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Abstract. If /JL is a probability measure which is invariant and ergodic with respect
to the transformation x*-+qx on the circle R/Z, then according to the ergodic
theorem, {q"x} has the asymptotic distribution fi for ju-a.e. x On the other hand,
Weyl showed that when fi is Lebesgue measure, A, and {m,} is an arbitrary sequence
of integers increasing strictly to oo, the asymptotic distribution of {m,x} is A for
A-a.e. x. Here, we investigate the asymptotic distributions of {m,x} /i-a.e. for fairly
arbitrary {m,} under some strong mixing conditions on fi. The result is a kind of
stable ergodicity: the distributions are obtained from simple operations applied to
(i. The ideas extend to the situation of a sequence of transformations x >-* qnx where
invariance is not present. This gives us information about many Riesz products and
Bernoulli convolutions. Finally, we apply the theory to resolve some questions about
H-sets.

1. Introduction
Suppose that T is a continuous transformation on a compact metric space X. If /u.
is a T-invariant Borel probability measure on X, then the ergodic theorem says that
for all fe Ll(fi) and for fi-a.e. x, the limit as n -»oo of

i £ fiT"x)

exists. If we restrict our attention t o / e C(X), or a countable dense subset thereof,
we see that {T"x}n2l has an asymptotic distribution, call it ax, for /t-a.e. x: that is,
for /A-a.e. x,

7 : I / ( r " x ) - * | fdo-x forall /eC(X). (1)

We write {Tnx}~<rx fi-a.e. Evidently, crx is T-invariant and integrating (1) with
respect to fi shows that

H= I trxd(t(x) (2)

in the weak sense. The measure p is ergodic if and only if o-x — fi a.e. The
Bogoliouboff theory [12] shows that in any case o-x is ergodic^,-a.e. The integral
(2) is thus a convex combination of invariant measures in terms of ergodic measures
(the extreme points).

t Partially supported by an AMS Research Fellowship.
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598 R. Lyons

We are interested in the case where T is the transformation Tq :x>-+qx on the
circle T = R/Z, qeZ, \q\^2. The additional structure on the circle interacts with
ergodic theory in many interesting ways. We intend to explore here the asymptotic
distribution of {ntjx} for sequences other than simply ntj = qJ. For example, Weyl
[17, § 7] showed that when fx is Lebesgue measure, A, and {ntj} is an arbitrary
sequence of integers increasing strictly to oo, then {ntjx}~ A for A-a.e. x Now given
an arbitrary sequence {ntj} and measure /x, {nijx} need not possess an asymptotic
distribution on a set of non-zero //. -measure. However, there always does exist [8]
a subsequence {mj} of {ntj}, which we denote simply by {ntj} <= {ntj}, such that even
for any further subsequence {ntj} a {mj} and for /x-a.e. x, the sequence {mj'x} has
an asymptotic distribution ax. Hence we shall restrict our attention to sequences
{ntj} already enjoying this property of stability: that is, we assume that there exists
o-:T->M(T) such that for all {wij}^ {/«,•} and for /x-a.e. x {m'jx}~ax. We remark
that if {qJ} itself is to have this property for a ^-invariant /x, then it is necessary
(though not sufficient) that /x be ^-mixing:

or, equivalently,

Va, bEZ £(aq" + b)^/x(a)fi(b),

where

i = f e(-
JT

fl(k)=\ e(-kx)dix(x),e(x) = e27rix.
JT

We shall impose an even stronger mixing condition on /x in order to determine ax

for any (stable) {m,}. Now ax is determined by its Fourier-Stieltjes coefficients,
&x(r), reZ. By (1),

- X e(-/w,'x)-»<7x(r) /i-a.e.

for all {m'j}cz {nij}, whence

VreZ e(-rntjX) -»<rx(r) weak* in L°V) . (3)

(Here, we regard L°°(fi) as the dual of L'(fi).) The problem is thus equivalent to
determining the simultaneous weak* limits of e(-rmjx) in L°°(/A).

If we integrate (3) and let 2 be the measure such that £(r) = rim,jCC/Li(-rm,x),
then we obtain a formula analogous to (2):

2 = 1 <rxdvL(x). (3a)

Another way of viewing (3) and (3a) is given in [10].
The reader may find it easier to follow our proofs if he first works out the following

set of examples, in which the most important phenomena are present. We take q = 3
and /x the Riesz product [5, p. 107]
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where \a\ < 1. If m, = 3\ then ax = n a.e. If m, = 32j + 3J, then ax = fi * /A = fi2 a.e.
If m, = 3J +1 , then o-x = fi * S(x) a.e., where S(x) is the unit mass at x. If m, = 2 • 3J,
then o-x is the measure such that ax{r) = /2(2r) a.e. If

J t>

then ax is the measure such that

r/2) if r is even,

if r is odd,

where a> = /x * S(-x).

2. The invariant case

For any integer q, we let T, be the operator on M(T) such that

{Tqm) (n)-w{qn) (n eZ, w e M(T)).

If g # 0, we define T^1 by

)(n/q) ifq\n,

while if q = 0, we set TQ1(O = W(0)A, where A is Lebesgue measure. Thus for q^O,
Tq o r^1 = id. It is easily checked that

<o*T-*a>'=T-\Tqio*<o'l (4)

The hypotheses of our first theorem below are immediately seen to be satisfied
by Riesz products,

!i= 11 (l + Re{ae(qkx)}), | a | < l , | g | > 3 ,

and it is not difficult to verify them for Bernoulli convolutions ([4, p. 182])
k)), 0 < p < l

(here, q = 2), for example. After the proof of the theorem, we shall discuss the
hypotheses more thoroughly, including their mixing character.

THEOREM 1. Let fi be a q-invariant probability measure such that

O (5)

and

given any sequence {e(mjx)}jsl which does not converge to 0 weak* in
L°°(/x), there exists a subsequence {mj}<={/«_,•} and integers b, ah n, (6)
such that nj -» oo and

m) = ajq"' + b.

