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Successful phenomenological models of pulsar wind nebulae assume efficient
dissipation of the Poynting flux of the magnetized electron–positron wind as well as
efficient acceleration of the pairs in the vicinity of the termination shock, but how
this is realized is not yet well understood. This paper suggests that the corrugation
of the termination shock, at the onset of nonlinearity, may lead towards the desired
phenomenology. Nonlinear corrugation of the termination shock would convert a
fraction of order unity of the incoming ordered magnetic field into downstream
turbulence, slowing down the flow to sub-relativistic velocities. The dissipation of
turbulence would further preheat the pair population on short length scales, close to
equipartition with the magnetic field, thereby reducing the initial high magnetization
to values of order unity. Furthermore, it is speculated that the turbulence generated by
the corrugation pattern may sustain a relativistic Fermi process, accelerating particles
close to the radiation reaction limit, as observed in the Crab nebula. The required
corrugation could be induced by the fast magnetosonic modes of downstream nebular
turbulence; but it could also be produced by upstream turbulence, either carried by
the wind or seeded in the precursor by the accelerated particles themselves.

1. Introduction
Pulsar wind nebulae (PWNe) have long been recognized as outstanding laboratories

of astro-plasma physics in extreme conditions, see e.g. Kirk, Lyubarsky & Petri (2009)
and Arons (2012), and the Crab nebula, as a result of its proximity, plays a very
special role among those objects.

At the price of non-trivial assumptions regarding the physical conditions behind
the termination shock of the pulsar wind, which separates the free streaming
wind from the hot shocked wind in the nebula, phenomenological models have
been very successful in explaining the general spectral energy distribution and
morphological features of the Crab nebula, using analytical calculations (e.g. Kennel &
Coroniti 1984a,b; Atoyan & Aharonian 1996) or increasingly sophisticated numerical
simulations (e.g. Komissarov & Lyubarsky 2003, 2004; Bucciantini et al. 2003; Del
Zanna, Amato & Bucciantini 2004; Porth, Komissarov & Keppens 2014), see also
Amato (2015) and Kargaltsev et al. (2015) for reviews.

Nonetheless, various puzzles plague the current understanding of the microphysics
of PWNe; among them, two are particularly noteworthy: how the wind converts its
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2 M. Lemoine

Poynting flux – which supposedly greatly dominates the particle kinetic energy at the
base of the wind – into particle thermal energy behind the termination shock, reaching
rough equipartition between these components; and how particle acceleration takes
place behind the termination shock.

The present paper examines a speculative scenario, which could potentially solve
part of the above puzzles; it specifically assumes that the termination shock of the
pulsar wind is nonlinearly corrugated, the precise meaning of this being given in § 2.1.
It then shows that such corrugation efficiently converts an incoming ordered magnetic
energy into turbulence, thereby slowing down appreciably the flow velocity behind
the termination shock. A significant part of the turbulence can be further dissipated
through collisionless effects on short length-scales, leading to pre-acceleration of the
pairs, up to close equipartition with the incoming magnetic energy. The corrugation
of the shock may thus achieve efficient dissipation of the incoming Poynting flux, in
a way that is reminiscent of the dissipation through reconnection of a striped wind in
the equatorial plane (Lyubarsky 2003). Finally, it is speculated (and argued) that the
turbulence seeded by corrugation may also sustain an efficient Fermi process, leading
to a particle spectrum close to what is observed.

This paper is organized as follows: § 2 discusses the physics of a corrugated
shock wave in the magneto-hydrodynamics (MHD) limit; § 3 recalls some results on
the collisionless damping of relativistic MHD waves in a relativistic plasma, then
discusses the physics of particle pre-acceleration in the resulting turbulence and the
development of a relativistic Fermi process at high energies. Section 4 discusses
various possible sources of corrugation and examines how the present results can
be applied to PWNe. Finally, § 5 provides a summary of the discussion and some
conclusions.

2. A relativistic corrugated termination shock
2.1. Definitions

Assume that the termination of the pulsar wind, which separates the cold magnetized
incoming wind from the hot shocked wind, is corrugated. Potential sources of
corrugation will be addressed in § 4. For simplicity, we neglect effects of spherical
symmetry, which are not important to the present discussion, and therefore consider a
planar shock, moving at velocity βf along the x-direction relative to the downstream
plasma, i.e. relative to the nebula. The (uncorrugated) shock surface is defined by

Φ(x)= x− βfct= 0, (2.1)

with corresponding shock normal four-vector:

`µ = ∂µΦ

|∂αΦ∂αΦ|1/2
= (−γfβf, γf, 0, 0), (2.2)

where γf≡ (1− βf
2
)−1/2 denotes the bulk Lorentz factor of the shock front relative to

downstream.
Corrugation can be described by a perturbation of the shock surface:

Φ(x)=Φ(x)− δX(x⊥, t)= 0, (2.3)

where x⊥ ≡ (y, z) represents the coordinates in the (uncorrugated) shock front plane.
For simplicity, consider for the purpose of this subsection a corrugation on a single
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Corrugation of a pulsar wind termination shock 3

length-scale characterized by a wavenumber k⊥ = (ky, kz) defined in the uncorrugated
shock front plane, with harmonic behaviour at frequency ωk:

δX(x⊥, t)= δXke−iωkt+ik⊥·x⊥ . (2.4)

The frequency ωk is directly related to k = (kx, k⊥) and to the nature of the wave
inducing the corrugation of the shock front (Lemoine, Ramos & Gremillet 2016); kx
represents here the x-wavenumber of that mode. At a relativistic shock, one typically
has ωk ∼ |k|, hence this scaling is retained in the following.

