. The algebra A(G") associated to the positive cone G* of a discrete
subgroup of R is(completelyisometrically isomorphicto) a function algebra. The Shilov
boundaryis G and the maximal ideal spaceis the generalized disc CG given by the cone
on G. The Shilov boundary is connected.

ProoF. Noticethatif ¢ isany semicharacter on G* (i.e., acontractive homomorphism
of G* into C), we may consider this as a contractive representation of G* and dilate it by
Mlak’s Theoremto aunitary representation o of G. Thisinducesax-representation, which
we also denote by o, of C*(G) ~ C(G) which agrees with o on the generators g (where
we considered G imbedded as characters of G by sending g to §(Y) = (g.7)). Thus we
may define acontractive functional on Cf(G*) by factoring through the quotient algebra
C(G), applying o and then compressing to the range of v. Sincethismapis multiplicative
on the generators A(g) for g € G*, it follows that this functional is multiplicative on the
norm-closed algebra A(G") that they generate. Hence 1 is an element of the maximal
ideal space of A(G"). Conversely, it is clear that the restriction of any multiplicative
linear functional of A(G") to the generators is a contractive homomorphism into C.
Since the action of ) on the generators uniquely determines «, al multiplicative linear
functionals arise in this way.

Certain semicharacters are readily obtained. Firstif ¥ € G isany character of G, then
its restriction to G* is a homomorphism into the circle T. Moreover, for any r € [0, 1],
we may define afunctional

7r(9) = r9(g).
Whenr = 0, this determines the trivial functional

1 ifg=0

Po(9) = dog = {O otherwise

independent of . Thus we have identified a set of multiplicative functionals on A (G*)
corresponding to the cone on G, namely the set

CG:=Gx[0,1]/G x {0}.

We will show that these are all the semicharacters on G*, and that the natural topology
correspondsto the topology on the maximal ideal space of A(G").

Let ¢ be asemicharacter of G* other than po. Then ¢ does not vanish on G*. Hence
it factors as ¢ = |¢|y where v = /|¢|. Clearly 7 is a character, and extends by
setting Y(—g) = 7(g) to a character on G. So consider the absolute value || whichis a
semicharacter of G* into [0, 1]. Fix anon-zero element go of G* and definer = |1(go)| Y/ %.
Notice that || is monotone decreasing; for otherwise, there would be g < hin G* such
that |y(g)| < |¢(h)|, whence |¢(h — g)| > 1 contrary to fact. If g is any other non-
zero element of G*, then for each integer n > 0, there is a unigue integer m so that
mgo < ng < (m+ 1)go. Consequently, by the monotonicity of ||,

rm%/0 > |y(g)| > rm /N,
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Taking limits as n tends to infinity yields |(g)| = r9. Hence v = ;. Thus the maximal
ideal space of A(G*) equals CG at least as a set.

The topology on the maximal ideal space is a compact Hausdorff topology which is
the weakest topology such that the functionsy, — 7,(g) are continuousfor eachg € G*.
It isevident that these functions are continuous on CG with the product topol ogy because
they are continuous on G by definition of the weak topology on G and this extends to
the cone because the function f(r) = r9 is continuousfor each g € R. Conseguently, the
map from the maximal ideal spaceto the cone with the product topology is a continuous
bijection of one compact Hausdorff space onto another, and thusis a homeomorphism.

Next, consider the map = from A(G*) into C(G) obtained by restricting the quotient
map of C:(G*) onto C(G) to A(G"). This map is a *-homomorphism, and thus is
completely contractive. We will show that this map is completely isometric on A(G").
The proof is analogousto the integer case for Toeplitz operators. First notice that

A@ AN =A@ MYMh—g) =A(h—g) forg<heGC,

andsimilarly A(g)*\(h) = A(g—h)* wheng > h. Thusevery word consisting of aproduct
of terms A\(g;)* and A(h;) reduces to one of the form A(h)\(g)*. Therefore a calculation
showsthat every element of the commutator ideal can be approximated by something in
the span of terms of the form

X = A(G0)A(G2)" (MAA@)" — 1) A(Gs)A(ga)™-

But it is easy to verify that XA(h) = O if h > max{gs,g + da}. Thus for any X in the
commutator ideal and any e > 0, there is an element h € G* so that || XA(h)|| < e. It
is also clear that the restriction of A(G*) to A\(h)¢?(G") is unitarily equivalent to the
identity representation, and thusis completely isometric.

Consequently, if [A;j] is a matrix with coefficients in A(G"), choose a matrix [X;]
with coefficientsin the commutator ideal so that

1A = Xglll < | [=(Ap) ][ + .
Then chooseh € G* so that ||[X;jA(h)]|| < . Then
|[=(A)]| > [A; — %] diag(A(W) | — & > [IIAG]I] — 2e.

It followsthat 7 is completely isometric on A (G*). Sincevr(A(G*)) isaunital subalgebra
of C(é), it follows that A(G") isafunction algebra.