Then jy | m,-1 -» oo is such that (3) holds, there exist integers r, b, an integer 1^1, and
non-zero integers s , , . . . , s( such that

trx=T7l[8(bx)*T,lft*---* 7 > ] ft-a.e. (7)
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600 R. Lyons

We shall find it handy to use the equivalence of (6) to

if lim lim dn(m.) =?oo, then e(nijX)-• 0 weak* in L°°(M), (8)
n-*ooj-»oo

where dn(m) = \m-q"Z\, i.e., the distance from m to the multiples of q". It is
straightforward to show that (6) implies (8). Conversely, suppose that (8) holds and
let e(nijx) -A 0 weak* in L°°(^). Then by compactness, there is a subsequence
{e(ntj'x)} having a non-zero weak* limit. Let {mj"}<= {m'J} be such that for all n > l ,
limbec dn(m'j") exists. Then e{m"'x) 7* 0 and by (8), since limbec dn{m"') is increasing
in n, for large enough n, say n> N, we have limJ^oodn(mj") = b<oo. This means
that for n> N and for 7>/ (n) , we can write m™ = aft" + b, where b = ±b and is
fixed without loss of generality. In particular, m'j\n) = dJ(n)q" + b for n> N. Thus,
m'k — m7(N+k) defines the required sequence.

Proof. Let |m,| -* 00 be such that (3) holds. If crx = A ju.-a.e., then we take r = 0 in (7)
and we are done. In the contrary case, there is an r 5̂ 0 such that (Tx(r)#0. By a
diagonal procedure, we may find a subsequence {mj} - which we shall take to be
the whole sequence without loss of generality - such that for all n > 1 and all r,
limbec dn{rrtij) exists. Thus by (8), the set

E = \ r: lim lim i
I n-»ooj->oo " J

is not just {0}. We claim that E = r0Z for some r0 > 0. It suffices to show that E is
a subgroup of Z. But if r,seE, then dn((r-s)nij)<dn(rmj) + dn(smj), whence
r — seE and so E is indeed a subgroup. It follows that if r is not a multiple of r0,
then <rx(r) = 0 /t-a.e., whence there exists vx such that crx = r~Vx /x-a.e.

We must now determine vx. Since roe E, we can, by replacing {m,-} by a sub-
sequence if necessary, suppose that there are integers a}, rij, b0 such that romj =
ajq"' + b0, n,-»°o, q\ah and also that {e{rapc)}j has a weak* limit in L°°(/A) for
each r. Let S,(r) = limJ^co/I(raJ). We claim that

VreZ £x(r) =2,(r) e(-rbox) /t-a.e. (9)

Indeed, for all s, we have

I j5x(r) e(-sx) dfi(x) = J <7x(rr0) e(-sx) d/j,(x)

= lim e(-rronijX) e(-sx) dfi(x) = lim fi.(rronij + s)
J J J

= 1,(0/2(^0+*) (by (5))

f « , x ,= S^r) e( — rbox) e(—sx) d/j.(x).

From (9), it follows that vx = S(box) * 2, /x-a.e. and it remains to determine 1,x.
Since 2, ^ A (otherwise, o-x = A a.e.), we can argue as in the first paragraph to

obtain r, > 0 such that 2, = 77/21, where, taking a subsequence of {a,} if necessary
as in the second paragraph, we can assume that

or
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and i ; ( r ) = /2(rs',)£2(r), where i2(r) = lim^co/:(raj2)). Thus, 2 , = T^[TM{IL * 22].
Note that s', ?* 0. We then proceed for 22 as we did for X,, and so on. This process
ends if and only if aj'+1> = 0 for some /. We claim the process must indeed end.
Otherwise, for each r, \(rx(r)\ would be bounded by [supn*0|M(n)|]' f° r e a c h h
since crx^\, it follows that supn^0|/*(«)l = l- Thu s there exists {A/,} such that
|/2(Ny)|-» 1. By (6), (5), and g-invariance, there is then a ft 5*0 such that |/2(6)| = 1.
This, of course, implies that ^ has finite support and that fi, is periodic, which
contradicts (6).

We have thus obtained the expression

o-x = T-'[5(50x) * T7*[Tsi» * T~2\Ts.n *•••* T"1^./*]]. . .] M-a.e.x [ ( 0 ) 7 [ s i » 2 \ s n ^ / ] ] ] M

Use of (4) / times yields (7) with r = rort • • • rh b = 50r, • • • r,, s, = s!r1+1r1+2 • • • r,
for l < i < / , and s, = s',. D

Recall that if T is a measure-preserving transformation of a Lebesgue space
(X, 38, /x), then T (or ^ ) is called exact if the o--field

Tail(38)=fp| T'"®
/i>0

is trivial, i.e. consists only of sets of measure 0 or 1 [3, p. 289]. (This is the same
as saying that Kolmogorov's 0-1 law holds.) There are several convenient equivalent
conditions which depend on the following notions. If f is a partition of X, let 38(f)
denote the smallest complete sub-a--field of 38 containing those measurable sets
which are unions of elements of £ We say that f is trivial if 38 (£) is trivial. Let
Tail(f) denote the partition An^o V*-n T~k$. For a set A, let Tail (A) =
Una=o r " T " A Thus, Tail (38) = {Tail (A): A e 38}. It is not hard to demonstrate that
the following conditions are equivalent (see [3, pp. 283-4], [15], or [16, Chap. VII]):

(i) T is exact;
(ii) for any finite partition £ Tail (£) is trivial;

(iii) for every set A of positive measure, /x(Tail (A)) = 1;
(iv) if {f, g) denotes \fg dfi, then

VgeL2(M) lim sup \(TJ, g)-(f, 1><1, g)\ = 0; (10)
n-°°/£L2(M)

ll/lbsl

(v) T is K-mixing, i.e. if £ is any finite partition, then

V r s i VBe V T~k£ lim sup \fi(AnB)-ti{A)fj.(B)\ = 0. (11)

Furthermore, if f is some finite generating partition (i.e., 38(Vn»o ^~"£) = 38) and
Tail (£) is trivial or (11) holds, then T is exact.

In our case, the partition

ILkl+i
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602 R. Lyons

is generating for T=Tq since Vn>o ^ " f ? *s t n e discrete partition {{x}:xeT}.
Evidently, our hypothesis (5) is a bit weaker than (10), i.e., than exactness. By using
the partition £, and( l l ) , we immediately deduce the exactness of any Bernoulli
convolution

ix = % [p0 5(0)+p, S(q~k) + - • -+p\q\-i S((\q\ — \)q~k)], (12)
leal

where 0<p, < 1, po + Pi + • • • +P\q\-\ = 1, and p, #0 for at least two fs. (Note that
when q < 0,

mq\-m\~k))
I /

fcodd

i \ r ki-i i r i4i-i , I

\\q\+l/ Lkeven i=0 J Lfcodd i = 0 J

Also, (T, /A, Tq) is metrically isomorphic to (T, v, TM) via the mapping

(0< efc < \q\), where v = ^ ^ , Xl'do' />. 5(/|g|'k).) We remark that an approximation
argument quickly shows that Riesz products satisfy (10) as well. A stronger result
[11,13] is that Riesz products are isomorphic to Bernoulli shifts.