In the linear approximation, the first-order perturbation of the shock normal is
written:

δ`µ =− ∂µδX
|∂αΦ∂αΦ|1/2 +

∂µΦ∂βδX∂βΦ
|∂αΦ∂αΦ|3/2 (2.5)

or, for the above single-wave corrugation pattern,

δ`kµ = (iγf
3ωkδXk/c,−iγf

3βfωkδXk/c,−ikyγfδXk,−ikzγfδXk). (2.6)

A strongly corrugated shock is such that the above linear approximation breaks down,
i.e. |δ`|& 1, which translates into

γf|k⊥δXk|& 1

γf
2|ωkδXk|& 1

}
. (2.7)

Both conditions express the fact that the departure from the unperturbed shock surface
becomes larger than the perpendicular wavelength in the shock front rest frame. For a
moderately magnetized shock wave, with σ1 . 3, one has γf ∼ 1, hence a shock front
at the onset of nonlinear corrugation is such that |kδX| ∼ 1 (with δX expressed in the
downstream rest frame as previously).

If the incoming upstream flow is strongly magnetized, i.e. σ1 & 3, γf becomes
larger than unity. However, the mean shock velocity βf along the shock normal can
be strongly modified by corrugation; as discussed in the following, in particular, the
generation of turbulence in the nonlinearly corrugated shock transition can reduce
the actual βf to sub-relativistic values, implying γf ∼ 1. It is therefore speculated
that |kδX| ∼ 1 remains a valid threshold for nonlinear corrugation in the large
magnetization regime σ1 & 3.

Actually, one could potentially envisage even larger values of δX; however,
nonlinear back-reaction would likely limit δX to the above threshold of nonlinearity,
hence this value is retained in the following.

Interestingly, the condition |kδXk| & 1 is compatible with a very small amplitude
|δX|, as measured relative to the scale of the termination shock (noted R), provided
|kR|� 1. In other words, the shock may be strongly corrugated on short spatial scales
which are not observable at large distances, but which remain macroscopic compared
to the thickness of the actual shock transition. The latter requirement is not essential
for the present scenario, but the MHD description that this model uses can only
be applied on scales much larger than the shock thickness, which is set by kinetic
physics. To provide quantitative estimates, consider the case of the Crab nebula: if
electrons are inflowing through the shock with a Lorentz factor γw= 104γw,4 (relative
to the downstream-nebula rest frame), the typical gyroradius of these particles in the
downstream magnetic field (strength Bd ∼ 0.1 mG), rg ∼ 1011γw,4 cm sets the typical
thickness of the shock transition layer. Therefore, corrugation is envisaged here on all
scales k−1 larger than the above and smaller than R∼ 3× 1017 cm. As discussed in
§ 4, this range of scales encompasses the gyroradii of all accelerated particles, even
the highest-energy ones, indicating that corrugation may exert a strong influence on
their kinematics.
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4 M. Lemoine

FIGURE 1. Various quantities plotted at t = 0 as a function of y, the coordinate along
the direction y, which is both perpendicular to the shock normal (x) and to the direction
of the background magnetic field (z), in a case of nonlinear corrugation described by
(2.8), assuming no rippling along z. Upper sinusoidal dotted line: −`0/`1 describing the
spatial behaviour of the temporal component of the shock normal; the average value over
y, i.e. 0.7, represents the average velocity of the shock front relative to downstream.
Lower sinusoidal dotted line: −`2/`1, describing the rippling of the shock front in the
y direction. Horizontal dashed curve: (relativistic) Alfvén three-velocity of waves in the
downstream plasma, whose modulations are at too small an amplitude to emerge on
this figure. Solid (blue) line: y-component of the downstream flow three-velocity (on the
shock front). Dashed (blue) thick line: x-component of the downstream flow three-velocity.
Finally, the arrows indicate the direction of the downstream three-velocity in the (y, x)
plane (for this arrow representation, the ordinate axis should be understood as indicating
the x-direction, while the abscissa points into the y-direction).

2.2. A particular nonlinear solution
In the nonlinear regime where the above perturbative description breaks down, it is
possible to extract an analytical solution of the shock crossing equations in a 2D limit,
in which all quantities remain unperturbed along the direction of the background
magnetic field (taken to be z here), see Lemoine et al. (2016). The downstream
quantities characterizing the state of the plasma can then be expressed at any time,
on the corrugated shock front, in terms of the shock normal. The magnitude of the
shock corrugation amplitude, which depends on the past history of the accumulated
flow, is related through a non-trivial differential relation to the shock normal, see
(2.2) and (2.3) in particular. The present description does not attempt to describe
this corrugation amplitude but to describe the state of the downstream plasma on the
shock front.

An example is shown in figure 1, which assumes an upstream magnetization
parameter σ1 = 1, a relative Lorentz factor between up- and down-stream γ1 = 100,
and a shock normal four-vector arbitrarily set to:

`µ = {−0.98+ 0.42 sin(t− y), 1.40, 0.42 sin(t− y), 0}. (2.8)

In the downstream rest frame, this four-normal describes a mean shock velocity of
βf ' 0.7 (corresponding to the unperturbed shock crossing conditions for the above
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values of the magnetization and flow velocity), with harmonic corrugation slightly
below the onset of the nonlinear limit.

For the particular case of perturbations confined to the y-direction, the equations of
shock crossing lead to Bx|2 = By|2 = 0: the magnetic field retains only a z-component,
modulated along y. Note that Bx|2 and By|2 vanish on the corrugated shock surface, but
not necessarily further downstream. One would need to follow the characteristics of
the system to study the evolution of these two quantities downstream of the shock; in
the linear limit at least, one can show that the outgoing wave modes develop a net
δBx|2 and δBy|2 further downstream of the shock. Moreover, in a more general case
with kz 6= 0, both components δBx|2 and δBy|2 would not vanish on the shock surface.