It also follows from this that the Shilov boundary of A (G*) is containedin G. On the
other hand, if O is any open subset of G, thereisa polynomial X = L, a A(gi)A(hi)*
in the dense subalgebra of C;(G*) such that w(X) has norm one, but 7(X) has norm less
than 1/2 off of O. Let h = max{h; }, and notice that A = X\(h) belongsto A(G*). Then

|7(A)] = |=(X)h| = |7(X)|.
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where h(7) = (h.7) is a character on G. So 7(A) also peaks in O. Thus the Shilov
boundary of A(G*) isall of G.

The Shilov boundary G is connected because G contains no elements of finite order.
See [29, Theorem 2.5.6(c)]. ]

Note that in the case of G = Z, the maximal ideal spaceis CT whichishomeomorphic
to the unit disc. So the cones CG should be thought of as generalized discs.

An immediate consequence in conjunction with Mlak’s Dilation Theorem 1.3 is an
analogue of the von Neumann inequality for semigroups of contractions.

COROLLARY 1.5. Let G* be the positive cone of a subgroup of R. If T is a contractive
homomorphismfrom G* into B(H ), then for every polynomial >°; a;h; in CG*, we have

AT < [ 2Ry

When T is a representation as proper isometries, thisis an equality.

Blecher and Paulsen [5] defineauniversal operator algebra OA(S) for any semigroup
S as the algebra generated by a contractive homomorphism of Swith the property that
given any contractive representation T of Sinto B(H ), there is a completely contrac-
tive homomorphism of OA(S) onto this algebra extending the representation T. So an
alternative formulation of this corollary is:

COROLLARY 1.6. Let G* be the positive cone of a subgroup of R. Then OA(G*) =
A(G"). Thusif T is a contractive homomor phism from G* into B(H ), then thereis a
(unique) completely contr active homomor phismp of A(G*) intotheal gebraAIg({T(g)})
such that p(h) = T(h).

It is possible to distinguish the ordered group up to isomorphism from A(G*) asin
the C*-algebra case.

COROLLARY 1.7. Let G; and G; betwo discrete subgroupsof R. ThealgebrasA(G;)
and A(G}) areisomorphicif and only if G; and G, are isomorphic as ordered groups.

PrROOF. Let G* be the positive cone of an ordered group, and consider A(G"). By
Theorem 1.4, the Shilov boundary of A(G") is the compact group G. A result of Bohr
and van Kampen (see [15]) shows that 71(G), the group of connected components of
C(G)*l, is isomorphic to G as an abelian group. Those components which intersect
A(G") correspond to the positive cone G*. Thus G* is recovered as an ordered group
from A(G"). "

ExAMPLE 1.8. Consider n positive real numbers «; which are linearly independent over
therationals. Let G = Y, Zo. Then G ~ 7" and thus G ~ T". However, the spectrum
CG imbeds naturally into C" differently depending on the «; chosen. Indeed, suppose
that v = (z,..., z,) is a point in the n-torus in C" and 0 < r < 1. The functional
7V, is determined by its action on the generators V(o) = r*z. Moreover it is easy to
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see that the map from CG to C" which takes ", to the n-tuple (“/r(ozl). . ,%(an)) isa
homeomorphism. Thus we see that the maximal ideal space of A (G") isidentified with
D(ea.....on) = {(z. ... z)) : oy tloglz| = -+ = o tlog|z| < 0}.

The function algebrais the subalgebra of C([I])(al, ey ocn)) spanned by the monomials
{ZZ 2 Tl ki > 0},

ExAMPLE 1.9. Say that asubsemigroup G of Riscommensurable provided that whenever
elements gi. ..., g, of G are given, there is an element go € G such that each g; is a
non-negative integer multiple of go. It is an easy exercise to show that such semigroups
are the positive cones of groups G which are order isomorphic to a subgroup of the
rationals Q. They are determined by divisibility as follows. Fix a non-zero element go
and consider the supernatural number n = TIppime p'> where ky € No U {Ro} is the
supremum of those integers k such that p=go € G. While this formal product depends
on the choice of g, it is determined up to afinite changein finitely many exponents.

The dual group of G is the solenoid S(n) which is the projective limit of circles
associated to the supernatural number n. Namely, write n as an infinite product of finite
integers g, and let p; be the mapping of acircle T; = T onto T;_; obtained by sending z
to Z%. Then §(n) isthe projective limit of this system. It is easy to seethat afinite change
in the definition of n does not affect S(n) up to homeomorphism. This is a connected
compact space which is some sort of idealized circle. So the maximal ideal spaceis by
analogy some sort of strange disc.

Since the semigroup is the inductive limit of subsemigroups, each of which is iso-
morphic to N, we are able to see that the algebra A(G*) is also the inductive limit of
subalgebras, each of which is isometrically isomorphic to the disc algebra. Many of
the results in this paper can be established more easily for this class of semigroups by
invoking the well-known results for N and taking limits appropriately.

2. Generalized Cuntz Algebras. Let G for 1 <i < nbe n subsemigroups of R.
Consider representations V; of G as semigroups of isometries on a common Hilbert
spaceH suchthat

) évi(govi(gi)* <1 fordlg G\ {o}.