The hypothesis (5) is also equivalent to the following kind of tameness [4, Chapter
6] of fi: if e(anq"x)-*x(x) weak* in L°°(/u,), then x is constant a.e. We leave this
as an exercise.

We now turn to the hypothesis (6). Rather than being of a purely mixing character,
it links an arbitrary sequence {ntj} to the transformation Tq. It too can be thought
of as a tameness condition, for if /* satisfies (5) and (6), then n is 'weakly tame':
if e(mjx)-*x(x) weak* in L°°(n), then xM = ce(nx) a.e. for some constant c and
some integer n. In any case, it is obvious that Riesz products satisfy (6) and this is
not hard to see for Bernoulli convolutions (12) with pop^O. Indeed, we shall
establish (6) assuming that gcd{i - i0: pi7

i0}=l, where i0 is any subscript such that
Pig^O. First note that if e(mpc) -Aw* 0 in L°°(/u,), then for some m,

=\ e{-fi(nij + m)= e(-nijX) e(-mx) dp(x

By replacing the sequence {m,} with {ntj + m}, we may assume that m =0. Now if
fi.(mj)T^0, then

ni(zp,e(-imfl-k)} + 0

By taking a subsequence if necessary, we may assume that for all i" and k,
Hindoo e(-inijq~k) and limJ^0O/2(wj;) exist. It follows that

oo>lim X 1 - Ip,-e(-im,g~'1) s i 1 - Xp,̂  lim e{-imiq~k)\ ,
^°°fcalL i J fcal L i J-*°° IJ

so that for some 6k,

lim e(0k)Y. Pi Hm e(-imjq k) =
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Thus, for Pi 5* 0,

lim e(6k) lim e{~imjq~k) = 1.

If ^ ^ 0 , we then have l imk^a ol im^0 Oe(-(i —io)»n,-9~fc) = 1, so that the hypothesis
gcd{i-i0: Pi #0} = 1 implies that limk_aolini/_0Oe(-ni,-g~fc) = 1, which is the same
as limk limy ||»i#~k|| = 0, where ||x|| = | x - Z | . We have only to apply the following
lemma to be able to conclude (8) and thus (6). (More precise information on
sequences {nr,} such that /2(wi,)-»0 is given in [2] for certain /x.)

LEMMA 2. limk_0Olimj_0o dk(mj) =oo<^limk^Q0limJ^00 ||m/g~'c|| > 0 .
Proof. Since ||m^g^fc|| = \q\~kdk{mj), the implication (<̂ =) is immediate. Conversely,
suppose that Hmk limj dk(ntj) = <x>. Then for all N there is a k = k{N) such that
linijdk(m,)> N. Let {jt} be a sequence such that for all /, dk(mj,) = JVjS N. Let
n = n(N) be the least integer such that \q\"/2>Nx. Then k>n and for all /,
4 , K ) = <4K) = N, and \\nw-nJ = \q\-ndn(mh) = \q\-nNx>\l\2q\. Since n(A0-»
oo as N->oo, it follows that limk lim, ||m,,<7~'t|| > l/\2q\. D

Suppose, on the other hand, that the Bernoulli convolution (12) satisfies
gcd{i — i0: Pi 7*0} = ror6 1, p^^O. We may assume that j o = min{/: p, 5^0}. Con-
sider the measure

where

By definition of r0 and what we've just proved, v satisfies (6) and, of course, (5).
Since Theorem 1 applies to v, we claim that if (3) holds for fj., then there exist t e T,
r,beZ, IeN+, s , , . . . , s,eZ*, and a function £:T-»T such that Tro° £ = id and

o-x = 8(t)*T7\8(bax))*TSlv*---*TSli>-\ M-a.e. (13)

This follows from the following general observations.
First, if fi = S(t') * v, e{-rnijX)-* axi,{r) weak* in V°(v), and e(-rm,oc)-»<rXiM(r)

weak* in L°°(^), then let {mj}<= {mj} be such that m'jt'-* t. It is easy to see that

Second, if /A = T,ov ( r o #0 ) , then using the same notation, we claim that

for some function £: T -> T with Tro ° f = id. For we have {m^x} ~ o-xv v-a.e. without
loss of generality; let E = {x: {mjx}~o-xv}. Since uE = \, we have fiTroE = l. Let
t,: T -» T be any map such that £(x) e £ for x € Tro£ and Tro ° I, = id. Then for /i-a.e.
x, we have £(x) e £, so that {m,£(x)} ~ o-f(x) „, whence {mpc} = {rom^(x)} ~ Tro(7f(x)>1/,
as desired.
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Now if v is ^-invariant and satisfies (5) and (6), suppose that fi = S(t')* Tr<jv,

r0 ^ 0. With notation as above, we have

<rx,fi = 8(ti)*<rx-',;Tro» = 8(ti)* Troo-Mx.n>J, / t - a . e .

for some t, e T and some Ci with T,o ° £, = id. By (7), we may then write

0 ^ = 8(1,) * Tro[T:.\8{b'Ux-t'))*Ts.v*- • • * 7>]] /4-a.e.

= «(*,) * T p T7 l [8 (n 1 (x -O)* Tslr* • • • * 7 > ] M-a.e.,

where r and /> are relatively prime. In this case, Tp and T^1 commute, so that

<TX,» = Hh) * T7\8(pb'(ax) +12)) * Tpsiv * • • • * Tps-p] M-a.e.,

where t2 is chosen as any (fixed) point such that Trj2 = -t' and I(x) = £,(x - f') - /2;
we then have Tro ° £ = id. Therefore

o ^ = 8 (0 * r r I [8 (6f (x)) * Tsi v*---* T,,v] M-a.e.,

where t is any point such that Tr(t — tx) = pb't2, b = pb' and s, =/w! (1 < i < /). This
gives (13).

Other examples of ^-invariant measures satisfying (5) and (6) are given by
generalized Riesz products: if P(x) is a trigonometric polynomial

I I ane(nx)|

satisfying P(x)>0, 0 < D 2 / D , < (\q\ - 1 ) / 2 , and an = 0 if q\ n, then p=Uk*o
is seen to be q-invariant and to satisfy (5) and (6). In general, if v is a q-invariant
measure satisfying (5) and (6), then so is fi = T'Jv for any r0 relatively prime to q.