As illustrated by figure 1, the shock crossing equations imply the existence of
significant velocity fluctuations along x and y, with different modulations. In turn,
these generate sheared flows with non-vanishing β × B in the downstream, leading
to the stretching and compression of magnetic field lines. These flow motions also
generate convective electric fields, E = −β × B, with |E| ∼ |B| because |β| is close
to unity. The resulting turbulence should thus be prone to dissipation and particle
acceleration on short time scales.

2.3. Jump conditions at a corrugated shock front
As the upstream plasma inflows through the corrugated shock, the ordered magnetic
energy is thus converted in part into turbulence modes. Assume that the MHD
fluid immediately behind the shock can be described by an enthalpy density w2
and pressure p2 with equation of state w2 ' 4p2 (relativistically hot fluid), and by
a magnetic field B = B2 + δB2, with 〈δB2〉 = 0. The index 2 applies to downstream
quantities; upstream quantities will be indexed with 1. The average can be taken in
the ensemble of realizations of the corrugation, or as usual, in the ergodic hypothesis,
along the shock front plane.

On spatial scales much larger than the thickness of the shock, but much smaller
than the corrugation amplitude |δX|, the jump conditions at the shock are expressed
through the integration of the conservation laws along the perturbed normal direction.
However, the present discussion is rather concerned with computing the asymptotic
behaviour of the downstream plasma, on a distance scale �|δX| away from the shock.
On such scales, the shock can be seen as a planar discontinuity, although the jump
conditions should reflect the fact that turbulence has been generated in the transition
layer. These jump conditions should thus be written in the downstream plasma rest
frame as

[nuµ`µ] = 0
[Tµν`µ] = 0, (2.9)

where the shock normal `µ= (−γfβf, γf,0,0) as in (2.2) above. A distinction has to be
made however in the notations: in (2.2), the overline symbols indicate that the solution
applies in the absence of corrugation, while in the present case, corrugation is assumed
to be present on small spatial scales, leading to the production of downstream MHD
turbulence, so that the value of βf which is determined further below differs from βf
above.

The energy-momentum tensor in the ideal MHD approximation is written

Tµν =
(

w+ bαbα

4π

)
uµuν +

(
p+ bαbα

8π

)
ηµν − bµbν

4π
(2.10)
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6 M. Lemoine

in terms of the magnetic four-vector bµ:

bµ = [uiBi, (B+ uiBiu)/u0], (2.11)

where uµ represents the turbulent fluid four-velocity behind the shock, and latin
indices represent spatial indices.

The average energy-momentum tensor of the turbulent downstream fluid is given
by the correlators 〈bαbβ〉, which can be calculated in full generality. In order to
derive simple estimates however, the velocity field and the magnetic perturbations are
assumed uncorrelated, i.e.

〈uαuβB2iB2j〉 = 〈uαuβ〉〈B2iB2j〉 (2.12)

and correlators involving odd powers of the turbulent fluid three-velocity are assumed
to vanish; in particular, 〈ui〉 = 0 by definition of the downstream rest frame. Finally,
one may assume isotropic turbulence, meaning

〈δB2iδB2j〉 = 1
3δij〈δB2

2〉. (2.13)

This assumption makes it possible to simplify the calculations, but it is not crucial to
the present analysis, as discussed further on.

Then one writes

〈bαbβ〉 = 〈bα(0)bβ(0)〉 + 〈bα(1)bβ(1)〉, (2.14)

where bα(0) does not contain any δBi component, while bα(1) does not contain any Bi
term. Assuming that the average background field lies along z, one readily obtains

〈bα(0)bβ(0)〉 = δα0 δβ0 〈u2
z 〉B2

2 + δαi δβj
[〈

1
γ 2

〉
δi3δj3 + 2

〈
u2

z

γ 2

〉
δi3δj3 +

〈
uiuju2

z

γ 2

〉]
B2

2 (2.15)

and

〈bα(1)bβ(1)〉 = δα0 δβ0
1
3
〈u2〉〈δB2

2〉 + δαi δβj
1
3

[〈
1
γ 2

〉
δij + 2

〈
uiuj

γ 2

〉
+
〈

uiuju2

γ 2

〉]
〈δB2

2〉.
(2.16)

A key observation here is that these correlators do not share the same dependence. To
proceed further and obtain a more tractable expression leading to a simple estimate
of the modified jump conditions, assume that the turbulence in the downstream rest
frame is moderately relativistic; this is actually ensured if the corrugation is mildly
nonlinear and σ1 not large compared to unity, as discussed in Lemoine et al. (2016).
The following expressions thus retain only the leading-order terms in powers of u in
the above correlators, which then reduce to standard non-relativistic expressions for
magnetized turbulence:

〈bα(0)bβ(0)〉 ≈ δα3 δβ3 B2
2

〈bα(1)bβ(1)〉 ≈ δαi δβj δij 1
3 〈δB2

2〉.

}
(2.17)

It should be understood that this set of approximations is intended to show in a
quantitative way how corrugation affects the jump conditions at the MHD shock.
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Qualitatively speaking however, the key point is that the correlators of the turbulence
modes contained in 〈bαbβ〉 differ from those of the average background field.

With the above approximations, the non-zero downstream energy-momentum tensor
components can be written:

T 00
2 ≈W2 − P2

T 11
2 ≈ P2 − 1

3
〈δB2

2〉
4π

T 22
2 ≈ P2 − 1

3
〈δB2

2〉
4π

T 33
2 ≈ P2 − B2

2

4π
− 1

3
〈δB2

2〉
4π


, (2.18)

with W2 ≡ w2 + B2
2/(4π)+ 〈δB2

2〉/(4π) a generalized enthalpy density and P2 ≡ p2 +
B2

2/(8π)+ 〈δB2
2〉/(8π) a generalized pressure.