Such arepresentation (uniquely) determines a representation of the free product semi-
group L, G by sending an element o = 019> - - - gk, Whereg; € G,‘J‘ to the isometry

V(0) := Vi,(91)Vi,(92) - - - Vi, (Gk)-

These representations of the free product are characterized by the property that if o and
T are two elements such that neither is a multiple of the other, then V(o) and V(1) are
isometries with pairwise orthogonal ranges. Such representations exist, for example the
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left regular representation of +, G satisfies (). Thiswill not be separably acting unless
each G; is countable.

We consider the generalized Cuntz algebra O+, G to be the universal C*-algebra
generated by isometric representations of the semigroups G;" satisfying (}). Thisis the
unique C*-algebra generated by n such isometric representations such that there is a
canonical x-homomorphism onto the C* -algebra generated by any particular instance of
(). We will show that this C*-algebrais simple when n > 2 and at least one of the G
isdensein R*, and in fact does not depend on the choice of the representations V;. In
particular, it is the C*-algebra generated by the left regular representation of ., G and
thusis the reduced semigroup C*-algebra C; (L, G).

When G; = Nforall 1 <i < n, condition () simplifies to the single condition on the
generators § = Vi(1):

és§<L

Such an n-tuple determinesaunique C* -algebraknown asthe Cuntz-Toeplitz algebra[ 8],
which isan extension of the compact operators by the Cuntz algebraO,,. Inthis case, one
obtains the Cuntz algebra by requiring equality in the aboverelation. When at least one
of the semigroups G/ is dense, equality can never occur because the range projections
Vi(g)Vi(g)* are adecreasing function of g.

When G = G* isacommon countable, dense subgroup of R, condition (f) simplifies
to the conditions

n
SVi(@Vi(g)* <1 foralgeG'.
i=1

We obtain a C*-algebra considered by Dinh [13]. He shows that this C*-algebra is
simple, and thus is independent of the choice of representation of (). Our proofs will
parallel the arguments of Cuntz and Dinh. However, they both make essential use of the
homogeneity resulting from taking all the G to be equal. We will use similar methods,
obtaining an expectation onto an AF subalgebra. However, even when the G/ are equal,
our expectation will be onto a smaller algebra as we average over a larger group of
automorphisms.

LEMMA 2.1. LetV, beisometric representationsof semigroupsG;” satisfying (t). Then
C*({Vi(g) : g € G'. 1 <i < n}) isthe closed span of the set {V(o)V(7)" : 0.7 €
*L, G }. Moreover this set is closed under multiplication.

The proof is easy and exactly parallels the case of the Cuntz algebra. The details are
left to the reader.

The following result should be compared with the Laca-Raeburn approach [17, Sec-
tion 4]. They also make use of the natural map from the free product onto the (abelian)
direct product of the groups in order to construct an expectation. Because our methods
are specific to this example, we obtain an explicit description of the image algebra, and
thereby can establish that it is AF. This then allows us to use the original argument of
Cuntz to show directly that our algebras are purely infinite.
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THEOREM 2.2. Thereisa faithful expectation @ of the C*-algebra O (x[L, G") associ-
ated to the free product of the positive conesof subgroupsof R onto an AF C*-subalgebra
F (L, G).

PrROOF. Let Vi(g) for g € G be the isometric representations of G which generate
the universal algebra O (L, G/"). Let V denote the induced representation of L, G;'.
Foreachy = (V1,...,%)inIIL, Gi, we may definean automorphism o, of O(+L,G)
such that
ay (Vi(@)) = (g.7)Vi(g) forg G

Indeed, the maps sending g; to (gi,i)Vi(gi) are isometric representations of G which
satisfy (T) and generate the C*-algebra O(xL,G). By the universa property of the
C*-algebra, there is an automorphism oy with the desired property.

The product character v determines a unique character on %L, G by sending o =
0102 - - O, Whereg; € GI to

k
V(o) = Hl<gmij>.
=
It follows easily that
o (V@VE)) = eN@VENVE) foro € «L,G.

Notice that the map taking v to oy (V(a)V(r)*) is norm continuous. Since these terms
span O(xL,G"), it follows that the map taking ¥ to «,(X) is norm continuous for each
X € O(L,G).

Define amap ® from O(x[L,G/") into itself by

)= [, o @D
where the measure dy is Haar measure on the compact group ITL; Gi. Itis immediately
evident that thismapis positive, compl etely contractiveandfaithful. A simplecalculation
using the trandation invariance of dv yields the fact that ® is idempotent. Thusit is an
expectation.

We wish to show that the range F (xL,G") of @ is an AF subalgebraof O (xL,G/).
Thereisacanonical homomorphism of xL, G onto IT; G” which is theidentity on each
G/ . Let the image of an element o be denoted by |o|, which we will call the length of o.
A routine calculation shows that

. V(o)) iflo| =|r
GD(V(U)V(T)):{O() ) :f {UI#H-

For each point g = (g, - - . , o) € I, G/, let K4 denote the space spanned by the set

(V@@ o] = |r] = g}.
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It is easy to verify that if V(oi)V(r)* € Kg, then

V(o106 V()" if 0o =110
() V(o)V ()" V(02)V(12)" = { V(o )V (rr')* if o’ =71
0 otherwise.

In particular, for each g this spanning set forms a complete set of matrix units for K,
and hencethisforms a C* -algebraisomorphic to the space of compact operators on some
Hilbert space (which is separable precisely when each G; is countable). Moreover, if g
and h are pointsin [T, G which is endowed with the product order <, then

K, ifg<h
KgKhC{Kg ifg>h
{0} otherwise.