We wonder whether hypothesis (6) can be eliminated from Theorem 1, subject
to an appropriate modification of (7).

3. Products of transformations
In the non-invariant case, the following kind of phenomenon occurs. Suppose that

M = n (1 + Rc{ake(qkx)})

and ak->a; then {qkx}~p ^t-a.e., where p=l\kzO(l + Re{a e(qkx)}). Although p
may be singular to p., nevertheless p is clearly closely related to p.. Once we give
up invariance, our problem is almost as easy to treat for products of transformations
TqTqn _, • • • Tqi as for iterates T"q. Thus, we proceed directly to .his general case.

Given \qn\>2, Qn = qxq2 • • • qn, Q0=i, let a(m) be the largest integer a such
that Qa\m; put a(0) = 0. We denote

Sn(m) = Qn+c(m)

Va(m) Va(m)

thus 8n(m) 7*0 if mn 7*0.

THEOREM 3. Let p. be a probability measure, \qn\ > 2, supn \qn\ < <x>, Qn = qxq2- • • qn,
Qo=\. Suppose that

" ^ aeZ " P P "+P P
peN
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if lim I im5 n (m,) = oo, then e(mjc) ^*0 in V°(fi), (15)
rt*ao j*<x>

and

Um\fi(n)\<l. (16)
rt-*oo

Then «/ |my| -*oo is such that (3) holds, there exist r,beZ, le N+, and s,,.. .,s,eZ*
such that

(17)
i = l / J

where for each i, there is a sequence n} f oo such that

VfceZ fi{kQH))->0,(k)- (18)
In other words, crx is obtained from the weak* limit points of {TQnn,}ns0.

We shall first establish

LEMMA 4. Let sup \qn\ < oo and {m,} be a sequence of integers such that for all w > 1
and all r, limbec Sn(rmj) exists. Then

£ = | r: lim lim5M(rmJ)<oo[ (19)
I n-.ooj-.oo J

is a subgroup of Z.

Proof. If £ = {0}, there is nothing to prove. Otherwise, let r,seE, r^ s. Since
lim^o, Sn(rmj) is constant for large n, we may write

VnVcj rmj = aj,nQn+a(rm)) + bQa(rm.), (20)

where ' V / means 'for all but a finite number of f (cf. [6]). Likewise, we may write

VnV)' smj = a'j_nQn+a(smj) + b'Qa(smj). (21)
Furthermore, by taking a subsequence of {m,} if necessary, we may assume that
either V/ a(rmj) = a(sm,) or \/j a(mtj) > a(smj), and that either a(rmj) -a(smj) -* oo
or {a(rmj)-a(smj)} is bounded.

Suppose first that a(rmj)> a(smj). Then a({r-s)mj) = a{sm}) and

V« \fej (r-s)mj = alnQn+aismj) + b"Qc.(sm,),
where fc"=-fe' if a(rmJ)-a(smJ)-»oo and V7 ft^fcQa^jQ^j-fc' if a(rmj)-
a(smj) is bounded. Hence r-seE.

Now suppose that a(rm;) = a{smj). We claim that b^b'. For if b = b', then
multiplying (20) by s, (21) by r, and subtracting, we obtain that

VnVV QK+aimi)\(r-s)bQaimj).

This contradicts the fact that n*s and b # 0. Since

V/i V7 (r-s)mJ = ( a X n - < n ) a + a ( ^ ) + (''-fe')Qa(smj),
it follows that r-seE. ' D

The proof now proceeds essentially as for Theorem 1 and we restrict ourselves
to its outline.

https://doi.org/10.1017/S0143385700004715 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004715


606 R. Lyons

Proof of Theorem 3. We take crx # A and assume that lini, .^ Sn(rmj) exists for all n
and r. Then the set E in (19) is equal to r0Z for some ro>0. By (15), there exists
vx such that o-x =-T~*vx

We may suppose that romj = ajQn.+a{rom.) +soQaUomj), that n,--»oo, that
{e(ra,Qn+a(rom;)x)}; has a weak* limit in L°°(ji.) for each r, and that {a(rom,-)} is
either constant or tends to oo. If {a(romJ)} is constant, let

%(r) = timfi(rajQn.+a(romj)) and bo = io(?a(romJ);

otherwise, let 21(r) = lim^0o/*("'o'W;) and bo = 0. Then vx = 8(box) *1t fi-a.e. by
(14).

Define mj11 = romj - b0; thus, 2,(r) = l i m , ^ /^(rmj"). We can argue as in the first
paragraph to write 2! = 77/2 i, where, without loss of generality, we may assume that

and that 2 ; = Tsivt * 2 2 , where «'i(r) = lim^ao/*(#<?„(,,„(•))). Note that s', 5*0. We
then define

and proceed for 2 2 as we did for 2! , etc. This process ends since o-x 5* A and (16) holds.
We thus obtain the expression

<rx = T - r o \ 8 { b o x ) * T - ' t T T j X * T ^ [ T s i p 2 *•••* T7,lT,!V,]] • • • ] M - a . e . ,

which is reduced to (17) by use of (4). •

Remark. Even if (16) does not hold, we may still conclude that

where v has the form (18) and 2(/c) = \\mjjl{klj) for some sequence {/,} (not
necessarily tending to 00).

The most obvious example of a measure satisfying the hypotheses of Theorem 3
is a Riesz product

fi= n (l + Re{cxke(Qkx)})

with \ak\ < 1 arbitrary, Qk | (?,,+,, |(?k+1/Qk| ̂  3, and supk |<?fc+1/<?(c| < 00. In this case,
the measures vt of (17) are also Riesz products \[k^0 (1 + Re {fik e(Pkx)}), with each
/3k a limit point of {a,-}, Po= 1, Pk\Pk+i, and each Pk+JPk a limit point of {QJ+I/QJ}-

Consider next the measure

ft = fc*i [Po.k 8(0)+puk 8(Qk
l)+- • -+plqkl-uk 8((\qk\-IX?*1)],

where

M s : 2, sup |^fc| < 00, Qk = q1q2--qk, pKk^0, and I p,,k = l.