The shock jump conditions for energy and momentum fluxes are then expressed as

−βf(W2 − P2)= (β1 − βf)γ
2
1 W1 + βfP1

P2 − 1
3
〈δB2

2〉
4π
= (β1 − βf)γ

2
1 β1W1 + P1

 . (2.19)

The above equations are written in the downstream rest frame, so that β1 corresponds
to the velocity of upstream relative to downstream. Neglecting P1 in front of P2 (or,
alternatively γ 2

1 W1) and assuming a hot relativistic plasma downstream, p2=w2/4, one
obtains easily

β1βf =−
w2 + B2

2

2π
+ 〈δB

2
2〉

6π

3w2 + B2
2

2π
+ 〈δB

2
2〉

2π

. (2.20)

This equation reduces to the standard result βf→ 1/3 in the limits β1→−1 (ultra-
relativistic limit), B2→ 0 and 〈δB2

2〉1/2→ 0 (hydrodynamic shock), e.g. Kirk & Duffy
(1999). In the highly magnetized and uncorrugated case, meaning w2� B2

2/(4π) and
〈δB2

2〉1/2→ 0, one also recovers β1βf'−1, indicating that the shock moves away from
downstream at a relativistic velocity. As discussed by Kennel & Coroniti (1984a), the
mismatch between this solution and the general morphology of the Crab nebula points
towards a smaller than unity magnetization parameter behind the termination shock.

More interestingly, if 〈δB2
2〉1/2 is not negligible compared to B2, one finds a

solution with a shock moving away from downstream at sub-relativistic velocities,
independently of how strongly magnetized the flow initially was. Consider for instance
the case of equipartition 〈δB2

2〉1/2 ∼ B2 and w2� B2
2/(4π), which is effectively what

one expects if corrugation is mildly nonlinear. Then βf ' 2/3 for β1 ' −1. Other
interesting limits are 〈δB2

2〉�B2
2 (strong corrugation), leading to βf' 1/3 as in a pure

hydrodynamical shock; or 〈δB2
2〉 ∼ B2

2 ∼ 4πw2, leading to βf ' 0.5.
These particular solutions emerge whenever the field line tension of the turbulence

can contribute to the xx component of Tµν , i.e. whenever the correlators 〈bµbν〉
possess a non-trivial xx component. As discussed here and in the previous section,
such a component could arise from the shock corrugation directly or from the
nonlinear processing of the magnetic modulations induced by shock corrugation. The
following subsections also argue that the partial dissipation of such turbulence would
preheat the pairs and thus lead to a solution with a moderate shock velocity relative
to downstream (corresponding to the last case of equipartition discussed above).
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8 M. Lemoine

3. Particle pre-acceleration and acceleration
3.1. Collisionless damping of hydromagnetic waves

Even if w2 � B2
2/(4π), 〈δB2

2〉/(4π) immediately downstream of the shock, various
dissipative effects will transfer energy from the magnetized turbulence to the particles,
thereby decreasing the magnetization of the plasma to values of order unity (see
below). This section discusses the collisionless damping of magnetosonic modes
at the Landau resonance; stochastic particle acceleration will be discussed in § 3.2;
other processes, such as turbulent reconnection, are of course plausible sources of
dissipation.

The collisionless damping of hydromagnetic waves in a relativistic plasma has been
discussed by Barnes & Scargle (1973). At the Landau resonance, they find

Imω' π

8
Reω

δB2
k

4πWδBk

sin2 θ |wr|(1−w2
r )

2Θ(1−wr)σ
−1, (3.1)

where ω corresponds to the wave frequency, WδBk ∼ δB2
k/(4π) to the wave energy

density, θ to the angle between k and B2, Θ to the Heaviside function, and σ to
the magnetization, i.e. the ratio between the magnetic energy density and the electron
energy density. Finally,

wr ≡ Reω
kc cos θ

(3.2)

is the resonance parameter.
As discussed in Barnes & Scargle (1973), the presence of the Heaviside function

limits the damping coefficient of waves by defining a critical angle beyond which
Landau damping vanishes. The real frequency of magnetosonic waves propagating at
an angle θ to the magnetic field is given by

Reω= kc√
2
{β2
+ + β2

Ac2
s cos2 θ ± [(β2

+ + β2
Ac2

s cos2 θ)2 − 4β2
Ac2

s cos2 θ ]1/2}1/2, (3.3)

with the plus sign pertaining to fast magnetosonic waves, and the minus sign to slow
magnetosonic waves; β2

+≡ β2
A+ c2

s − β2
Ac2

s in terms of the (relativistic) Alfvén velocity
βA and sound velocity cs. Assuming an isotropic bath of waves, one can calculate the
average damping coefficient, relatively to the mode wavenumber, as

〈Imω〉
kc
' π

16
σ−1

∫
dθ sin3 θ cos θw2

r (1−w2
r )

2Θ(1−wr). (3.4)

For fast magnetosonic waves in a strongly magnetized plasma (σ � 1), the fast
magnetosonic wave phase velocity approaches unity, so that the critical angle
θc ∼ 0, implying 〈Imω/kc〉 ≈ 0; those waves are effectively undamped in the
highly magnetized regime. At more moderate magnetization, damping may become
appreciable however: at σ = 1 for instance, 〈Imω/kc〉 ≈ 10−4.

For slow magnetosonic waves, however, one finds typically

〈Imω〉 ' 10−2kcσ−1 (3.5)

at σ & 1.
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Corrugation of a pulsar wind termination shock 9

The above should be considered as a lower limit to Imω since the above
neglects Landau-synchrotron damping effects, as well as other dissipative effects. It
nevertheless makes it possible to set an upper limit on the damping length associated
with the shock corrugation: λdiss. ' βfc〈Imω〉−1.