In particular, it followsthat F (xL,G") isaC*-algebra. Moreover, it is the direct limit
of the subalgebrasK g := Y4 Kg asG runsover all finite subsetsof I11, G;. To show
that the range is AF, it suffices to show that each of these subalgebrasis AF. This may
be done by explicitly exhibiting each of these algebras as an inductive limit. Consider
finite dimensional subalgebras of the form

2 Xé Span{V(a)V(T)* L0,T € Sg}
ge

where Sq are finite subsets of words of length g. In order for this to be an algebra, it
suffices by equation (1) to check that whenever g < hin G and for some o € Sy and
7 € Sy thereisan element p suchthat T = op, then S, must contain o’ p for every o’ € Sg.
It is evident that starting with arbitrary finite subsets Sq, they may be enlarged to finite
sets Sé to have this property. So the range of ® isan AF algebraas required. ]

We remark that the universal property of O(xL,G") is not needed to construct the
automorphisms a,, and that this can be done for the C*-algebra C*({Vi(g)}) generated
by any representations satisfying (1). The expectation can be constructed in the same
manner, and it has the nice property that the expectations commute with the natural
homomorphism of O(+,G") onto C*({Vi (g)}). Moreover the analysis shows that the
restriction of this homomorphism to the AF subalgebra is an isomorphism. Since the
expectationisfaithful, thehomomorphismitself isal so anisomorphism. Thusthealgebra
is simple. This approach was used by Dinh. Instead we follow the original approach of
Cuntz.

LEMMA 2.3. Assumethat at least one of the semigroups G;" is densein R*. For each
non-zero positive element X in the dense x-subalgebra

A, =ag Span{V(a)V(T)* Lo, T E *inzlGi’L},
thereisan element A € A, such that

AXA=1 and |A] = ||PX)|Y2.
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PrROOF. Since @ isfaithful, Xy = ®(X) is strictly positive. For convenience, we may
normalize so that ||Xp|| = 1. The element X, lies in a finite dimensional subalgebra
B of F(«,G) of the type described in equation (2). Thus by the spectral theorem
for Hermitian matrices, there is a minimal idempotent P in this subalgebra such that
PXoP = P.

The next step is to determine the structure of P. We may write P = 3¢ Pg, where
each Py € span{V(o)V(r)* : 0.7 € Sg}. Let Gg bethe subset of {g € G : Py # 0} which
are minimal in this set with respect to the product order on [T, G/. Thenlet H be the
subset of G consisting of all elements which are not less than or equal to some element
of Go. Then By := BN Ky isanideal of B. The image of P under the quotient map
will be aminimal projection which is unitarily equivalent to g, ©Py. It follows that
Go isasingleton {go}. A minimal projectionin B N Ky, isarank one projection of the
form

> a,a V(o) = WW

0,7€5g,
where
S laP=1 and W= Y a,V(0).
JGSQO UESQO
Note that W is an isometry in A,. It follows that P — WW* lies in the ideal By . So
WPW — | liesin the span of terms V(o)V(7)* where|o| = |7| > 0.

Now observe that W*PXPW — | must lie in the span of terms of the form V(o)V(7)*
where |o| V |7| > 0. But given any finite set of such terms Y, = V(0i)V(r)*, we shall
show that there is an isometry V € A, such that V*Y;V = 0 for all i. Let us write
oi = soj and 7 =t/ wheres € Gy, \ {0} and t; € G;, \ {0}. We may suppose that
G; is dense. Choose an element g; € G; \ {0} smaller than min{s;.tj : m = 1 = n;}
andany g; € G} \ {0}. Then defineV = V(g19y). It isimmediate from equation (1) that
V*Y;V = 0 asdesired. It now follows that V*W*PXPWV = I. n

THEOREM 2.4. The C*-algebra O(+L;G") associated to the free product of n > 2
positive cones of subgroups of R is simple and purely infinite provided that at least one
of the semigroups G;" is densein R™. In all cases, this C*-algebra is determined by any
solution of the relations (1).

PROOF. We will establish that for each non-zero element X in O (L, G), there are
elements A, Bin O(xL,G) so that AXB = I. From this it isimmediate that O (L, G") is
simple. Moreover, a result of Cuntz [9] (e.g. [10, V.5.5]) implies that this condition is
equivalent to being purely infinite.

Clearly we may replace X by X*X, and thus may supposethat X is positive. Since ®
is faithful, it follows that Xo = ®(X) # 0. We may normalize so that || Xo|| = 1. Now X
may be approximated within 1/2 by an element Y in A,. Thus || ®(Y)|| > 1/2. By the
previous lemma, there is an element B such that B*YB = | and ||B||? < 2. Consequently
|B*XB — 1|| < 1. It follows that A = B(B*XB)~%/2 is defined and satisfiesA*XA=1. u

The following corollary is immediate provided that at least one of the groups G; is
densein R. When all are discrete, thisis aresult of Cuntz.
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CoROLLARY 2.5. If V; are isometric representations of G satisfying (f), then
C*({Vi(@) : g € G 1 <i < n}) iscanonically #-isomorphic to O (+L,G).

