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NONCOMMUTATIVE DISC ALGEBRAS FOR SEMIGROUPS

KENNETH R. DAVIDSON AND GELU POPESCU

ABSTRACT. We study noncommutative disc algebras associated to the free product
of discrete subsemigroups of R+. These algebras are associated to generalized Cuntz
algebras, which are shown to be simple and purely infinite. The nonself-adjoint subal-
gebras determine the semigroup up to isomorphism. Moreover, we establish a dilation
theorem for contractive representations of these semigroups which yields a variant of
the von Neumann inequality. These methods are applied to establish a solution to the
truncated moment problem in this context.

The starting point of this work is an old result of Douglas [15] establishing that
any properly isometric representation of the cone G+ of a discrete subgroup of the real
line generates the same C*-algebra, and that the ordered semigroup may be recovered
from this algebra. We establish that the nonself-adjoint algebra generated by such a
representation is a function algebra, and that two such algebras are isomorphic if and
only if the semigroups are order isomorphic. Mlak [19] establishes a dilation theorem
for contractive representations of these semigroups. This yields a variant of the von
Neumann inequality. These results suggest thinking of these algebras as generalized disc
algebras, and in fact the computation of their maximal ideal space and Shilov boundary
make this connection even more compelling.

Motivated by earlier work of the authors [22, 23, 24, 25, 28, 11, 12], we are led
to consider non-commutative disc algebras associated to the free product of ordered
semigroups. We need to first establish some facts about generalized Cuntz C*-algebras
associated to these semigroups. The original Cuntz algebras [8] are associated to the
free product of n copies of N. A larger class based on the free product of n copies of
a countable dense subsemigroup of R+ were investigated by Dinh [13, 14] motivated
by the work on semigroups of endomorphisms of B(H ), especially [4]. The fact that
both of these authors use n copies of a common semigroup allows them to make use
of the homogeneity. This is not possible in our case, but nevertheless the proof that
these algebras are simple and purely infinite follows the lines of Cuntz’s original proof
closely. This leads us to the conclusion that the C*-algebra generated by any isometric
representation of the free product of ordered semigroups satisfying certain orthogonality
relations generates the reduced C*-algebra of the semigroup.

Laca and Raeburn [17] have considered a class of C*-algebras associated to subsemi-
groups of groups with a semilattice structure introduced by Nica [20]. Their methods
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also yield the simplicity of the generalized Cuntz algebras that we consider (see [17,
Cor. 5.3]). Their methods are different and do not yield directly that the C*-algebras
are purely infinite. Apparently this fact has been observed independently by Laca [18].
However there are significant parallels with our methods, as there are with the original
argument of Cuntz.

This allows us to establish the uniqueness of the corresponding nonself-adjoint algebra
for such a representation. We call these algebras noncommutative disc algebras. We
compute the set of characters, and this is an essential tool in establishing a complete
isomorphism invariant for these algebras which allows the recovery of the semigroup.

Frahzo [16], Bunce [6] and the second author [22] establish an isometric dilation
theorem for an n-tuple of (non-commuting) operators (T1Ò    ÒTn) such that

Pn
i=1 TiTŁ

i �

I. Here we establish the analogous result for representations of n ordered semigroups
satisfying the corresponding norm condition. This yields an analogue of the von Neumann
inequality for our noncommutative disk algebras. This extends related results such as
[34, 1, 23, 24, 25, 28].

In the last section, we consider the truncated moment problem for operator-valued
functions on these semigroups. The dilation theorem is the necessary tool to give a
complete answer in terms of the positivity of an associated Toeplitz kernel. These results
are a direct analogy to well known results for the positive integers for measures on the
circle [2].

1. Disc algebras for ordered semigroups. Let G be any discrete subgroup of the
real line R, and let G+ denote the positive cone G+ = G \ [0Ò1). We will be concerned
with the disc algebras associated to semigroups of this form. Consider the norm closed
algebra A(G+) generated by the left regular representation of G+. This represents G+ as
a semigroup of isometries ï(g) on ‡2(G+) with orthonormal basis fòg : g 2 G+g given
by

ï(g)òh = òg+h for gÒ h 2 G+

We also consider the reduced C*-algebra CŁ
r (G+) of this semigroup given by the C*-

algebra generated by the left regular representation.
When G = Z and G+ = N, it is easy to see that ï(1) is the unilateral shift. Thus A(N) is

completely isometrically isomorphic to the disc algebra A(D) of all continuous functions
on the closed unit discDwhich are analytic on the interior. And the enveloping C*-algebra
is the Toeplitz algebra on the unit circle CŁ

r (N) = T
�
C(T)

�
. This algebra has a unique

minimal ideal, namely the compact operators K , which is the commutator ideal and the
quotient CŁ

r (N)ÛK ' C(T). The reason that the circle appears is that T = Ẑ is the dual
group of Z. Moreover, the disc algebra is a function algebra with maximal ideal space D
and Shilov boundary T. By the Wold decomposition and Coburn’s Theorem [7], every
isometric representation of N generates a C*-algebra which is a quotient of T

�
C(T)

�
.

We shall see that these results have direct parallels for all subgroups of R.
The main step in this direction was obtained by Douglas [15].
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THEOREM 1.1 (DOUGLAS). Let G be any discrete subgroup of R. The C*-algebra
generated by any representation of G+ as proper isometries is canonically isomorphic
to CŁ

r (G+). Moreover, the commutator ideal CG of this algebra is simple and the quotient
CŁ

r (G+)ÛCG ' C(Ĝ), where Ĝ is the compact dual group of the discrete group G. The C*-
algebra generated by an arbitrary isometric representation of G+ is either isomorphic
to CŁ

r (G+) or to a quotient of C(Ĝ).

It follows that the norm-closed algebra generated by any representation of G+ as
proper isometries is completely isometrically isomorphic to A(G+) via its identification
with the nonself-adjoint subalgebra of CŁ

r (G+) determined by the generators.
Douglas also proved that the semigroup can be recovered from its C*-algebra:

THEOREM 1.2 (DOUGLAS). Let G1 and G2 be two discrete subgroups of R. The C*-
algebras CŁ

r (G+
1) and CŁ

r (G+
2) are isomorphic if and only if G1 and G2 are isomorphic as

ordered groups.

We also need to know that a basic result from dilation theory generalizes from N to
arbitrary cones G+. The famous isometric dilation theorem of Sz. Nagy [31] states that
if T is a contraction on a Hilbert space H , then there is an unitary operator U acting on
a space K = K � ý H ý K + such that PH UnjH ' Tn for n ½ 0. There is an obvious
bijective correspondence between contractions T and the contractive representations of
N given by ö(n) = Tn for n ½ 0. The dilation theorem states that every contractive
representation of Z+ dilates to a unitary representation of Z on a larger space. Mlak [19]
established the corresponding result for arbitrary subgroups of R.