We claim that n satisfies (14), (15) and (16) if gcd{i-i0: ie 1} = 1 for some set /
and some i0£ I, where I satisfies the property that 3e>0 3K Vfe03fce[fc0,fe0+K[
Vi e //>, fe > e; here, we interpret p, k = 0 if i S: M . (This is the case in particular for

if 3e > 0 3K Vfco 3ke [k0, ko+ K[ min {pk, (1 -pfc)}> e.
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This example will be important later.) Now since ft is continuous, (14) is proved
just as (5) is proved for ordinary invariant Bernoulli convolutions (12) (that is, by
'lifting' to a product measure). To prove (15), suppose that jl{mj) has a non-zero
limit. By taking an appropriate subsequence of {m,}, we may assume that all the
limits encountered below exist. For certain 6kJ, we have

r Î I-1 i
oo>lim I 1 - I PKke{-imjQll)

7-00 k>l L i=0 J

ksl

= lim I
j ks

Now for j > 1 and / > 0, 3fc = fc(/,» e [/X + a(m,-), ( / + l)K + a(mj)[ such that Vi e /

pitk(i,j) — £• Hence for i e /,

oo>l im X e R e { l - e ( - i m /
J l>0

> e I lim Re {1 - ei-im
l>0 J

Therefore for i e /,

lim lim Re {1 - e(-jmJ

) e(ekaj)J)}.

e(0kaj)J)} = 0,

whence

lim lim e(-im}QllU)) e(dk{IJ)J) = 1.

The hypothesis gcd(I - i0) = 1 implies finally that

(22)

Now if (15) were not true, in other words, if limfc \imj8k(mj) = oo, then for all JV
there would be a /co=feo(AT) such that JV, =lim7-5to(m/)> N. Let Sko(mJ) = Ni for

and, for j^j0, let n/ = «/(JV) be the least integer such that
my)l/2s JV,. Since «7<2 + log2 JV,, we may choose an infinite sequence
j 0 , oo[ such that M, is equal to a fixed n for j e / . Let / = /(JV) be the

least integer such that lK>n and consider any 7 € / . We have

ll"»;<?k(l.j)ll = \Qk(lJ)Qa(ml)\&k{l,j)-a(mj){'ni).

Now k0> n; for k0> fc> n, we have 5fc(my) = JV,, while for k> k0, we have 5fc(wi;)>
JV,. Since k(l,j)-a(mj)>lK>n, it follows that

l l ^ ( ? l l \Q QN\\Q Q~h\
By choice of n, the first term on the right is greater than \/(2q), where q = supk \qk\.
In addition, since

k(l,j)-n-a(mj)<2K + (l-l)K-n<2K,

the second term on the right is at least q~2K+1. Therefore ||»i><?k(
l
U)||>qi~2K+1/2.

Since this is true for j e ^ and since /(JV)-*oo as JV^oo, it follows that
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which contradicts (22). This proves (15). Finally, to establish (16), we will show
that for n # 0,

| / I ( M ) | < 1 -Aeq~2K. (23)

Given n # 0 , let fc = a ( n ) + l . Then nQ^ = N+rq^ for some integers N and r,
0<r<\qk\. Since gcd(I — io) = l, there is some itel such that (ii~io)nQll £Z,

whence I K i i - ^ w Q k ' l l —kkl '• Furthermore, for some le[k,k + K[, pio , > e and

pfi , > e. We have

t Puei-inQT1)
i=0

19,1-1

I pue(-(i-i0)iiQrI)
i = 0

Now for real x, _y and 0, we have

Therefore

Our choice of / ensures (23).
Theorem 3 admits a ready, if somewhat ungainly, extension to the case of

unbounded qn.

THEOREM 5. Let p be a probability measure, \qn\^2, Qn = qxq2 • • • qn, and Q0=l.
Suppose that

and

lim sup
aeZ
peN

n+P+ I buQu+p\-(l{aQn+p)(l(z buQu+p)
u=0 / \u=O /

= 0, (24)

if e(mjx) -fi 0 weak* in L°°(/x), then there exist {m-} <= {m,}, U,

njeN, dj, b0,..., by e Z such that H, -»oo and
(7

u=O

lim |/2(n)|<l.

//" Irn^l-• oo is such that (3) holds, then there exist r,beZ and IeN+ swell

Cj = T r 5(bx) * I * ' ' i l l /t-a.e.,

(25)

(26)

(27)
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where for each i, there is a sequence n, foo, U eN, and b0,..., bv € Z such that

I KQu+n\ •* *,-(*). (28)
u=0 /

VfceZ

The proof is exactly parallel; we shall only remark that the analogue of Lemma
4 is the following:

LEMMA 6. Let {mj} be a sequence of integers such that for all reZ, either {rmj} is of
the form

u
rmj = ajQn+airm) + £ buQu+a(rmj) («,•-»<»),

or {rnij} has no subsequence of this form. Then the setEofreZ with {rmj} of the
above form is a subgroup of Z.

As an application, we consider any Riesz product

/*= [I (l + Re{ake(Qkx)})
fcao

with Qk\Qk+i and \Qk+i/Qk\^3. The hypotheses (24)-(26) are evidently satisfied
and it remains to identify the measures v, of (28). Fix integers U,b0,..., bv, and
n,t°°> le t Bj = Z u =o buQu+n;, and assume that v is the weak* limit of TB./J.. Clearly,
we may assume that Y,u=0 KQu+nj ^ 0 for t / ' < C/ and all j . Furthermore, we may
assume that for all fc>0, {Qk+n)Q^}j has a finite or infinite limit and that {ak+n.}j
has a limit. There are two possibilities: either for all k > 1, lim,^.*, Qk+nQ^,1 is finite
or not. The former case is easily handled: v= Tsi>', where

Pk = lim Qk+nQ~l, and ak = lim ak+ .

On the other hand, we claim that in the latter case, the spectrum of v is finite (which
is enough for our purposes in § 5). Let k0 be the smallest integer such that
lim^oo <?,<„+„.Q~l is infinite. Set no = lim^«J|Oko_1+B.<?~1| and define B'j =
i : ^ ' " ' " buQu+nj, B] = Bj - B'j. If P(n) * 0, then for sufficiently large;, fi(nBj) * 0,
which means that nBj has the representation

nBj= I e^Qu+H), eiJ) = 0,±l.
• >o

Since Qko+n; divides nB'J and Zu2k0 e^Qu+nj, it follows that for sufficiently large j ,
nB'j = Zk

u°:*'e(
u
j)Qu+ni. Hence

|«Q |< |nBj |< I \QU+n.|<(3/'2)|Qfco_1+11J|, whence |R| <(3/2)n0.
u=0

That is, the spectrum of v is contained in the finite set ]-(3/2)n0, (3/2)/io[, as desired.