Since, in particular, such arepresentation is the left regular representation of L, G/,
we obtain:

COROLLARY 2.6. If G are the positive cones of subgroupsof R for 1 < i < nand
n Z 21 then O(*leGr) = C?(*P:lGr)

3. Noncommutative Disc Algebras In[23], the second author introduced the non-
commutative disc algebra A, to be the norm-closed algebra generated by n isometries
with pairwise orthogonal ranges. The C*-algebra generated by these isometries is ei-
ther the Cuntz algebra O,, or the Cuntz-Toeplitz algebra E,,. However the quotient
map from E, onto O, is completely isometric on the nonself-adjoint algebra gener-
ated by the generators of E,,. Thus A, is uniquely determined up to complete isomor-
phism [25]. Frahzo [16], Bunce [6] and the second author [22] showed that any n-tuple
T =[T1...., Tyl whichisacontraction dilatesto an n-tuple of isometrieswith orthogonal
ranges. This yields an important analogue of von Neumann's inequality [23] for such
n-tuples. This algebra is naturally associated to the semigroup *;N, and as we have
seen, an isometric representation of A, is obtained from the left regular representation
of this semigroup.

So by analogy, we define a noncommutative disc algebra associated to the free
product xL, G by A (x[L,G/") to be the norm-closed algebra generated by the left regular
representation of the semigroup. The results of the last section yield the following
immediate consequence:

COROLLARY 3.1. Let G be the positive cones of subgroupsof R for 1 < i < n
and n > 2. Let V; be any isometric representations of G/ on a common Hilbert space
H satisfying (f). Then the normr-closed (nonself-adjoint) algebra AIg({Vi(gi) 1O €
G.1<i< n}) is completely isometrically isomorphic to A (+L,G").

PrROOF. Coroallary 2.5 showsthat the C* -algebrasdetermined by V; and theleft regular
representation are x-isomorphic viaamap that intertwines the two representations. Thus
it carries the algebra Alg({Vi(g)) : g € G'.1 <i < n}) onto A(xL,G/). Since x-
isomorphisms are completely isometric, the result follows. ]

We wish to show that one can recover the semigroup =L,G’ from the algebra
A(+L,G"). To this end, we compute the characters (multiplicative linear functionals)
of A(+xL,G)).

THEOREM 3.2. Let G bethe positive conesof subgroupsof R for 1 <i <nandn >
2. By rearranging if necessary, we may suppose that the first m of these semigroupsare
isomorphicto N and the othersaredense. Thereis a canonical homeomor phismbetween
the space of charactersof A(x[L,G") and the space consisting of those semicharacters
¥ of L, G which satisfy

® éw}(gmz <1 forallg € G\ {0}.
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This space may be identified with the union of the unit ball B,, of C™ and the cones CcG
for m+1 < i < n, wherethe trivial semicharacters pg in each set are identified to a
single point (which we denote by po).

PROOF. There is a natural map from the space of characters of A(+[L,G}") into the
space of semicharacters of L, G given by restriction to the set of generators {\(g) :
g € «[L,G}. Every linear functional on an operator algebrais completely contractive
[21, Prop. 3.7]. The generators of A (L, G) satisfy (1), which can be interpreted as the
conditions

|[Man). .- A@)]| <1 fordlg G\ {0}

Given amultiplicative functional W, definethe semicharacter 1(g) = W(\(g)). Applying
this functional to the given row matrix must yield a contraction, which is to say

iwgi)lz = |[¥(@) - v@)]f <1 forallg e G\ {0},

Since the set {A\(g) : g € *L,G'} generates A(xL;G) as a norm-closed algebra,
this mapping from characters of the algebra to the semicharacters of the semigroup is
injective. Moreover since the topologies on the two spaces are the weak topologies, it
is evident that the map is continuous. Once it is established that this map is surjective,
this will be a continuous bijection between compact Hausdorff spaces; and thus is a
homeomorphism.

We first show that if a semicharacter ¢ satisfying (f) is non-zero on one of the dense
semigroups G/ for somej > m, then ¢ vanisheson G{" \ {0} for al i # . Thusthereisa
semicharacter ¢ of G/ such that

o) = [ Vi@ fgeG

v(@) {O otherwise.
Indeed, let ¢ denote the restriction of + to Gj*, and suppose that iy # po. Then by
Theorem 1.4, there is areal number r € (0, 1] such that |¢j(g)| = r9 fordl g € G. It
follows that

sup [(g)f® = 1.
geG\{0}
Hence condition (f) implies that the restriction of ¢ to each G for i # | is po.