THEOREM 1.3 (MLAK). Let G be any discrete subgroup of R. Then every contractive
representation ö of G+ can be dilated to a unitary representation õ of G on a Hilbert
space K containing H such that

ö(g) ' PH õ(g)jH for g 2 G+


Mlak’s elegant proof bears repeating here. By a Theorem of Sz. Nagy [32] (see [33,
Theorem I.7.1]), it suffices to show that the function defined on G by T(g) = ö(g) and
T(�g) = ö(g)Ł for g 2 G+ is positive definite in the sense that the matrix [T(gj �gi)] ½ 0
for every finite subset fgig of G. Since this only concerns differences, we may assume
the list is given by 0 = g0 Ú g1 Ú Ð Ð Ð Ú gn. Mlak observes that if W is the upper
triangular operator with entries

Wij = T(gj � gi) for 0 � i � j � n

and D = diag(D0Ò    ÒDn) is the diagonal operator with entries

D0 = I and Di = I � T(gi � gi�1)ŁT(gi � gi�1) for 1 � i � n

then [T(gj � gi)] = WŁDW is positive as needed.
Our first result shows that A(G+) is a function algebra, and identifies the maximal

ideal space and Shilov boundary.

https://doi.org/10.4153/CJM-1998-015-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-015-5


NONCOMMUTATIVE DISC ALGEBRAS FOR SEMIGROUPS 293

THEOREM 1.4. The algebra A(G+) associated to the positive cone G+ of a discrete
subgroup of R is (completely isometrically isomorphic to) a function algebra. The Shilov
boundary is Ĝ and the maximal ideal space is the generalized disc CĜ given by the cone
on Ĝ. The Shilov boundary is connected.

PROOF. Notice that if† is any semicharacter on G+ (i.e., a contractive homomorphism
of G+ into C), we may consider this as a contractive representation of G+ and dilate it by
Mlak’s Theorem to a unitary representationõ of G. This induces a Ł-representation, which
we also denote by õ, of CŁ(G) ' C(Ĝ) which agrees with õ on the generators g (where
we considered G imbedded as characters of Ĝ by sending g to ĝ(ç) = hgÒ çi). Thus we
may define a contractive functional on CŁ

r (G+) by factoring through the quotient algebra
C(Ĝ), applying õ and then compressing to the range of †. Since this map is multiplicative
on the generators ï(g) for g 2 G+, it follows that this functional is multiplicative on the
norm-closed algebra A(G+) that they generate. Hence † is an element of the maximal
ideal space of A(G+). Conversely, it is clear that the restriction of any multiplicative
linear functional of A(G+) to the generators is a contractive homomorphism into C.
Since the action of † on the generators uniquely determines †, all multiplicative linear
functionals arise in this way.

Certain semicharacters are readily obtained. First if ç 2 Ĝ is any character of G, then
its restriction to G+ is a homomorphism into the circle T. Moreover, for any r 2 [0Ò 1],
we may define a functional

çr(g) = rgç(g)

When r = 0, this determines the trivial functional

ö0(g) = é0g =
²

1 if g = 0
0 otherwise

independent of ç. Thus we have identified a set of multiplicative functionals on A(G+)
corresponding to the cone on Ĝ, namely the set

CĜ := Ĝð [0Ò 1]ÛĜ ð f0g

We will show that these are all the semicharacters on G+, and that the natural topology
corresponds to the topology on the maximal ideal space of A(G+).

Let † be a semicharacter of G+ other than ö0. Then † does not vanish on G+. Hence
it factors as † = j†jç where ç = †Ûj†j. Clearly ç is a character, and extends by
setting ç(�g) = ç(g) to a character on G. So consider the absolute value j†j which is a
semicharacter of G+ into [0Ò 1]. Fix a non-zero element g0 of G+ and define r = j†(g0)j1Ûg0 .
Notice that j†j is monotone decreasing; for otherwise, there would be g Ú h in G+ such
that j†(g)j Ú j†(h)j, whence j†(h � g)j Ù 1 contrary to fact. If g is any other non-
zero element of G+, then for each integer n Ù 0, there is a unique integer m so that
mg0 � ng Ú (m + 1)g0. Consequently, by the monotonicity of j†j,

rmg0Ûn ½ j†(g)j ½ r(m+1)g0Ûn
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Taking limits as n tends to infinity yields j†(g)j = rg. Hence † = çr. Thus the maximal
ideal space of A(G+) equals CĜ at least as a set.

The topology on the maximal ideal space is a compact Hausdorff topology which is
the weakest topology such that the functions çr ! çr(g) are continuous for each g 2 G+.
It is evident that these functions are continuous on CĜ with the product topology because
they are continuous on Ĝ by definition of the weak topology on Ĝ and this extends to
the cone because the function f (r) = rg is continuous for each g 2 R. Consequently, the
map from the maximal ideal space to the cone with the product topology is a continuous
bijection of one compact Hausdorff space onto another, and thus is a homeomorphism.

Next, consider the map ô from A(G+) into C(Ĝ) obtained by restricting the quotient
map of CŁ

r (G+) onto C(Ĝ) to A(G+). This map is a Ł-homomorphism, and thus is
completely contractive. We will show that this map is completely isometric on A(G+).
The proof is analogous to the integer case for Toeplitz operators. First notice that

ï(g)Łï(h) = ï(g)Łï(g)ï(h � g) = ï(h � g) for g � h 2 G+Ò

and similarly ï(g)Łï(h) = ï(g�h)Ł when g Ù h. Thus every word consisting of a product
of terms ï(gi)Ł and ï(hi) reduces to one of the form ï(h)ï(g)Ł. Therefore a calculation
shows that every element of the commutator ideal can be approximated by something in
the span of terms of the form

X = ï(g1)ï(g2)Ł
�
ï(g)ï(g)Ł � I

�
ï(g3)ï(g4)Ł

But it is easy to verify that Xï(h) = 0 if h Ù maxfg3Ò g + g4g. Thus for any X in the
commutator ideal and any ¢ Ù 0, there is an element h 2 G+ so that kXï(h)k Ú ¢. It
is also clear that the restriction of A(G+) to ï(h)‡2(G+) is unitarily equivalent to the
identity representation, and thus is completely isometric.

Consequently, if [Aij] is a matrix with coefficients in A(G+), choose a matrix [Xij]
with coefficients in the commutator ideal so that

k[Aij � Xij]k Ú



hô(Aij)

i


 + ¢

Then choose h 2 G+ so that k[Xijï(h)]k Ú ¢. Then



hô(Aij)

i


 Ù 


[Aij � Xij] diag
�
ï(h)

�


� ¢ ½ k[Aij]k � 2¢

It follows that ô is completely isometric on A(G+). Sinceô
�
A(G+)

�
is a unital subalgebra

of C(Ĝ), it follows that A(G+) is a function algebra.
It also follows from this that the Shilov boundary of A(G+) is contained in Ĝ. On the

other hand, if O is any open subset of Ĝ, there is a polynomial X =
Pn

i=1 aiï(gi)ï(hi)Ł

in the dense subalgebra of CŁ
r (G+) such that ô(X) has norm one, but ô(X) has norm less

than 1Û2 off of O. Let h = maxfhig, and notice that A = Xï(h) belongs to A(G+). Then

jô(A)j = jô(X)ĥj = jô(X)jÒ
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where ĥ(ç) = hhÒ çi is a character on Ĝ. So ô(A) also peaks in O. Thus the Shilov
boundary of A(G+) is all of Ĝ.