In the more realistic case of corrugation spread over a broad range of k-modes,
the above indicates that the short-scale modes (large k) will dissipate on short
length-scales ∝ k−1. Turbulence on the large scales may dissipate through cascading
to shorter scales, followed by damping; given that fluctuations are mildly relativistic
behind the shock front if corrugation is mildly non-relativistic, as discussed above,
the typical time scale of eddy cascading may not be much larger than (kc)−1,
implying an efficient damping of slow magnetosonic turbulence. The general picture
that characterizes nonlinear shock corrugation is thus the generation of a turbulent
layer behind the shock front, a part of which dissipates on a small length-scale
λdiss. ∼ O(k−1

peak), kpeak denoting the mode on which the maximum turbulent power is
concentrated.

At such a corrugated shock front, 〈δB2
2〉 ∼B2

2 and slow magnetosonic waves carry a
significant fraction of the turbulence magnetic energy density. Therefore, on a distance
scale λdiss., a fraction ηs, with ηs not far below unity, of the magnetic energy density
has been dissipated into particles, reducing the magnetization from

σ2< = δB
2
2 + B2

2

4πw2
(3.6)

immediately downstream of the shock, to

σ2> = (1− ηs)σ2<

1+ ηsσ2<
(3.7)

beyond the dissipation layer. Consequently, if σ2< & 1 and ηs & 1/σ2<, the magneti-
zation is reduced to values σ2> ' (1 − ηs)/ηs, of order unity, independently of how
high the magnetization initially was.

In this way, a magnetized relativistic corrugated shock wave can efficiently dissipate
the incoming magnetic energy into the shock, leading to a near hydrodynamical shock
with a magnetization of order unity beyond λdiss..

3.2. Phenomenological model of particle pre-acceleration
The acceleration of particles in a bath of magnetized turbulence can be described in a
phenomenological way through a Fokker–Planck equation for the distribution function
f (p, t) of particles∗:

∂

∂t
f = 1

p2

∂

∂p

(
p2Dpp

∂

∂p
f
)
− 1

p2

∂

∂p
(ṗp2f )− f

τesc
+ q(p), (3.8)

where q models the injection of particles into the dissipation region, τesc the escape
time scale out of the dissipation region and ṗ characterizes systematic energy

∗As discussed by Bykov & Toptygin (1993), Bykov & Meszaros (1996) and Pelletier (1999), a rigorous
model of particle acceleration in relativistic turbulence would require introducing more sophisticated kernels
than the above Fokker–Planck operators. For mildly relativistic turbulence, however, the following Fokker–Planck
analysis should provide a reasonable phenomenological model of particle acceleration.
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10 M. Lemoine

gains/losses. Dissipation is characterized by the diffusion coefficient in momentum
space

Dpp = 〈1p2〉
21t

. (3.9)

The injection function takes the form q(p)= ṅ/(4πp2
0)δ(p− p0), with ṅ the density

of particles per unit time inflowing into the shock, as measured in the downstream
rest frame; the injection momentum p0 is related to the shock Lorentz factor through
p0 ' γ1mc.

Ignoring systematic energy gains/losses and considering a stationary state, standard
techniques (e.g. Schlickeiser 1984) make it possible to solve the above equation for
various momentum dependences of Dpp and τesc. In the problem at hand, escape
presumably takes place through advection at velocity βf, as the dissipation region is
confined to a distance λdiss. from the shock front, which itself moves away at velocity
βf. Thus τesc ∝ p0; as for the momentum diffusion coefficient, it is written

Dpp = p2
0

τs,0

(
p
p0

)2+α
, (3.10)

where τs,0 characterizes the typical acceleration time scale at momentum p0. For α= 0,
corresponding to the simplest scaling with an interaction time in the turbulence that
does not depend on momentum, one finds

f (p) = c1

(
p
p0

)−(3/2)+(1/2)√9+4τs,0/τesc

Θ(p0 − p)

+ c2

(
p
p0

)−(3/2)−(1/2)√9+4τs,0/τesc

Θ(p− p0), (3.11)

where c1 and c2 are two integration constants related to ṅ, p0, τs,0 and τesc. The
asymptotic behaviour at large momenta is thus a power-law f (p)∝ p−sf with index

sf = 3
2 + 1

2

√
9+ 4τs,0/τesc, (3.12)

which depends on how fast escape balances acceleration. One should keep in mind
that this index is that of the distribution function in the acceleration zone, so that
the index of the distribution function per momentum interval dN/dp ∝ p−s in this
acceleration zone is s= sf − 2. As to the distribution of escaping particles, i.e. those
that eventually populate the nebula, its index is in principle modified by the escape
rate, i.e.

dNesc

dp
∝ 1
τesc

dN
dp

(3.13)

but since τesc ∝ p0 here, the index remains unchanged.
The above phenomenological model indicates that the dissipation of the turbulence

produced by corrugation leads to a power-law with index s comprised between 1 and 2
if τs,0∼ τesc. The development of this power-law does not remain unbounded, because
most of the energy is then carried by particles of maximum momentum, if s < 2.
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Thus, in the absence of significant energy losses, one expects that the dissipation
process saturates at a momentum such that a significant fraction of the turbulence
energy density has been dissipated into the particles, i.e. such that the backreaction
of the dissipation process on the turbulence energy density cannot be ignored. This
takes place on a length scale λdiss. which, accounting for all dissipative processes,
characterizes the width of the layer beyond which a fraction of order unity of the
magnetized turbulence energy has been dumped into the particles.

3.3. Fermi acceleration
One may also expect the development of a relativistic Fermi process in the above
conditions. As a note of caution, however, the following discussion remains qualitative
and further work would be needed to establish this statement on solid grounds.