It follows that the space of semicharacters of L, G" satisfying (1) splits as the union
of the semicharacters of *2;N and the semicharacters of each G for m < i < n with
po identified. By Theorem 1.4, these latter spaces are equal to the cones CG;. The
semicharacters of «; N are determined by the action on the generators z of G ~ N for
1 <i < mand the necessary and sufficient condition

m

S v@)? < 1.

i=1
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Themaptaking ¢ to (w(zl) ..... w(zn)) isabijection which carriesthe space of semichar-
acters satisfying (1) onto the ball By,

Now it is possible to verify that the map from characters of the algebrato semichar-
acters of the semigroup satisfying (1) is surjective. Supposethat j > mand ¢ € CG,- is
given. The subspace (*(G) of (*(x[;G) spanned by the basis vectors {¢q : g € G/}
is co-invariant for A(xL,G/"). Thus the compression to this subspace is a completely
contractive homomorphism. This map takes A\(g) to O unlessg € G, in which caseit is
sent to the | eft regular representation of Gj". So thismaps ontoA(Gj+). Composethiswith
the multiplicative linear functional associated to i to obtain a multiplicative functional
Won A(xL,G/). It is evident that the image of W in the space of semicharactersis ) as
desired.

Similarly, supposethat ¢ isasemicharacter on ;N correspondingto apoint A € By,
Thecompression of A (+L,G") to the co-invariant subspacespanned by {¢4: g € *2,G }
maps the algebra onto the algebra An,. The characters of Ap,, are known to correspond to
Bm [25, 12]. So the surjectivity is established as above. This completes the proof. ]

We can usethis result to provide complete isomorphism invariants for these algebras.

THEOREM 3.3. Let G and Hj+ be positive cones of subgroupsof R. Thetwo algebras
A(+L,G" and A(*}‘:lHj*) are isomorphic if and only if the semigroups are isomor phic,
which holdsif and only if k = n and thereis a permutation 7 so that G{" isisomorphic to
H+)for1§i <n.

(i

PrROOF. The three conditions are successively stronger. So suppose that the two al-
gebras are isomorphic. Then their character spaces are homeomorphic. After deleting
the trivial character po, the character set of A(+L,G) splits into distinct components.
Possibly one is homeomorphic to By, \ {0}, where mis the number of the G which are
isomorphicto N, and the other componentsare Q; = é,— x (0,1] form < j < n.By Theo-
rem 1.4, these sets are indeed connected. The component homeomorphic to a punctured
ball is recognized by the fact that the first conomotopy group 7(Bp, \ {0}) = 71(S™1),
the group of connected components of the group of invertible functions on the sphere
™1 isisomorphic to Z if m= 1 and to 0 for m > 1. The dimension mis determined
by the invariance of domain theorem, or by considering higher cohomotopy groups. Of
course, the semigroup Gj+ is not determined as an ordered group by éj. So additional
argument is needed. Consider the ideal J; = Nycq, kery. Itis evident that A (L, G') /J;
is(completely isometrically) isomorphicto A(GJ-"). But by Corollary 1.7, thisdetermines
Gj+ up to order isomorphism. Consequently we have shown that the integers m and n
are determined from the algebra, and that the semigroups Gj+ are determined up to order
isomorphism as required. The only possible change is a permutation of the terms, as
there is no order on the set of components. ]

4. A Dilation Theorem. We wish to obtain the analogue of the von Neumann
inequality for the algebras A (L, G"). To this end, we also require a dilation theorem for
contractive representations of G satisfying the norm condition (f). This simultaneously
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generalizesMlak’s Dilation Theorem and thedilation theorems of Frahzo[16], Bunce[6]
and the second author [22]. Moreover it establishes uniqueness of the minimal dilation.

THEOREM 4.1. Let G be positive cones of discrete subgroupsof R for 1 <i < n. Let
Ti be contractive representationsof G, on a common Hilbert space satisfying the norm
condition

) éTi(gi)Ti(gi)* <1 forallg €G\ {0}

Then there is a Hilbert space K containing H and isometric representations V; of G/
on K suchthat
(i) =L, Vi(@)Vi(g)* < I forall g € G\ {0}.
(i) V(@) |y =Ti(@) forallg € G/, 1<i<n.
(i) K = Voem o VOH .
Moreover this dilation is unique up to unitary equivalence which fixesH .

PrROOF. Using Mlak’s Dilation Theorem 1.3, dilate each T; to an isometric repre-
sentation V; on a larger Hilbert space K. Let )i be the restriction to G of the left
regular representation of [, G;. Then replace each V; by V; & \{®) on a Hilbert space
K = Ki @ ?(+L,G")®, where « is a cardina sufficiently large to ensure that the
subspace

M; 1= Ugean\ (o) Ran(Vi(g))
has codimension equal to the dimension of K .

Existence of a dilation will be established provided that there are unitaries U; in
B(K) such that Uj|y = | and U;M; are pairwise orthogonal. Indeed, the isometric
representations V;(g) = U;Vi(g)U; are dilations of T; with orthogonal ranges, and thus
satisfy (i). Minimality and uniquenesswill be dealt with later.

Let P; = Py, and note that

Pi = SOTI(l)imVi (QVi(9)".
g
9eG\{0}
Decomposing K = H @ K", we obtain amatrix of the form

A B

"=l o

Therefore

n

2 A=PH 2P Ik

i=1

n
soT-lim >~ Py Vi(@)Vi(9)" |n
gl0 =1
geG\{0}
n
sot-lim) " Ti(g)Ti(g)" <.
1

g9l0 =
9eGr\{0}
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Consider the contraction
X=[A/?...AY?.