The Shilov boundary Ĝ is connected because G contains no elements of finite order.
See [29, Theorem 2.5.6(c)].

Note that in the case of G = Z, the maximal ideal space is CT which is homeomorphic
to the unit disc. So the cones CĜ should be thought of as generalized discs.

An immediate consequence in conjunction with Mlak’s Dilation Theorem 1.3 is an
analogue of the von Neumann inequality for semigroups of contractions.

COROLLARY 1.5. Let G+ be the positive cone of a subgroup of R. If T is a contractive
homomorphism from G+ into B(H ), then for every polynomial

P
i aiĥi in CG+, we have




X
i

aiT(hi)



 � 


X

i
aiĥi





C(Ĝ)



When T is a representation as proper isometries, this is an equality.

Blecher and Paulsen [5] define a universal operator algebra OA(S) for any semigroup
S as the algebra generated by a contractive homomorphism of S with the property that
given any contractive representation T of S into B(H ), there is a completely contrac-
tive homomorphism of OA(S) onto this algebra extending the representation T. So an
alternative formulation of this corollary is:

COROLLARY 1.6. Let G+ be the positive cone of a subgroup of R. Then OA(G+) =
A(G+). Thus if T is a contractive homomorphism from G+ into B(H ), then there is a
(unique) completely contractive homomorphismö of A(G+) into the algebra Alg

�
fT(g)g

�
such that ö(ĥ) = T(h).

It is possible to distinguish the ordered group up to isomorphism from A(G+) as in
the C*-algebra case.

COROLLARY 1.7. Let G1 and G2 be two discrete subgroups of R. The algebras A(G+
1)

and A(G+
2) are isomorphic if and only if G1 and G2 are isomorphic as ordered groups.

PROOF. Let G+ be the positive cone of an ordered group, and consider A(G+). By
Theorem 1.4, the Shilov boundary of A(G+) is the compact group Ĝ. A result of Bohr
and van Kampen (see [15]) shows that ô1(Ĝ), the group of connected components of
C(Ĝ)�1, is isomorphic to G as an abelian group. Those components which intersect
A(G+) correspond to the positive cone G+. Thus G+ is recovered as an ordered group
from A(G+).

EXAMPLE 1.8. Consider n positive real numbers ãi which are linearly independent over
the rationals. Let G =

Pn
i=1 Zãi. Then G ' Zn and thus Ĝ ' Tn. However, the spectrum

CĜ imbeds naturally into Cn differently depending on the ãi chosen. Indeed, suppose
that ç = (z1Ò    Ò zn) is a point in the n-torus in Cn and 0 Ú r Ú 1. The functional
çr is determined by its action on the generators çr(ãi) = rãizi. Moreover it is easy to
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see that the map from CĜ to Cn which takes çr to the n-tuple
�
çr(ã1)Ò    Ò çr(ãn)

�
is a

homeomorphism. Thus we see that the maximal ideal space of A(G+) is identified with

D(ã1Ò    Ò ãn) :=
n

(z1Ò    Ò zn) : ã�1
1 log jz1j = Ð Ð Ð = ã�1

n log jznj � 0
o


The function algebra is the subalgebra of C
�
D(ã1Ò    Ò ãn)

�
spanned by the monomials

fzk1
1 zk2

2 Ð Ð Ð zkn
n :

Pn
i=1 kiãi ½ 0g.

EXAMPLE 1.9. Say that a subsemigroup G ofR is commensurable provided that whenever
elements g1Ò    Ò gn of G are given, there is an element g0 2 G such that each gi is a
non-negative integer multiple of g0. It is an easy exercise to show that such semigroups
are the positive cones of groups G which are order isomorphic to a subgroup of the
rationals Q. They are determined by divisibility as follows. Fix a non-zero element g0

and consider the supernatural number n =
Q

p prime pkp where kp 2 N0 [ f@0g is the
supremum of those integers k such that p�kg0 2 G. While this formal product depends
on the choice of g0, it is determined up to a finite change in finitely many exponents.

The dual group of G is the solenoid S(n) which is the projective limit of circles
associated to the supernatural number n. Namely, write n as an infinite product of finite
integers qi, and let öi be the mapping of a circle Ti = T onto Ti�1 obtained by sending z
to zqi . Then S(n) is the projective limit of this system. It is easy to see that a finite change
in the definition of n does not affect S(n) up to homeomorphism. This is a connected
compact space which is some sort of idealized circle. So the maximal ideal space is by
analogy some sort of strange disc.

Since the semigroup is the inductive limit of subsemigroups, each of which is iso-
morphic to N, we are able to see that the algebra A(G+) is also the inductive limit of
subalgebras, each of which is isometrically isomorphic to the disc algebra. Many of
the results in this paper can be established more easily for this class of semigroups by
invoking the well-known results for N and taking limits appropriately.

2. Generalized Cuntz Algebras. Let G+
i for 1 � i � n be n subsemigroups of R.

Consider representations Vi of G+
i as semigroups of isometries on a common Hilbert

space H such that

(y)
nX

i=1
Vi(gi)Vi(gi)

Ł Ú I for all gi 2 G+
i n f0g

Such a representation (uniquely) determines a representation of the free product semi-
group Łn

i=1G+
i by sending an element õ = g1g2 Ð Ð Ð gk, where gj 2 G+

ij , to the isometry

V(õ) := Vi1 (g1)Vi2 (g2) Ð Ð Ð Vik (gk)

These representations of the free product are characterized by the property that if õ and
ú are two elements such that neither is a multiple of the other, then V(õ) and V(ú) are
isometries with pairwise orthogonal ranges. Such representations exist, for example the
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left regular representation of Łn
i=1G+

i satisfies (y). This will not be separably acting unless
each Gi is countable.

We consider the generalized Cuntz algebra O(Łn
i=1G+

i ) to be the universal C*-algebra
generated by isometric representations of the semigroups G+

i satisfying (y). This is the
unique C*-algebra generated by n such isometric representations such that there is a
canonical Ł-homomorphism onto the C*-algebra generated by any particular instance of
(y). We will show that this C*-algebra is simple when n ½ 2 and at least one of the G+

i

is dense in R+, and in fact does not depend on the choice of the representations Vi. In
particular, it is the C*-algebra generated by the left regular representation of Łn

i=1G+
i and

thus is the reduced semigroup C*-algebra CŁ
r (Łn

i=1G+
i ).

When Gi = N for all 1 � i � n, condition (y) simplifies to the single condition on the
generators Si = Vi(1):

nX
i=1

SiS
Ł
i Ú I

Such an n-tuple determines a unique C*-algebra known as the Cuntz-Toeplitz algebra [8],
which is an extension of the compact operators by the Cuntz algebra On. In this case, one
obtains the Cuntz algebra by requiring equality in the above relation. When at least one
of the semigroups G+

i is dense, equality can never occur because the range projections
Vi(g)Vi(g)Ł are a decreasing function of g.