4. Perturbed Riesz products
The above ideas can be used to analyze the asymptotic distribution of sequences
relative to Riesz products based on a set of perturbed frequencies. The simplest

https://doi.org/10.1017/S0143385700004715 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004715


610 R. Lyons

example is

with ak -* a. Set

p,= II (1 +Re {a *(*)«(«**)})

for t € T. Then if (3) holds, we can write

tr, = T J l [ S ( b t ) * TSip, *•••* T,lPl] n - a . e .

In fact, we shall treat the following more general case. Let

dk)x]}), (29)

where |af c |<l, Qk\Qk+i, | C W Q k | s 3 , and |dfc| is bounded. Set fi' =
Fl/cao (1 + Re {ak e{Qkx)}). The fundamental observation is that e(rrijt)>0 weak* in
L°°((i) if and only if e(ntjt)*O weak* in L ° V ) . Indeed, e(m/)7*0 weak* in L°°(/i)
iff there are a subsequence {mj} <= {m,}, a sequence {«,} tending to oo and euj = 0, ±1
such that

™'j= I eUJ(Qu + du) + O(l) (30)

and

lim inf

where we denote, for complex z,

n (\<*u)u»-> >0, (31)

But by (31), I u a u . | e u J=O(l ) , whence (30) is equivalent (under (31)) to m) =
Ttu^u eujQu + O(1); i.e. (30) is then independent of {dk}. This establishes our claim.

Our next observation is that an analogue of mixing occurs. Let L/>0, ah

bo,...,bu€Z, PjtN, and n, -»oo. Write B, = I ^ = 0 ftu(?u+Pj and assume that the
following weak* limits exist in L°°(/A):

lim e(-a.jQn.+p.t), g(t) = lim e(-Bjt).
Then

h=fg. (32)

To prove this, we may, by taking a subsequence if necessary, assume that the above
weak* limits also exist in L°°(/i'); denote them by h, / , and g respectively. We may
also assume that the limits to appear below exist. It is clear that h=fg. If h ̂  0,
then fy*0 and g / 0, whence we may write

ajQn,+Pj= I eUJQu+Pl,

Bj= I e'UJQu+p,
u=0

I K;| = O(1).
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Therefore

ajQni+

where
v v

^j~ i- £uj\wu+pj' du+p.) — 2s £uj "u+pj~ 2. £u,jdu+p..
u=0 u^rtj u — 0

Noting that / is a constant and that the last two sums in C, are bounded, we see
that h=fG, where

G(t) = w*-lira e(-Cjt) inL°%u).

But evaluation of G gives

G(t) = g(t)e(Dt),

where D = \imYJU^n euj du+Pr Therefore h=fge{Dt)=fg. On the other hand, if
h = 0, then since / is a constant, either / or g is 0. Therefore h = 0 and / or g is 0,
whence (32) again holds.

We are now in a position to imitate our preceding proofs in order to determine
cr, of (3). If or, # A /i-a.e., then there is an r^O such that a,(r)#0 /j.-a.e., whence
e(-rm,07*0 weak* in L°°(/u'). The subgroup £ described in Lemma 6 therefore
has a least positive element, r0; let a, = T~V, ju,-a.e.

We may suppose that
u

romj = ajQn, + a(rom,)+ Z kuC?u + a(romy),

«,-->oo, and {a(rom,)} is either constant or tends to oo. If a(ro/«J) is constant, set
b' = Y.u=obuQu+a(romj)', otherwise, set b' = 0. Put /nj = rowy-b'. Application of (32)
to the sequence {rromj} shows that

j5,(r) = i,F,(r)e(-rft'O ^t-a.e.,

where e(-rm'jt)^lu,(r) weak* in L°°(/A). Thus i>, = 8(b't) *1UI.
We may argue as above to write 21>( = T"1^',, and, without loss of generality,

rxm'j = a'jQn)+a(rim..)+ ^ bL<?u + a ( r , m ' ) ,
u=0

«j-*oo. We now have a(r,mj)-»oo. By (32), 2|>( =»/',,, *22>,, where ?;,,(r) is the
weak* limit in L^ /A) of e{-rY^=ob'uQu+a{rim))t) and

i2,,('-) = w*-lim e(-ra'jQn.+a{rim?t).

We proceed for 22,» as for S,,: we have S2>, = T"^^,, * 23,,), and so on. Since
lim|/£(rt)|:£2~<l, this process ends in a finite number of steps. As before, we conclude
that

^ ^ ^ ] M-a.e., , (33)

where each vu is a measure w, of the form

VfceZ e(-k I buQu+njt) ^ <o,(k) weak* in L°°(M), «,--»». (34)
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We now identify such measures co,. We base this on the result for /*'. We may
assume that I "I,,/>„<?„+*,* 0 fo-r all U'sU and a l l / Let Bj = Z"=obuQu+n. and
assume that for all Jc>0, {Qk+njQnfij has a finite or infinite limit, Pk, and that
{<xk+n)j and {dk+nj\j have limits, call then ak and <4, respectively. If for some k > 1,
Pfc is infinite, then we know that e(—kBjt)-*0 weak* in L°°(p/) for all but a finite
number of k; the same is true in L°°(p.), so that the spectrum of co, is contained in
a finite set (independent of t). On the other hand, if Pk is finite for all k, then
co, = Tsco',, where s = l im^^ BjQ~* and e(- r (?n jO^ «I(r) weak* in L°°(p.). We claim
that co', = p, /t-a.e., where

p,= II (l + Re{ake(dkt)e(Pkx)}). (35)
k>0

For if we define

p'=U (l + Rc{dke(Pkx)}),

then e(-rQn.t)^p'(r) weak* in L°°(/*')- Thus, if <u|(r) = 0 ^-a.e., we have p'(r) = O,
which implies that p,(r) = 0 for all r. On the other hand, if co',(r) & 0, then p'(r) ^ 0,
so that we can write r = Jdkz0 ekPk, ek = 0, ±1. Therefore, interpreting limits as weak*
in L°°(/u), we have

- I ekQ + t)
> )

[ (

I" I! \S?t
LkaO

e(I ekdkt)=
k > 0

This shows that io',(r) = p,{r) for all r, whence the claim.
We sum up our results: either CT, is a (non-negative) trigonometric polynomial

multiplying A,

I Bne(rnt)e(nx)]k(x),

or a, has the form

where each pu, is of the form given in (35).