Let
Dx = (In — XX)Y/2 = [6 — AT*A?) =[],

Then |3 | is an isometry. Thus the columns

(wherethe 0 actson aspaceisomorphicto K ) for 1 < j < nareisometrieswith pairwise
orthogonal ranges. Identify the range space with K = H @ K" in such away that the
map is the identity from H as the first component to H as a summand of K . Then we
may define projections with pairwise orthogonal ranges by

By construction, (Zi”:l Qi )L has range dimension equal to the dimension of K .

Now BiBf = A — A? = D;D;. Thus there are partial isometries W, on K’ so that
BiW; = D;. Since both P; and Q; have ranges with complements of dimension equal to
the dimension of K , both B; and D; have large kernels. So the partial isometry W, may
be chosen to be aunitary. Define

#=[o w) (& 2o wl=[or 2]

A
D>

By construction, Q; is the smallest positive operator with entries [
I

P> Q. S0

Di } , and thus
X

Pi/—Qi:Ri:[g \ﬂ
is a projection. Because of the condition on the ranges of the Q;, there is sufficient
room to move the ranges of the Y; onto pairwise orthogonal subspaces which are also
orthogonal to the ranges of all the Q;’s. That is, there are unitary operators W/ on K’
suchthat | & W is the identity on the range of Q; and W/Y;W* are pairwise orthogonal
projections with range orthogonal to the range of i, Q;. Thus conjugating P; by | & W/
yields the desired projections.

Now that adilation has been constructed, aminimal dilation is obtained by replacing
the Hilbert space K by the smallest possible space Ve G V(o)H . Supposethat V and
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V’ are two minimal dilations on spaces K and K / respectively. Define a linear map W
onagspan{V(o)H : o € «L,G'} by

WV(o)h=V'(e)h foraloce«,G . heH.

Compute
(V(p)h. k) = (T(p)h. k) if o =7p
(V@h.V@K) = 9 (h, V(oK) = (h, (oK) if 7= 0p
0 otherwise.

This depends only on the original representation, and thus the same identity holds for
V', Therefore we obtain

(WV(0)h. WV(r)K) = (V(o)h. V(r)K)

for al 0,7 € ¥L,G' and h,k € H . This showsthat W is well defined and extendsto an
isometry from the closed span of {V(o)H : o € %L;G/} to the corresponding set for
V. In other words, W is a unitary that intertwines V and V’. By considering the identity
element e, we obtain

Wh=WV(eh=V'(eh=h foralheH.

HenceW agreeswith theidentity operator on H . This establishesthe desired uniqueness.
|
This provides a complete classification of the completely contractive representations

of A(+L,G/).

COROLLARY 4.2. Let G be positive cones of discrete subgroupsof R for 1 <i <n.
Let T; be contractive representations of G on a common Hilbert space satisfying the
norm condition

©) i;Ti(gi)Ti(gi)* <l foralg e€G\{0}.

Thenthereisa (unique) completely contractive homomor phismof the algebra A (+L,G)
into Alg({Ti(g) : & € G.1 <i < n}) which takes V/(g) to Ti(g) for all g € G} and
1<i<n.

Conversely, every completely contractive representation of A(xL;G") arises in this
way.

PrROOF. By the preceding theorem, the representations T; may be dilated to isometric
representations V; on alarger Hilbert space K which also satisfy (). By Corollary 1.7,

A =Alg({Vi(g) g €G. 1<i<n})
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iscompletely isometrically isomorphic to A+, G'). By the dilation condition (ii) of the
preceding theorem, the compression of A to H is a completely contractive map which
is a homomorphism because H is co-invariant. By identifying A with A(xL,G/), we
obtain the desired map.

Uniqueness follows since the Vi(gi)'s generate A (L, G"). Moreover, given a com-
pletely contractive representation of A(xL;G}'), the restriction to the group elements
satisfies (1) asin thefirst paragraph of the proof of Theorem 3.2. So every representation
is determined by one of these semigroup representations. ]

We obtain a von Neumann inequality for families of contractive representations by
specializing the result above to elements of the group algebra (“polynomials’).

COROLLARY 4.3. Let G be positive cones of discrete subgroupsof R for 1 <i < n.
Let T; be contractive representations of G on a common Hilbert space satisfying the
normcondition (}). Then

[SaT0)] < [ ar)]su o

for all elementsof C «; G;'.

We obtain an explicit expressionfor the Arveson Dilation [3] (see[21, Corollary 6.7]),
and thus obtain a variant of our corollary extending resultsin [1, 25].

COROLLARY 4.4. Let G be positive cones of discrete subgroupsof R for 1 <i <n.
Let T; be contractive representationsof G;" on a common Hilbert space H satisfying the
norm condition (1). Then there is a completely positive unital map W from O (+L,G/")
into B(H ) such that

W(AA)) = T,T;
forall 0,7 € ¥L,G.

PROCF. Let V be the isometric dilation of T provided by Theorem 4.1. Then by
Corollary 2.5, thereisax-isomorphismr of O (L, G) into B(K ) suchthat ﬂ()\(o)) =V,
for al o € «L,G". The compression W of 7 to H agreeswith T on the elements of the
semigroup. Moreover, H is co-invariant for each V,,. Hence

WA@MT)) =Py VoViPy Iy = Py VoPy ViPy [y = T, T7. .