At a relativistic shock of moderate to large magnetization, the Fermi process is
inhibited because of the superluminal nature of the magnetic configuration. Lemoine,
Pelletier & Revenu (2006) and Pelletier, Lemoine & Marcowith (2009) have discussed
in some detail what prevents Fermi cycles in such a configuration but it may be useful
for the present discussion to recall the salient points. Consider a planar relativistic
magnetized shock, with some turbulence upstream of the shock, laid on a scale λ
assumed much larger than the typical gyroradius rg of accelerated particles in the
downstream rest frame. A key point is that the accelerated particles only probe a
region of size rg during their Fermi cycles in such turbulence: those that probe a
deeper region downstream of the shock are actually unable to return to the shock
because of the superluminal nature of the shock wave: in order to do so, particles
would need to diffuse across the magnetic field at an effective velocity larger than βf.
Thus, on the length scale rg � λ probed by the particles, the turbulence appears as
an essentially coherent magnetic field. One may then show that incoming particles
can execute at most 1.5 Fermi cycles up→down→up→down in this configuration
before being advected downstream, away from the shock. Those particles that are able
to return once to the shock are those whose momentum is oriented relative to the
magnetic field in such a way as to authorize a bounce on the downstream magnetic
field, pushing them back across the shock; but, for a near coherent upstream magnetic
field, this can happen only once for any particle.

For this reason, at a steady planar shock front, it has been proposed that particle
acceleration was associated with the development of intense micro-turbulence on
a scale �rg, in the shock precursor (Lemoine et al. 2006; Pelletier et al. 2009).
This point of view has been validated by particle-in-cell numerical simulations
which observe the concomitant development of micro-turbulence and of particle
acceleration (e.g. Spitkovsky 2008; Martins et al. 2009; Sironi, Spitkovsky & Arons
2013).

However, a crucial point of the previous argument is that the direction of the
coherent magnetic field line in the shock front plane is conserved through the
crossing of the shock. If this direction were randomized through some process, then
particles could bounce on the downstream magnetic field with a non-zero probability
at any Fermi cycle and return to the shock. This bounce would be similar to an
isotropization of the particle directions downstream, i.e. similar to a fast isotropic
scattering process. Therefore, it would lead to the development of a Fermi process
as modelled by early test-particle Monte Carlo simulations (which implicitly assumed
the non-conservation of the direction of the magnetic field in the shock front plane)
(e.g. Bednarz & Ostrowski 1998; Kirk et al. 2000; Achterberg et al. 2001; Lemoine
& Pelletier 2003), with an index s' 2.2 for dN/dp∝ p−s.
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Returning to the corrugated shock front, if 〈δB2
2〉1/2∼B2 on a scale k−1, corrugation

precisely does the above: even in the absence of upstream turbulence, the in-plane
direction of the downstream magnetic field is randomized on a scale k−1 by the
generation of turbulence at the corrugated shock. This should therefore lead to
an efficient Fermi process for particles of gyroradius rg ∼ k−1, although this
should admittedly be explicitly demonstrated by dedicated numerical simulations.
Interestingly, if corrugation sustains acceleration in the above way, the typical
acceleration time scale is then expected of order rg/c in the shock frame, as in
the above test-particle simulations of the relativistic Fermi process.

How this process affects particles of gyroradius rg� k−1 is not obvious. In a first
approximation, one could expect Fermi acceleration to be inoperant in that range of
gyroradii because those particles ‘see’ the turbulent field as an essentially coherent
field. However, the scale rg is then also much smaller than the corrugation amplitude
|δX|, hence the time dependence of the corrugation, the rippled shock structure and
the relativistic turbulence existing in this layer could help sustain acceleration. At the
opposite extreme, rg � k−1, the turbulence may sustain acceleration, as long as the
scattering frequency k−1/r2

g remains larger than the advection frequency r−1
g,0 in the

background magnetic field (the index 0 meaning that rg,0 is to be calculated relatively
to the background field).

In any case, one does not expect corrugation to occur on a single scale k, but on
a broad range of scales; in this case, the above argument suggests that acceleration
should at least take place for all rg in gyroresonance with the inertial range provided
〈δB2

2〉1/2 ∼ B2 can be realized on those scales, i.e. provided corrugation is mildly
nonlinear on all scales.

The overall picture becomes somewhat more complicated in the presence of
dissipation downstream of the shock, in particular how stochastic energy gains
interplay with systematic energy gains due to the Fermi process. However, given
that the Fermi process only transfers a small fraction of the available energy to
a small fraction of particles, one may expect that dissipation would build up the
hard power-law until near equipartition with the magnetic field and that the Fermi
power-law would develop at higher momenta, until it saturates due to energy losses.

4. Discussion
The previous sections have argued that the corrugation of a magnetized relativistic

shock front, at the onset of the nonlinear regime of corrugation, could lead to
interesting phenomenology. In particular, it could provide an efficient source of
dissipation of the magnetic energy of the upstream flow, by converting the ordered
magnetic field into turbulence modes via its advection through the rippled shock,
with subsequent dissipation of the turbulent modes into suprathermal particle energy,
reducing the initial magnetization to values of order unity on a length scale λdiss.. It
has also been shown that this conversion into turbulence appreciably slows down the
flow velocity behind the shock (as now seen in the shock rest frame). This section
discusses possible sources of the corrugation and how the above picture fits in a
general model of PWNe.