When G+
i = G+ is a common countable, dense subgroup of R, condition (y) simplifies

to the conditions
nX

i=1
Vi(g)Vi(g)Ł Ú I for all g 2 G+

We obtain a C*-algebra considered by Dinh [13]. He shows that this C*-algebra is
simple, and thus is independent of the choice of representation of (y). Our proofs will
parallel the arguments of Cuntz and Dinh. However, they both make essential use of the
homogeneity resulting from taking all the G+

i to be equal. We will use similar methods,
obtaining an expectation onto an AF subalgebra. However, even when the G+

i are equal,
our expectation will be onto a smaller algebra as we average over a larger group of
automorphisms.

LEMMA 2.1. Let Vi be isometric representations of semigroups G+
i satisfying (y). Then

CŁ
�
fVi(gi) : gi 2 G+

i Ò 1 � i � ng
�

is the closed span of the set fV(õ)V(ú)Ł : õÒ ú 2
Łn

i=1G+
i g. Moreover this set is closed under multiplication.

The proof is easy and exactly parallels the case of the Cuntz algebra. The details are
left to the reader.

The following result should be compared with the Laca-Raeburn approach [17, Sec-
tion 4]. They also make use of the natural map from the free product onto the (abelian)
direct product of the groups in order to construct an expectation. Because our methods
are specific to this example, we obtain an explicit description of the image algebra, and
thereby can establish that it is AF. This then allows us to use the original argument of
Cuntz to show directly that our algebras are purely infinite.
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THEOREM 2.2. There is a faithful expectation Φ of the C*-algebra O(Łn
i=1G+

i ) associ-
ated to the free product of the positive cones of subgroups of R onto an AF C*-subalgebra
F (Łn

i=1G+
i ).

PROOF. Let Vi(g) for g 2 G+
i be the isometric representations of G+

i which generate
the universal algebra O(Łn

i=1G+
i ). Let V denote the induced representation of Łn

i=1G+
i .

For eachç = (ç1Ò    Ò çn) in
Qn

i=1 Ĝi, we may define an automorphismãç of O(Łn
i=1G+

i )
such that

ãç
�
Vi(gi)

�
= hgiÒ çiiVi(gi) for gi 2 G+

i 

Indeed, the maps sending gi to hgiÒ çiiVi(gi) are isometric representations of G+
i which

satisfy (y) and generate the C*-algebra O(Łn
i=1G+

i ). By the universal property of the
C*-algebra, there is an automorphism ãç with the desired property.

The product character ç determines a unique character on Łn
i=1G+

i by sending õ =
g1g2 Ð Ð Ð gk, where gj 2 G+

ij , to

ç(õ) =
kY

j=1
hgjÒ çiji

It follows easily that

ãç
�
V(õ)V(ú)Ł

�
= ç(õ)ç(ú)V(õ)V(ú)Ł for õ 2 Łn

i=1G+
i 

Notice that the map taking ç to ãç
�
V(õ)V(ú)Ł

�
is norm continuous. Since these terms

span O(Łn
i=1G+

i ), it follows that the map taking ç to ãç(X) is norm continuous for each
X 2 O(Łn

i=1G+
i ).

Define a map Φ from O(Łn
i=1G+

i ) into itself by

Φ(X) =
Z

Πn
i=1Ĝi

ãç(X) dç

where the measure dç is Haar measure on the compact group
Qn

i=1 Ĝi. It is immediately
evident that this map is positive, completely contractive and faithful. A simple calculation
using the translation invariance of dç yields the fact that Φ is idempotent. Thus it is an
expectation.

We wish to show that the range F (Łn
i=1G+

i ) of Φ is an AF subalgebra of O(Łn
i=1G+

i ).
There is a canonical homomorphism of Łn

i=1G+
i onto

Qn
i=1 G+

i which is the identity on each
G+

i . Let the image of an element õ be denoted by jõj, which we will call the length of õ.
A routine calculation shows that

Φ
�
V(õ)V(ú)Ł

�
=
(

V(õ)V(ú)Ł if jõj = júj
0 if jõj 6= júj.

For each point g = (g1Ò    Ò gn) 2
Qn

i=1 G+
i , let K g denote the space spanned by the set

n
V(õ)V(ú)Ł : jõj = júj = g

o

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It is easy to verify that if V(õi)V(úi)Ł 2 K gi , then

V(õ1)V(ú1)ŁV(õ2)V(ú2)Ł =

8><
>:

V(õ1õ
0)V(ú2)Ł if õ2 = ú1õ

0

V(õ1)V(ú2ú
0)Ł if õ2ú

0 = ú1

0 otherwise.
(1)

In particular, for each g this spanning set forms a complete set of matrix units for K g,
and hence this forms a C*-algebra isomorphic to the space of compact operators on some
Hilbert space (which is separable precisely when each Gi is countable). Moreover, if g
and h are points in

Qn
i=1 G+

i which is endowed with the product order −, then

K gKh ²

8><
>:

Kh if g − h
K g if g × h
f0g otherwise.

In particular, it follows that F (Łn
i=1G+

i ) is a C*-algebra. Moreover, it is the direct limit
of the subalgebras KG :=

P
g2G K g as G runs over all finite subsets of

Qn
i=1 G+

i . To show
that the range is AF, it suffices to show that each of these subalgebras is AF. This may
be done by explicitly exhibiting each of these algebras as an inductive limit. Consider
finite dimensional subalgebras of the form

X
g2G

span
n

V(õ)V(ú)Ł : õÒ ú 2 Sg

o
(2)

where Sg are finite subsets of words of length g. In order for this to be an algebra, it
suffices by equation (1) to check that whenever g − h in G and for some õ 2 Sg and
ú 2 Sh there is an element ö such that ú = õö, then Sh must contain õ0ö for every õ0 2 Sg.
It is evident that starting with arbitrary finite subsets Sg, they may be enlarged to finite
sets S 0

g to have this property. So the range of Φ is an AF algebra as required.
We remark that the universal property of O(Łn

i=1G+
i ) is not needed to construct the

automorphisms ãç, and that this can be done for the C*-algebra CŁ
�
fVi(g)g

�
generated

by any representations satisfying (y). The expectation can be constructed in the same
manner, and it has the nice property that the expectations commute with the natural
homomorphism of O(Łn

i=1G+
i ) onto CŁ

�
fVi(g)g

�
. Moreover the analysis shows that the

restriction of this homomorphism to the AF subalgebra is an isomorphism. Since the
expectation is faithful, the homomorphism itself is also an isomorphism. Thus the algebra
is simple. This approach was used by Dinh. Instead we follow the original approach of
Cuntz.

LEMMA 2.3. Assume that at least one of the semigroups G+
i is dense in R+. For each

non-zero positive element X in the dense Ł-subalgebra

A1 = alg span
n
V(õ)V(ú)Ł : õÒ ú 2 Łn

i=1G+
i

o
Ò

there is an element A 2 A1 such that

AŁXA = I and kAk = kΦ(X)k�1Û2

https://doi.org/10.4153/CJM-1998-015-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-015-5


300 KENNETH R. DAVIDSON AND GELU POPESCU

PROOF. Since Φ is faithful, X0 = Φ(X) is strictly positive. For convenience, we may
normalize so that kX0k = 1. The element X0 lies in a finite dimensional subalgebra
B of F (Łn

i=1G+
i ) of the type described in equation (2). Thus by the spectral theorem

for Hermitian matrices, there is a minimal idempotent P in this subalgebra such that
PX0P = P.