5. Moment Problems. A classica moment problem for the circle asks if there is
a (positive) regular Borel measure 1 on the circle T with certain prescribed Fourier
coefficients. For example the full moment problem givesthe full sequence ji(k) = a for
k > 0 and the truncated moment problem provides a, for 0 < k < n. The answer is
provided in terms of the positivity of an associated formal Toeplitz operator. The Riesz
representati ontheorem statesthat measureson T correspondto positivelinear functionals
on C(T). Moreover, they are automatically completely positive, and the moment problem
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has an operator-valued analogue that determines the existence of a completely positive
map on C(T) with prescribed values on certain powers of z. The results of the previous
two sectionswill be applied hereto analyze certain operator-valued moment problemsfor
the semigroups L, G". See [2] for more information on the classical moment problem.
In [26, 27, 28], the second author has done other work in this direction.

We will replace the space C(T) with our generalized Cuntz algebra O(x[L,G/"). The
Fourier coefficients of amap ® from O (L, G/") into B(H ) are given by their evaluation
on\(o) foroinxL, G/, say A, = GD()\(U)) . We consider the moment problem associated
to any subset Z of «L, G whichis

(i) generating in the sense that

xm Gl = U 2
n>1
where X" denotes the set of all products of n elements of Z, and

(i) hereditaryinthe sensethat if pr € 2, thent € X.

Such setswill be called admissible. A few examplesthat are of interest are

(1) ¥ =xL,G' isthefull moment problem.

(2 Z ={g e «L,G :|gl € S} whereSisadownward directed subset of [T, G/
containing a non-zero element of each G. This yields several natural truncated
moment problems. Asspecial cases,onemighttakeS={g: 0 < g < (4,..., 1}
Another natural example takes S = (UL, G/)¥. Thisis the set of all words which
have aminimal expression asthe product of at most k terms.

(3) By specifying Ag = |, we are limiting consideration to completely positive con-
tractions. In general, the case of arbitrary A can be deduced from this special case
viaasimple normalization trick.

A ToeplitzformK on X x X isan operator valued function such that K(po. p7) = K(o, 7)
whenever po and pr belong to . The form is Hermitian if K(r, o) = K(o, 7)*. It is said
to be positive semidefinite provided that

> (K(o.1)h(r). h(o)) >0

o7eX
for all finitely supported functionsh from Z into H .

THEOREM 5.1. Let X be an admissible subset of ., G". A family of operators {A, :
o € £} in B(H) are the moments of a completely positive map @ from O (L, G") into
B(H) if and only if the Toeplitzform K on < x < given by
A, ifr=o0p
K(o,7) = {A’;) ifo=7p
0 otherwise

is positive semidefinite.
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ProOF. We will assumethat Ag = |. The general case may be obtained by replacing
Aoby | and A, by (Ag +1)"Y/2A, (Ao + 1)~2/2 for small £ and taking limits. The details
are left to the reader.

One direction is straightforward. If @ is a completely positive map with the desired
Fourier coefficients, then by Stinespring’s Theorem [30] (see[21, Theorem 4.1]) thereis
alarger Hilbert space K containing H and a *-representation of O (x[L,G;") on K such
that

®A) =Py (A |y foradl Ae OHL,G).
LetV, = w(A(o)).Theseareisometriessetisfying (1)- 1t follows from the above equation
that

Py ViV, |y =K(o,7) foralo,7 € +L,G/.

Thereforeif h, are vectorsin H with only finitely many non-zero, then

5 (K@D, hy) = S50V Vohy) =[S Vo[ > 0.

o 7eX

Conversely suppose that K is positive semidefinite. Use K to define a semidefinite
form on H Z, the space of all finitely supported functions from X into H , by

(h.kik = 3 (K(o.1)h(r). k().

o,7ET

Then let Hk denote the Hilbert space completion of H = /N, where N is the subspace
of null vectorsin this seminorm. Noticethat H imbedsisometrically as those functions
supported on the identity element because K(0. 0) = I.

Define a contractive representation T of L, G/ on Hk by the formula

_[(h(r) ifo=prez
(Toh)(0) = { 0 otherwfiyrse.

This defines a partial isometry because of the Toeplitz condition. It is evident that this
map is multiplicative, and thus determines a bounded representation. Let T; denote the
restriction of T to G. The range of T;{(G \ {0}) is contained in the closed span of
functions supported on

{ceL:0=go forg € G\ {0}}.

Thedefinition of K guaranteesthat these subspacesof Hy are pairwise orthogonal. Hence
T satisfies condition (7).
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Therefore by Theorem 4.1, this representation dilates to anisometric representation V
onaHilbert spaceK of «L,G'. By Corollary 2.5, thereisax-isomorphism of O (+L,G)
onto C*({V(0) : o € %L,G/}). Clearly the compression to H , which is a subspace
of Hk, is completely positive. Let the composition of these maps be denoted by ®. We
computefor ¢ € = andvectorsh,k € H (andweidentify hwith thefunctionsh(r) = é.h
in Hy, where §q, is the Kronecker delta function)

(tb()\(a)) h, k) = (Py V(o)h. k) = (T(o)h. k), = (Ash.K).

Thus the Fourier coefficients of & are A, as desired. n
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