4.1. Sources of corrugation
The stability of a shock front responding to small perturbations forms a topic
of research with a long history, going back to the pioneering studies of D’Iakov
(1958) and Kontorovich (1958). Theorems guarantee the stability of relativistic shock
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waves with a polytropic equation of state (Anile & Russo 1986, 1987), although a
corrugation instability may emerge in specific cases, such as in a relativistic radiative
shock (Tsintsadze et al. 1997). In this limit of instability to corrugation, small
perturbations would induce a deformation which would grow exponentially in time;
this possibility is, however, not considered in the present work.

Even if stable with respect to the corrugation instability, a shock front may
respond strongly to incoming perturbations, as discussed in the above references, or
in Landau & Lifshitz (1987). A recent discussion of the response, possibly resonant,
of a relativistic magnetized shock to small amplitude disturbances can be found in
Lemoine et al. (2016); its consequences are discussed further below.

Corrugation can be seeded by at least three sources: turbulence waves originating
from downstream and impacting the shock, turbulence modes originating from
upstream being advected through the shock, and through instabilities seeded upstream
of the shock by the accelerated particles themselves.

As far as downstream waves are concerned, only fast magnetosonic modes
propagating at a group velocity larger than the shock velocity βf are able to induce
corrugation. If δψk denotes the amplitude of the wave (with δψk ≡ δBk/B), the
corrugation amplitude can be written to a reasonable accuracy as

|δXk| ≈ k−1|δψk|. (4.1)

The presence of k−1 is directly related to the dimension of the quantity of the left-
hand side, of course. This result implies that nonlinear corrugation of the shock front
requires nonlinear fast magnetosonic waves, meaning δB/B∼1 for the incoming waves
or, in other words, that the turbulence carries an energy density comparable to that of
the average magnetic field advected through the shock. This is certainly not a trivial
requirement, but it seems to be fulfilled at least in the numerical simulations of Camus
et al. (2009) which observed a strong backreaction of the nebular turbulence on the
shock. One should also keep in mind that the above implicitly assumes a stationary
configuration; time-dependent turbulence might have a stronger effect, as suggested by
the discussion of Lyutikov, Balsara & Matthews (2012). Those simulations have not
addressed the dynamical range of scales over which the corrugation could be present;
presumably however, all scales up to the shock termination radius R could be excited.

If turbulence is present upstream of the shock front to substantial levels, as
proposed recently (Zrake 2015), nonlinear corrugation should follow owing to the
existence of a resonance of the response of the shock to the incoming turbulence
(Lemoine et al. 2016). This latter work has shown that the resonance occurs when
the fast magnetosonic mode, which is sourced downstream of the shock by the shock
corrugation, has a group velocity corresponding to βf, i.e. when this fast mode surfs
along with the shock front. The large response of the shock corrugation was then
interpreted as the build-up of fast magnetosonic energy on the shock front. Since the
group velocity is determined by the wavenumber kx at a given k⊥, this resonance
selects one value of the incoming kx, with typically kx ∼ |k⊥| at a magnetized
relativistic shock where βf does not lie far below unity.

Depending on k⊥, one may observe a formally infinite response of the shock, or
a large amplification of the incoming waves at the resonance. This thus opens the
possibility of reaching the threshold of nonlinear corrugation with a source whose
energy content is less than that of the incoming ordered magnetic field. The study
of Lemoine et al. (2016) has been conducted in linearized MHD, therefore it cannot
probe the deep nonlinear regime of corrugation; it seems reasonable to assume that, on
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those resonant scales, the shock is corrugated with amplitude |k⊥δXk|∼1, as envisaged
here. Furthermore, since there exists one resonant wavenumber kx for each k⊥, one
should expect that nonlinear corrugation takes place on all inertial scales present in
the incoming turbulence spectrum. Note that these wavenumbers are specified in the
downstream rest frame; in the upstream rest frame, which moves relative to the former
with Lorentz factor γ1 and velocity β1, kx|1= kx/γ1−β1ωA|1/c, i.e. kx|1'−β1βA|1kz for
γ1� 1 and an Alfvén wave of frequency ωA|1 = βA|1kzc.

The sourcing of corrugation through MHD instabilities seeded in the upstream
plasma by the accelerated particles themselves represents an interesting alternative.
Such instabilities have been discussed in Pelletier et al. (2009) and studied through
dedicated numerical simulations in Casse, Marcowith & Keppens (2013). They can be
seen as a generalization of the Bell instability (Bell 2004) to the relativistic regime
and for perpendicular shocks: the existence of a net charge or current of suprathermal
particles executing Fermi orbits in the shock precursor then destabilizes magnetosonic
modes of the upstream plasma. If magnetosonic waves are amplified, one may then
expect them to induce a resonant response of the shock. Of course, the sourcing
of corrugation by the accelerated particles brings in an amusing chicken-and-egg
problem if corrugation is a necessary condition for the development of the relativistic
Fermi process, as advocated in the previous section.

4.2. Application to the Crab nebula
Let us finally discuss how the above discussion might apply to the termination shock
of the Crab pulsar wind. One should first point out, however, that the existence of
dissipation has been demonstrated by Komissarov (2013), through the comparison
between the present content in magnetic energy in the Crab nebula and that input
over its lifetime.

In terms of spectral energy distribution, it is well known that one can reproduce
the main observational features by assuming the existence of a broken power-law of
the pair population (Atoyan & Aharonian 1996), with index s ' 1.6 for dN/ dγ for
γ . γb, and s' 2.3 above; the break Lorentz factor inferred is of order γb ' 2× 106.
The maximum synchrotron photon energy is approximately 100 MeV, corresponding
to the radiation reaction limit energy ∼mec2/αe.m. (αe.m. ' 1/137 the electromagnetic
fine structure constant). Finally, the magnetic field inferred from a modelling of the
nebula, B∼ 200 µG, corresponds to rough equipartition with the pair population.