5. H-sets
We turn now to some applications of the preceding theory. For their proper context,
we refer the reader to [7; 9; 18, Chaps. IX, XII; and 1, Chaps. XII, XIV]. In the
1920s, Rajchman introduced the following generalization of Cantor's middle-thirds
sets.
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Definition. A Borel set E <= T is called an H-set if there exist a sequence {mJ}'*Ll <= N
tending to <x> and a non-empty open set /<=• T such that for every x e £ and all
7, mpc & I.

Cantor's middle-thirds set is the set {x:V/sO 3Jx£]!,§[}. The connection of
H-sets to our preceding discussion is given by the following observation.

PROPOSITION 7. Let fi e M(T) be such that whenever (3) holds for a sequence m} -* oo,
supp ax = T fi-a.e. Then /J,E = 0 for all H-sets E.

Proof. Let E be an H-set. Let m, ->oo and / be a non-empty open set such that
mpcil for x e £ By choosing a subsequence of {m̂ } if necessary, we may
assume that there is a crx such that (3) holds and that {mjx}~o-x (i-a.e. If xeE,
then clearly supp ax <= T\7, whence supp crx ^ T. The hypothesis implies, then, that

O. •

We established in [7] and [9] that hyperlacunary Riesz products,

fi= n (1 + Re{ake(nkx)}), nk+1/nk->oo, |afc |<l,

annihilate all H-sets; if we choose ak 7* 0, then these are examples of measures
whose Fourier-Stieltjes coefficients do not vanish at infinity but which annihilate
all H-sets nevertheless. This disproved a conjecture of Rajchman. New counter-
examples are given by the following theorem.

THEOREM 8. Let p satisfy the hypotheses of Theorem 1. Then fj. annihilates all H-sets
if and only if supp /x = T.

Note that if fi 5* A, then by g-invariance, fi, does not vanish at 00.

Proof. The following facts are easily verified: if w, w' are positive measures with
suppw = T and reZ, then supp Trw = supp TJl<o = supp (w * w') = J. Therefore
the measures o-x of (7) have full support if /j. does, and consequently /J. annihilates
all H-sets.

The converse is trivial. Indeed, if /J, is any ^-invariant measure whose support
misses a non-empty open set /, then by q-invariance, supp fi also misses T~JI for
all ; > 0 . That is, /t is supported on the H-set {x: V/ q'xi I}. •

The following extension would be very interesting.

QUESTION. If fi is a q-invariant q-mixing probability measure of full support, does /x
annihilate all H-sets ?

Of course, Theorems 3 and 5 and the discussion of § 4 permit the statement of
several theorems similar to Theorem 8. We shall restrict ourselves to the two main
classes of examples, Riesz products and Bernoulli convolutions.

THEOREM 9. Let ^ be a Riesz product as in (29) (thus, Qk | Qk+,~ [dk\ = O(l)). Then
fi annihilates all H-sets.

Proof. § 4 shows that a, is a trigonometric polynomial, which certainly has full
support, or is formed from Riesz products. But it is well-known that Riesz products

https://doi.org/10.1017/S0143385700004715 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004715


614 R. Lyons

have full support. (The proof is simple: if

p= [I (l + Re{fte(/fcf)}),

define
K

PK= 11 (l + Re{fte(/tr)}) and pK = II O + Re {ft «(/**)})•
k = 0 k>K

Thus p = PK- pK. If p(I) = 0 for some open set /, then pK(/)•=() since PK has at
most finitely many zeros and pK is continuous. But since pK -» A weak*, it follows
that XI = 0.) •

The same ideas apply to generalized Riesz products, of course. It would be very
interesting to know whether all Riesz products annihilate all H-sets. Indeed, this
question was the original motivation for the present work.

THEOREM 10. Let /x be a Bernoulli convolution

M= * L Pi.kS(iQ~k
l),

where \qk\^2, sup|gfc|<oo,

Qk = q\q2••' qk, Z Ptk = ^,
i=O

and for all |g|&2 and all ie [0, | a j - l ] ,

liminf {pik: qk = q}>0.
k->oo

Then fi annihilates all H-sets.

Proof. It was shown that Theorem 3 is applicable; we only have to show that the
weak* limit points of {TQnp,} have full support. Let TQnfi^v weak*. We may
assume the existence of the following limits for all /c>l:

If Qk = <7i " ' • qk, we see that

"= * \ Pi.kS(iQZl).
k^l , = 0

Since p,tk > 0 by hypothesis, supp v = T. •

It turns out that the converse of Proposition 7 holds as well. We first establish
the following lemma.

LEMMA 11 [7]. Let p be a positive measure on a measurable space X without atoms
of infinite measure. Let En be measurable sets, ln the characteristic functions ofEn, and

£ = It: lim — X U 0 = l
I 7V_,oo /V i I

be the set of points lying in almost all the En. Then

fiE < sup,
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where {nk} runs over all sequences with nk -»oo. In particular, if p(P|*°=i Enk) = 0 for
all {nk}, then /j,E = 0.

Proof. By restricting fi to a subset of E of finite measure, if necessary, it suffices to
assume that fi is a probability measure concentrated on E. It follows that

f 1 N 1 N

1= lim— I ln(Orf/i(O=Hm— I
I v N->oc l\ i »f ^^ /V ,

Given e > 0, there exists, therefore, a sequence nk -» oo such that /a£n)i > 1 - e2 fc.
Since ^(0^=1 £nJ > 1 - e, the lemma follows. D

Definition [7]. A Borel set E <= T is called an asymptotic H-set if there exists a
sequence m,-»oo and a non-empty open set / c T such that for xeE,

lim - card {/'</: m,x g /} = 1.
j-»oo /

COROLLARY 12 [7]. A measure annihilates all asymptotic H-sets [resp., those based
on any subsequence of {m,} and I] if and only if it annihilates all H-sets [resp., those
based on any subsequence of {m,} and / ] .

Proof. This follows immediately from Lemma 11 applied to the sets

•
We are now able to give the following version of Proposition 7 and its converse.

THEOREM 13. Let fj.eM(J) and m,-»oo be such that (3) holds. Then supp<rx = T
\i-a.e. if and only if /A annihilates all H-sets based on any subsequence of {ntj}.