The next step is to determine the structure of P. We may write P =
P

g2G Pg, where
each Pg 2 spanfV(õ)V(ú)Ł : õÒ ú 2 Sgg. Let G0 be the subset of fg 2 G : Pg 6= 0gwhich
are minimal in this set with respect to the product order on

Qn
i=1 G+

i . Then let H be the
subset of G consisting of all elements which are not less than or equal to some element
of G0. Then BH := B \ KH is an ideal of B. The image of P under the quotient map
will be a minimal projection which is unitarily equivalent to

P
g2G0 ýPg. It follows that

G0 is a singleton fg0g. A minimal projection in B \ K g0 is a rank one projection of the
form X

õÒú2Sg0

aõāúV(õ)V(ú)Ł = WWŁ

where X
õ2Sg0

jaõj
2 = 1 and W =

X
õ2Sg0

aõV(õ)

Note that W is an isometry in A1. It follows that P � WWŁ lies in the ideal BH . So
WŁPW � I lies in the span of terms V(õ)V(ú)Ł where jõj = júj × 0.

Now observe that WŁPXPW � I must lie in the span of terms of the form V(õ)V(ú)Ł

where jõj _ júj × 0. But given any finite set of such terms Yi = V(õi)V(úi)Ł, we shall
show that there is an isometry V 2 A1 such that VŁYiV = 0 for all i. Let us write
õi = siõ

0
i and ú = tiú0i where si 2 G+

mi
n f0g and ti 2 G+

ni
n f0g. We may suppose that

G1 is dense. Choose an element g1 2 G+
1 n f0g smaller than minfsiÒ tj : mi = 1 = njg

and any g2 2 G+
2 n f0g. Then define V = V(g1g2). It is immediate from equation (1) that

VŁYiV = 0 as desired. It now follows that VŁWŁPXPWV = I.

THEOREM 2.4. The C*-algebra O(Łn
i=1G+

i ) associated to the free product of n ½ 2
positive cones of subgroups of R is simple and purely infinite provided that at least one
of the semigroups G+

i is dense in R+. In all cases, this C*-algebra is determined by any
solution of the relations (y).

PROOF. We will establish that for each non-zero element X in O(Łn
i=1G+

i ), there are
elements AÒB in O(Łn

i=1G+
i ) so that AXB = I. From this it is immediate that O(Łn

i=1G+
i ) is

simple. Moreover, a result of Cuntz [9] (e.g. [10, V.5.5]) implies that this condition is
equivalent to being purely infinite.

Clearly we may replace X by XŁX, and thus may suppose that X is positive. Since Φ
is faithful, it follows that X0 = Φ(X) 6= 0. We may normalize so that kX0k = 1. Now X
may be approximated within 1Û2 by an element Y in A1. Thus kΦ(Y)k Ù 1Û2. By the
previous lemma, there is an element B such that BŁYB = I and kBk2 Ú 2. Consequently
kBŁXB � Ik Ú 1. It follows that A = B(BŁXB)�1Û2 is defined and satisfies AŁXA = I.

The following corollary is immediate provided that at least one of the groups Gi is
dense in R. When all are discrete, this is a result of Cuntz.
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COROLLARY 2.5. If Vi are isometric representations of G+
i satisfying (y), then

CŁ
�
fVi(gi) : gi 2 G+

i Ò 1 � i � ng
�

is canonically Ł-isomorphic to O(Łn
i=1G+

i ).

Since, in particular, such a representation is the left regular representation of Łn
i=1G+

i ,
we obtain:

COROLLARY 2.6. If G+
i are the positive cones of subgroups of R for 1 � i � n and

n ½ 2, then O(Łn
i=1G+

i ) = CŁ
r (Łn

i=1G+
i ).

3. Noncommutative Disc Algebras In [23], the second author introduced the non-
commutative disc algebra An to be the norm-closed algebra generated by n isometries
with pairwise orthogonal ranges. The C*-algebra generated by these isometries is ei-
ther the Cuntz algebra On or the Cuntz-Toeplitz algebra En. However the quotient
map from En onto On is completely isometric on the nonself-adjoint algebra gener-
ated by the generators of En. Thus An is uniquely determined up to complete isomor-
phism [25]. Frahzo [16], Bunce [6] and the second author [22] showed that any n-tuple
T = [T1Ò    ÒTn] which is a contraction dilates to an n-tuple of isometries with orthogonal
ranges. This yields an important analogue of von Neumann’s inequality [23] for such
n-tuples. This algebra is naturally associated to the semigroup Łn

i=1N, and as we have
seen, an isometric representation of An is obtained from the left regular representation
of this semigroup.

So by analogy, we define a noncommutative disc algebra associated to the free
product Łn

i=1G+
i by A(Łn

i=1G+
i ) to be the norm-closed algebra generated by the left regular

representation of the semigroup. The results of the last section yield the following
immediate consequence:

COROLLARY 3.1. Let G+
i be the positive cones of subgroups of R for 1 � i � n

and n ½ 2. Let Vi be any isometric representations of G+
i on a common Hilbert space

H satisfying (y). Then the norm-closed (nonself-adjoint) algebra Alg
�
fVi(gi) : gi 2

G+
i Ò 1 � i � ng

�
is completely isometrically isomorphic to A(Łn

i=1G+
i ).

PROOF. Corollary 2.5 shows that the C*-algebras determined by Vi and the left regular
representation are Ł-isomorphic via a map that intertwines the two representations. Thus
it carries the algebra Alg

�
fVi(gi) : gi 2 G+

i Ò 1 � i � ng
�

onto A(Łn
i=1G+

i ). Since Ł-
isomorphisms are completely isometric, the result follows.

We wish to show that one can recover the semigroup Łn
i=1G+

i from the algebra
A(Łn

i=1G+
i ). To this end, we compute the characters (multiplicative linear functionals)

of A(Łn
i=1G+

i ).

THEOREM 3.2. Let G+
i be the positive cones of subgroups of R for 1 � i � n and n ½

2. By rearranging if necessary, we may suppose that the first m of these semigroups are
isomorphic toN and the others are dense. There is a canonical homeomorphism between
the space of characters of A(Łn

i=1G+
i ) and the space consisting of those semicharacters

† of Łn
i=1G+

i which satisfy

(z)
nX

i=1
j†(gi)j2 � 1 for all gi 2 G+

i n f0g
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This space may be identified with the union of the unit ball Bm of Cm and the cones CĜi

for m + 1 � i � n, where the trivial semicharacters ö0 in each set are identified to a
single point (which we denote by ö0).