In the present model, this rough equipartition is a natural consequence of magnetic
dissipation of turbulence into the pair population. Furthermore, as argued in § 3.2, the
pre-acceleration of particles in the turbulence seeded by corrugation may also produce
a power-law with an index s comprised between 1 and 2, as observed. If dN/ dγ ∝γ −s

with 1< s< 2 below γb, then the break Lorentz factor

γb ' γ1

(
γd

γ1

)1/(2−s)

, (4.2)

where

γd ' εe
Lw

Ṅmec2
(4.3)

is the mean Lorentz factor per particle, after a fraction εe of the wind luminosity
Lw has been transferred in the Ṅ pairs advected through the shock per unit time.
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Assuming a multiplicity κ = 106κ6 beyond the standard Goldreich–Julian injection rate
ṄGJ' e−1√Lwc (Goldreich & Julian 1969), as seems required for the Crab, one finds
γd ' 5 × 104κ−1

6 for εe ∼ 1. Setting γb ' 2 × 106 for s = 1.6 then requires a wind
Lorentz factor

γ1 ∼ 4× 103κ−1.7
6 . (4.4)

From a theoretical point of view, this value seems appealing, because it somewhat
alleviates the requirements regarding the acceleration of the wind, which represents a
nagging issue in this field (e.g. Kirk et al. 2009).

Detailed numerical simulations of the Crab nebula have shown that it is possible to
explain the main morphological features of this nebula provided the shock accelerates
pairs efficiently (e.g. for a review see Kargaltsev et al. 2015). Interestingly, the nebula
reveals slow-moving structures called ‘wisps’, originating from the termination shock;
those features have a typical angular size of 1′′, corresponding to roughly 0.01pc ∼
0.1R (e.g. Schweizer et al. 2013). If those wisps are interpreted as long-lived modes
produced by the corrugated shock, then it argues in favour of corrugation up to scales
close to 0.1R. Since the highest-energy pairs in the nebula have an energy of ∼1 PeV,
the maximum gyroradius of accelerated particles is rg,max∼ 0.01pc for a nebular field
of 100 µG, i.e. of the same order of magnitude as the size of the wisps. In the context
of the above discussion, which has suggested that the accelerated particles could seed
corrugation on scales rg through instabilities in the shock precursor, this connection
is rather intriguing. Moreover, the possibility of corrugation up to scales k−1 ∼ rg,max
indicates that Fermi acceleration should be operative up to those scales. As discussed
in § 3.3, acceleration should further proceed with an acceleration time scale ∼rg/c,
leading to Bohm-type acceleration up to the radiation reaction limit.

In this regard, one may note that other models trying to explain the pre-acceleration
of pairs in the nebula and the dissipation through magnetic reconnection generally fail
to account for Bohm acceleration to high energies, because the annihilation of the
magnetic field in the striped part of the wind leaves behind a short-scale turbulence,
with a slow scattering time scale, hence leading to a maximal energy well below that
observed in the Crab nebula, see e.g. Sironi et al. (2013).

5. Conclusions
This paper has speculated that the termination shock of pulsar winds might be

strongly corrugated. It has discussed possible sources of corrugation and exhibited
various interesting phenomenological consequences.

Corrugation could in principle be excited by the interaction of downstream fast
magnetosonic modes catching up the shock front, through the advection of upstream
turbulence modes, or through the generation in the shock precursor of turbulence by
particle acceleration. As discussed here and in Lemoine et al. (2016), the latter two
possibilities are more interesting in the present context because of the existence of a
resonance in the response of the shock to upstream perturbations, leading to possible
large amplification of turbulent modes.

Once corrugation is excited on a range of scales, a fraction of order unity of
the incoming ordered magnetic energy is converted into turbulence, immediately
downstream of the shock. This conversion appreciably slows down the flow velocity
along the shock normal, which could help us to understand why the post-shock
nebula moves so slowly in the pulsar rest frame, in accord with the seminal
discussion of Kennel & Coroniti (1984a). Various dissipative effects could then
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transfer a sizable fraction of the turbulence energy density into the pair population.
In particular, slow magnetosonic modes are rapidly dissipated in a relativistic plasma.
A direct consequence is that, independently of the upstream magnetization of the
flow, the downstream magnetization beyond this dissipative layer would decrease
to values of order unity. This, of course, has significant virtues for understanding
the phenomenological properties of the Crab nebula, which indeed reveals a rough
equipartition between the pairs and the magnetic energy content.

The pre-acceleration of the pairs in the dissipative layer through stochastic
acceleration leads to the emergence of a power-law, with an index s typically between
1 and 2, because stochastic acceleration is balanced by escape losses due to advection
outside of the dissipative layer. The present paper has also speculated that the
excitation of turbulence on a broad range of scales behind the shock could sustain a
relativistic Fermi process with a Bohm-type acceleration time scale; this point remains
to be demonstrated, however, using, for instance, dedicated test-particle simulations.
It has then been shown that this combination of stochastic pre-acceleration followed
by Fermi acceleration could potentially aid understanding of the spectral features of
the Crab nebula, provided the Lorentz factor of the termination shock is γ1∼ 4× 103

in the nebula rest frame (assuming a pair multiplicity κ ∼ 106).
Further work is required along several lines to test this speculative model. In

particular, dedicated numerical simulations are needed to understand the physics
of corrugation in the nonlinear regime through the interaction of a relativistic
magnetized shock with upstream perturbations. As mentioned above, dedicated
numerical simulations would also be needed to understand how such a corrugated
shock can accelerate particles, and with what efficiency. It would be interesting to
understand how the accelerated particles could themselves seed perturbations in the
upstream plasma, and how such perturbations could influence the shock corrugation
pattern. Finally, such simulations would have to be properly placed in a global context
to understand the impact of the nebular turbulence on the shock itself.
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