PROOF. There is a natural map from the space of characters of A(Łn
i=1G+

i ) into the
space of semicharacters of Łn

i=1G+
i given by restriction to the set of generators fï(g) :

g 2 Łn
i=1G+

i g. Every linear functional on an operator algebra is completely contractive
[21, Prop. 3.7]. The generators of A(Łn

i=1G+
i ) satisfy (y), which can be interpreted as the

conditions 


hï(g1)    ï(gn)
i


 � 1 for all gi 2 G+

i n f0g

Given a multiplicative functional Ψ, define the semicharacter†(g) = Ψ
�
ï(g)

�
. Applying

this functional to the given row matrix must yield a contraction, which is to say

nX
i=1
j†(gi)j2 =




h†(g1) Ð Ð Ð †(gn)
i


2

� 1 for all gi 2 G+
i n f0g

Since the set fï(g) : g 2 Łn
i=1G+

i g generates A(Łn
i=1G+

i ) as a norm-closed algebra,
this mapping from characters of the algebra to the semicharacters of the semigroup is
injective. Moreover since the topologies on the two spaces are the weak topologies, it
is evident that the map is continuous. Once it is established that this map is surjective,
this will be a continuous bijection between compact Hausdorff spaces; and thus is a
homeomorphism.

We first show that if a semicharacter † satisfying (z) is non-zero on one of the dense
semigroups G+

j for some j Ù m, then † vanishes on G+
i n f0g for all i 6= j. Thus there is a

semicharacter †j of G+
j such that

†(g) =
²
†j(g) if g 2 G+

j
0 otherwise.

Indeed, let †j denote the restriction of † to G+
j , and suppose that † 6= ö0. Then by

Theorem 1.4, there is a real number r 2 (0Ò 1] such that j†j(g)j = rg for all g 2 G+
j . It

follows that

sup
g2G+

j nf0g
j†(g)j2 = 1

Hence condition (z) implies that the restriction of † to each G+
i for i 6= j is ö0.

It follows that the space of semicharacters of Łn
i=1G+

i satisfying (z) splits as the union
of the semicharacters of Łm

i=1N and the semicharacters of each G+
i for m Ú i � n with

ö0 identified. By Theorem 1.4, these latter spaces are equal to the cones CĜi. The
semicharacters of Łm

i=1N are determined by the action on the generators zi of G+
i ' N for

1 � i � m and the necessary and sufficient condition

mX
i=1
j†(zi)j2 � 1
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The map taking† to
�
†(z1)Ò    Ò †(zm)

�
is a bijection which carries the space of semichar-

acters satisfying (z) onto the ball Bm.
Now it is possible to verify that the map from characters of the algebra to semichar-

acters of the semigroup satisfying (z) is surjective. Suppose that j Ù m and † 2 CĜj is
given. The subspace ‡2(G+

j ) of ‡2(Łn
i=1G+

i ) spanned by the basis vectors fòg : g 2 G+
j g

is co-invariant for A(Łn
i=1G+

i ). Thus the compression to this subspace is a completely
contractive homomorphism. This map takes ï(g) to 0 unless g 2 G+

j , in which case it is
sent to the left regular representation of G+

j . So this maps onto A(G+
j ). Compose this with

the multiplicative linear functional associated to † to obtain a multiplicative functional
Ψ on A(Łn

i=1G+
i ). It is evident that the image of Ψ in the space of semicharacters is † as

desired.
Similarly, suppose that† is a semicharacter on Łm

i=1N corresponding to a point ï 2 Bm.
The compression of A(Łn

i=1G
+
i ) to the co-invariant subspace spanned by fòg : g 2 Łm

i=1G+
i g

maps the algebra onto the algebra Am. The characters of Am are known to correspond to
Bm [25, 12]. So the surjectivity is established as above. This completes the proof.

We can use this result to provide complete isomorphism invariants for these algebras.

THEOREM 3.3. Let G+
i and H+

j be positive cones of subgroups of R. The two algebras
A(Łn

i=1G+
i ) and A(Łk

j=1H+
j ) are isomorphic if and only if the semigroups are isomorphic,

which holds if and only if k = n and there is a permutation ô so that G+
i is isomorphic to

H+
ô(i) for 1 � i � n.

PROOF. The three conditions are successively stronger. So suppose that the two al-
gebras are isomorphic. Then their character spaces are homeomorphic. After deleting
the trivial character ö0, the character set of A(Łn

i=1G+
i ) splits into distinct components.

Possibly one is homeomorphic to Bm n f0g, where m is the number of the G+
i which are

isomorphic to N, and the other components are Ωj = Ĝjð (0Ò 1] for m Ú j � n. By Theo-
rem 1.4, these sets are indeed connected. The component homeomorphic to a punctured
ball is recognized by the fact that the first cohomotopy group ô1(Bm n f0g) = ô1(S2m�1),
the group of connected components of the group of invertible functions on the sphere
S2m�1, is isomorphic to Z if m = 1 and to 0 for m Ù 1. The dimension m is determined
by the invariance of domain theorem, or by considering higher cohomotopy groups. Of
course, the semigroup G+

j is not determined as an ordered group by Ĝj. So additional
argument is needed. Consider the ideal Jj = \†2Ωj ker†. It is evident that A(Łn

i=1G+
i )ÛJj

is (completely isometrically) isomorphic to A(G+
j ). But by Corollary 1.7, this determines

G+
j up to order isomorphism. Consequently we have shown that the integers m and n

are determined from the algebra, and that the semigroups G+
j are determined up to order

isomorphism as required. The only possible change is a permutation of the terms, as
there is no order on the set of components.

4. A Dilation Theorem. We wish to obtain the analogue of the von Neumann
inequality for the algebras A(Łn

i=1G+
i ). To this end, we also require a dilation theorem for

contractive representations of G+
i satisfying the norm condition (y). This simultaneously
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generalizes Mlak’s Dilation Theorem and the dilation theorems of Frahzo [16], Bunce [6]
and the second author [22]. Moreover it establishes uniqueness of the minimal dilation.

THEOREM 4.1. Let G+
i be positive cones of discrete subgroups of R for 1 � i � n. Let

Ti be contractive representations of G+
i on a common Hilbert space satisfying the norm

condition

(y)
nX

i=1
Ti(gi)Ti(gi)

Ł Ú I for all gi 2 G+
i n f0g

Then there is a Hilbert space K containing H and isometric representations Vi of G+
i

on K such that
(i)

Pn
i=1 Vi(gi)Vi(gi)Ł Ú I for all gi 2 G+

i n f0g.
(ii) VŁ

i (gi) jH = Ti(gi)Ł for all gi 2 G+
i , 1 � i � n.

(iii) K =
W
õ2Łn

i=1G+
i

V(õ)H .

Moreover this dilation is unique up to unitary equivalence which fixes H .

PROOF. Using Mlak’s Dilation Theorem 1.3, dilate each Ti to an isometric repre-
sentation Vi on a larger Hilbert space K i. Let ïi be the restriction to G+

i of the left
regular representation of Łn

i=1G+
i . Then replace each Vi by Vi ý ï(ã)

i on a Hilbert space
K = K i ý ‡2(Łn

i=1G+
i )(ã), where ã is a cardinal sufficiently large to ensure that the

subspace

Mi := [g2G+
i nf0g Ran

�
Vi(g)

�
has codimension equal to the dimension of K .

Existence of a dilation will be established provided that there are unitaries Ui in
B(K ) such that UijH = I and UiMi are pairwise orthogonal. Indeed, the isometric
representations V0

i (g) = UiVi(g)UŁ
i are dilations of Ti with orthogonal ranges, and thus

satisfy (i). Minimality and uniqueness will be dealt with later.
Let Pi = PMi

, and note that

Pi = SOT-lim
g#0

g2G+
i nf0g

Vi(g)Vi(g)Ł

Decomposing K = H ý K 0, we obtain a matrix of the form

Pi =
"

Ai Bi

BŁ
i Ci

#


Therefore

nX
i=1

Ai = PH

nX
i=1

Pi jH = SOT-lim
g#0

g2G+
i nf0g

nX
i=1

PH Vi(g)Vi(g)Ł jH

= SOT-lim
g#0

g2G+
i nf0g

nX
i=1

Ti(g)Ti(g)Ł � I
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Consider the contraction
X = [A1Û2

1    A1Û2
n ]

Let
DX = (In � XŁX)1Û2 = [éij � A1Û2

i A1Û2
j ] =: [Xij]

Then
h

X
DX

i
is an isometry. Thus the columns

Sj =

2
6666666664

A1Û2
j

X1j
...

Xnj

0

3
7777777775

(where the 0 acts on a space isomorphic to K ) for 1 � j � n are isometries with pairwise
orthogonal ranges. Identify the range space with K = H ý K 0 in such a way that the
map is the identity from H as the first component to H as a summand of K . Then we
may define projections with pairwise orthogonal ranges by

Qi = SiS
Ł
i =

"
Ai Di

DŁ
i Ei

#


By construction,
�Pn

i=1 Qi

�?
has range dimension equal to the dimension of K .

Now BiBŁ
i = Ai � A2

i = DiDŁ
i . Thus there are partial isometries Wi on K 0 so that

BiWi = Di. Since both Pi and Qi have ranges with complements of dimension equal to
the dimension of K , both Bi and Di have large kernels. So the partial isometry Wi may
be chosen to be a unitary. Define

P0
i :=

"
I 0
0 Wi

#Ł " Ai Bi

BŁ
i Ci

# "
I 0
0 Wi

#
=
"

Ai Di

DŁ
i Fi

#


By construction, Qi is the smallest positive operator with entries
"

Ai Di

DŁ
i Ł

#
, and thus

P0
i ½ Qi. So

P0
i � Qi = Ri =

"
0 0
0 Yi

#

is a projection. Because of the condition on the ranges of the Qi, there is sufficient
room to move the ranges of the Yi onto pairwise orthogonal subspaces which are also
orthogonal to the ranges of all the Qi’s. That is, there are unitary operators W0

i on K 0

such that I ý W0
i is the identity on the range of Qi and W0

i YiW0Ł
i are pairwise orthogonal

projections with range orthogonal to the range of
Pn

i=1 Qi. Thus conjugating P0
i by IýW0

i

yields the desired projections.
Now that a dilation has been constructed, a minimal dilation is obtained by replacing

the Hilbert space K by the smallest possible space
W
õ2Łn

i=1G+
i

V(õ)H . Suppose that V and
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V0 are two minimal dilations on spaces K and K 0 respectively. Define a linear map W
on alg spanfV(õ)H : õ 2 Łn

i=1G+
i g by

WV(õ)h = V0(õ)h for all õ 2 Łn
i=1G+

i Ò h 2 H 

Compute

�
V(õ)hÒV(ú)k

�
=

8>><
>>:

�
V(ö)hÒ k

�
=
�
T(ö)hÒ k

�
if õ = úö�

hÒV(ö)k
�

=
�
hÒT(ö)k

�
if ú = õö

0 otherwise.

This depends only on the original representation, and thus the same identity holds for
V0. Therefore we obtain

�
WV(õ)hÒWV(ú)k

�
=
�
V(õ)hÒV(ú)k

�

for all õÒ ú 2 Łn
i=1G+

i and hÒ k 2 H . This shows that W is well defined and extends to an
isometry from the closed span of fV(õ)H : õ 2 Łn

i=1G+
i g to the corresponding set for

V0. In other words, W is a unitary that intertwines V and V0. By considering the identity
element e, we obtain

Wh = WV(e)h = V0(e)h = h for all h 2 H 

Hence W agrees with the identity operator on H . This establishes the desired uniqueness.

This provides a complete classification of the completely contractive representations
of A(Łn

i=1G+
i ).

COROLLARY 4.2. Let G+
i be positive cones of discrete subgroups of R for 1 � i � n.

Let Ti be contractive representations of G+
i on a common Hilbert space satisfying the

norm condition

(y)
nX

i=1
Ti(gi)Ti(gi)

Ł Ú I for all gi 2 G+
i n f0g

Then there is a (unique) completely contractive homomorphism of the algebra A(Łn
i=1G+

i )
into Alg

�
fTi(gi) : gi 2 G+

i Ò 1 � i � ng
�

which takes Vi(gi) to Ti(gi) for all gi 2 G+
i and

1 � i � n.
Conversely, every completely contractive representation of A(Łn

i=1G+
i ) arises in this

way.

PROOF. By the preceding theorem, the representations Ti may be dilated to isometric
representations Vi on a larger Hilbert space K which also satisfy (y). By Corollary 1.7,

A = Alg
�n

Vi(gi) : gi 2 G+
i Ò 1 � i � n

o�
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is completely isometrically isomorphic to A(Łn
i=1G+

i ). By the dilation condition (ii) of the
preceding theorem, the compression of A to H is a completely contractive map which
is a homomorphism because H is co-invariant. By identifying A with A(Łn

i=1G+
i ), we

obtain the desired map.
Uniqueness follows since the Vi(gi)’s generate A(Łn

i=1G+
i ). Moreover, given a com-

pletely contractive representation of A(Łn
i=1G+

i ), the restriction to the group elements
satisfies (y) as in the first paragraph of the proof of Theorem 3.2. So every representation
is determined by one of these semigroup representations.

We obtain a von Neumann inequality for families of contractive representations by
specializing the result above to elements of the group algebra (“polynomials”).

COROLLARY 4.3. Let G+
i be positive cones of discrete subgroups of R for 1 � i � n.

Let Ti be contractive representations of G+
i on a common Hilbert space satisfying the

norm condition (y). Then




X aõT(õ)



 � 


X aõï(õ)





A(Łn

i=1G+
i )

for all elements of C Łn
i=1 G+

i .

We obtain an explicit expression for the Arveson Dilation [3] (see [21, Corollary 6.7]),
and thus obtain a variant of our corollary extending results in [1, 25].

COROLLARY 4.4. Let G+
i be positive cones of discrete subgroups of R for 1 � i � n.

Let Ti be contractive representations of G+
i on a common Hilbert space H satisfying the

norm condition (y). Then there is a completely positive unital map Ψ from O(Łn
i=1G+

i )
into B(H ) such that

Ψ
�
ï(õ)ï(ú)Ł

�
= TõTŁ

ú

for all õÒ ú 2 Łn
i=1G+

i .

PROOF. Let V be the isometric dilation of T provided by Theorem 4.1. Then by
Corollary 2.5, there is a Ł-isomorphismô of O(Łn

i=1G+
i ) into B(K ) such that ô

�
ï(õ)

�
= Võ

for all õ 2 Łn
i=1G+

i . The compression Ψ of ô to H agrees with T on the elements of the
semigroup. Moreover, H is co-invariant for each Võ. Hence

Ψ
�
ï(õ)ï(ú)Ł

�
= PH VõVŁ

ú PH jH = PH VõPH VŁ
ú PH jH = TõTŁ

ú 

5. Moment Problems. A classical moment problem for the circle asks if there is
a (positive) regular Borel measure ñ on the circle T with certain prescribed Fourier
coefficients. For example the full moment problem gives the full sequence ñ̂(k) = ak for
k ½ 0 and the truncated moment problem provides ak for 0 � k � n. The answer is
provided in terms of the positivity of an associated formal Toeplitz operator. The Riesz
representation theorem states that measures on T correspond to positive linear functionals
on C(T). Moreover, they are automatically completely positive, and the moment problem
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has an operator-valued analogue that determines the existence of a completely positive
map on C(T) with prescribed values on certain powers of z. The results of the previous
two sections will be applied here to analyze certain operator-valued moment problems for
the semigroups Łn

i=1G+
i . See [2] for more information on the classical moment problem.

In [26, 27, 28], the second author has done other work in this direction.

We will replace the space C(T) with our generalized Cuntz algebra O(Łn
i=1G+

i ). The
Fourier coefficients of a map Φ from O(Łn

i=1G+
i ) into B(H ) are given by their evaluation

on ï(õ) for õ in Łn
i=1G+

i , say Aõ = Φ
�
ï(õ)

�
. We consider the moment problem associated

to any subset Σ of Łn
i=1G+

i which is

(i) generating in the sense that

Łn
i=1G+

i =
[

n½1
ΣnÒ

where Σn denotes the set of all products of n elements of Σ, and
(ii) hereditary in the sense that if öú 2 Σ, then ú 2 Σ.

Such sets will be called admissible. A few examples that are of interest are

(1) Σ = Łn
i=1G+

i is the full moment problem.
(2) Σ = fg 2 Łn

i=1G+
i : jgj 2 Sg where S is a downward directed subset of

Qn
i=1 G+

i

containing a non-zero element of each G+
i . This yields several natural truncated

moment problems. As special cases, one might take S = fg : 0 − g − (1Ò    Ò 1)g.
Another natural example takes S = (

Sn
i=1 G+

i )k . This is the set of all words which
have a minimal expression as the product of at most k terms.

(3) By specifying A0 = I, we are limiting consideration to completely positive con-
tractions. In general, the case of arbitrary A0 can be deduced from this special case
via a simple normalization trick.

A Toeplitz form K on ΣðΣ is an operator valued function such that K(öõÒ öú) = K(õÒ ú)
whenever öõ and öú belong to Σ. The form is Hermitian if K(úÒ õ) = K(õÒ ú)Ł . It is said
to be positive semidefinite provided that

X
õÒú2Σ

�
K(õÒ ú)h(ú)Ò h(õ)

�
½ 0

for all finitely supported functions h from Σ into H .

THEOREM 5.1. Let Σ be an admissible subset of Łn
i=1G+

i . A family of operators fAõ :
õ 2 Σg in B(H ) are the moments of a completely positive map Φ from O(Łn

i=1G+
i ) into

B(H ) if and only if the Toeplitz form K on Σ ð Σ given by

K(õÒ ú) =

8><
>:

Aö if ú = õö
AŁ
ö if õ = úö

0 otherwise

is positive semidefinite.

https://doi.org/10.4153/CJM-1998-015-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-015-5


NONCOMMUTATIVE DISC ALGEBRAS FOR SEMIGROUPS 309

PROOF. We will assume that A0 = I. The general case may be obtained by replacing
A0 by I and Aõ by (A0 + ¢I)�1Û2Aõ(A0 + ¢I)�1Û2 for small ¢ and taking limits. The details
are left to the reader.

One direction is straightforward. If Φ is a completely positive map with the desired
Fourier coefficients, then by Stinespring’s Theorem [30] (see [21, Theorem 4.1]) there is
a larger Hilbert space K containing H and a Ł-representation of O(Łn

i=1G+
i ) on K such

that

Φ(A) = PH ô(A) jH for all A 2 O(Łn
i=1G+

i )

Let Võ = ô
�
ï(õ)

�
. These are isometries satisfying (y). It follows from the above equation

that

PH VŁ
õVú jH = K(õÒ ú) for all õÒ ú 2 Łn

i=1G+
i 

Therefore if hõ are vectors in H with only finitely many non-zero, then

X
õÒú2Σ

�
K(õÒ ú)hú Ò hõ

�
=
X

(Vúhú ÒVõhõ) =



XVúhú




2
½ 0

Conversely suppose that K is positive semidefinite. Use K to define a semidefinite
form on H Σ, the space of all finitely supported functions from Σ into H , by

hhÒ kiK =
X
õÒú2Σ

�
K(õÒ ú)h(ú)Ò k(õ)

�


Then let HK denote the Hilbert space completion of H ΣÛN , where N is the subspace
of null vectors in this seminorm. Notice that H imbeds isometrically as those functions
supported on the identity element because K(0Ò 0) = I.

Define a contractive representation T of Łn
i=1G+

i on HK by the formula

(Töh)(õ) =
²

h(ú) if õ = öú 2 Σ
0 otherwise.

This defines a partial isometry because of the Toeplitz condition. It is evident that this
map is multiplicative, and thus determines a bounded representation. Let Ti denote the
restriction of T to G+

i . The range of Ti(G+
i n f0g) is contained in the closed span of

functions supported on

n
õ 2 Σ : õ = giõ

0 for gi 2 G+
i n f0g

o


The definition of K guarantees that these subspaces of HK are pairwise orthogonal. Hence
T satisfies condition (y).
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Therefore by Theorem 4.1, this representation dilates to an isometric representation V
on a Hilbert space K of Łn

i=1G+
i . By Corollary 2.5, there is a Ł-isomorphism of O(Łn

i=1G+
i )

onto CŁ
�
fV(õ) : õ 2 Łn

i=1G+
i g
�
. Clearly the compression to H , which is a subspace

of HK, is completely positive. Let the composition of these maps be denoted by Φ. We
compute for õ 2 Σ and vectors hÒ k 2 H (and we identify h with the functions h(ú) = é0úh
in HK, where é0ú is the Kronecker delta function)

�
Φ
�
ï(õ)

�
hÒ k

�
=
�
PH V(õ)hÒ k

�
=
D
T(õ)hÒ k

E
K

= (AõhÒ k)

Thus the Fourier coefficients of Φ are Aõ as desired.
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