Proof. One direction was shown in the proof of Proposition 7. For the other, suppose
that supp o-x # T on a set of positive |/i|-measure. We may assume that {m,x}~<rx

)u,-a.e. Then there is a set F' of positive measure and an 77>0 such that supp o-x

misses some arc of length 17 for every x e F', whence there is a set F of positive
measure and a fixed arc / ' of length TJ/2 such that supp ax n / ' = 0 for all xe F.
Let / be a non-empty open arc whose closure is contained in the interior of /'. Then

lim-card ( / < / : m,xe/} = 0 forxeF,

whence F is an asymptotic //-set based on {m,}. By Corollary 12, there is a
subsequence {m]} of {m,} such that the H-set {x: Vj" m'jxgl} has positive
|/x|-measure. D

Consider now the Cantor-Lebesgue measure

supported on the Cantor middle-thirds set. (We .have chosen an invariant fi for
simplicity, not for any essential reason.) One expects intuitively that the only //-sets
not annihilated by /i are those based on sequences sufficiently similar to {3J}. This
is true:
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THEOREM 14. Let

be the Cantor-Lebesgue measure. IfE is an H-set of positive /x-measure corresponding
to a sequence {m,}, then every subsequence {mj} of {m,} has a further subsequence
{mj'} of the form

rmj = s3"' + b (r, seN+, fteZ, n,-»oo). (36)

Conversely, if {mj} is of the form (36), then there is an H-set of positive fi-measure
corresponding to a subsequence of {mj}.

Proof. If £ c {x: V}m-x£ 1} is an H-set of positive measure and {mj}<= {m,}, then
{x: Vjm'jXftl} is also of positive measure since it contains E. Thus, to prove the
first half of the theorem, it suffices to prove only that {m,} has a subsequence {m'J}
of the form (36).

Now let {mj"} be a subsequence of {m,} such that e(-km'J'x) -» &x{k) weak* in
L°°(/x). By (13), we know that

o~x = T

where

with /= 1 if and only if {m'f} has a further subsequence {m'J} of the form (36).
Thus, by Theorem 13, the present theorem reduces to showing that / ̂  1 if and only
if supp ax = T /i-a.e.

Suppose first that / = 1. Then supp TSiv = {slx: xesupp v}. Since supp v is a
nowhere dense set, so is supp Thv, and so, therefore, is supp crx.

Conversely, suppose that /> 1. We shall show that supp (TSiv * TS2v) = J. Since
v is 3-invariant, we may assume that 7>)(' SiS2. Now

so that

* TS2P =

for any K > 1, where £K is the discrete measure formed by the convolution of the
first K terms and uK is the probability measure formed by the remainder. Now
supp p = T o p / > 0 for every arc / of the form

/ = [A-(|s1| + |52|)3-K,A + (|51| + |52|)3-K],

A= I ak3~k, a,€{0,1, 2}, K > 1 .k = \

Given such an arc, we can choose eK, e'K e {0,1} such that

eKsl + e'Ks2=aK (mod 3)

since 3J('sls2. We may then choose eK-i, e'K_,e{0,1} such that

, + e'Ks2) = aK_,3 + aK (mod 32),
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and so on, until we have chosen ek, e^e {0,1} (1 < fc< K) such that

I ( e^ , + e ^ 2 ) 3 K - ' c - I ak3
K~k (mod3K) ,

k=l k=\

which is the same as
K

+ s'ks2)3~k = A (modi) .

Therefore £K({ '4}) — (1/4) ; since supp wK <= [—(|s1| + |52|)3 , (|*i| + |*2l)3 K ] , it
follows that pi > 4"K. •

We now present a similar example which will be useful in a moment.

LEMMA 15. Let

*= * [2«(0)+2«(2-fc)],

where N = {nj}j^l is a sequence such that nj+l-nj-»oo. If {m,} is a sequence which
corresponds to an H-set of positive v--measure, then there is a subsequence {m'j} of
the form

rm'j = s2"'~x + b (r, s e N+, b e Z, nj € Jf).

Proof. We may assume that e(-knijx) -»<rx(fc) weak* in V°(ir). If we interpret IT as
containing the terms 1 • 5(0)+ 0 • 5(2~k) for keJf, then Theorem 3 is applicable by
the discussion which followed that theorem. Thus,

7r-a.e.,

where each v{ is a weak* limit point of {T2*TT}. Suppose that T2*<jV-> v weak*. If
\kj-Jf\ is unbounded, then it is easy to see that v = A. If |fc,-^V| is bounded, then
without loss of generality, fc, = «j + d, where n] e M. If d > 0, then v = A; if d < 0, then

Since every vt is of this form and supp ax ¥= T for a set of positive 7r-measure,
it follows that / = 1 and that for some {mj}c{m,}, rm'j = s2k' + b with kj = n'j

Jrd,
n'j<=Jf, and d < - l . Therefore (r2"d"1)mj = 52"J"1 + (b2~d"1), which is the desired
form. •

The following generalization of H-sets was introduced by Pjateckii-Sapiro [14;
18, Chap. XII, § 11; 1, Chap. XIV, § 15; 9].

Definition. Let m e Z + . If

V = (vil),...,v(m))€lm, A = ( / , , . . . , / m ) € Z m

and xeJ, we write V- A = I™, t?'0/,- and Vx = (u ( 1 ) x , . . . , t;(m)x). A sequence
{Vfc}rc (Z+)m of m-tuples of positive integers is called quasi-independent if for each
fixed A € Zm, A not the 0-vector, we have | Vfc • A| -» oo as fc -> oo. A Borel set E a J
is called an H(m)-set if there exist a quasi-independent sequence { Vfc}c (Z+)m and
a non-empty open set / c T * such that for all xe E and all fc, Vkx£ I.
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In [7] and [9], we asked whether for each m > 1, there is a measure supported
on an H<m+1)-set which annihilates all //<m)-sets, in other words, whether //(m+1)

is 'much larger' thaji Him). Here we show that the answer is 'yes' for m = 1.

THEOREM 16. Let IT be the measure in Lemma 15,

p=% [^S(0) + l8(2~"2'-') + jS(2~"2')], and a = 7T * p.

Then fi is supported on an H(2)-set and annihilates all H-sets.

Proof. Indeed, \x, is supported on the 'canonical' H(2)-set

Suppose that E were an //-set corresponding to a sequence {m,} with fiE > 0. Since
pE =JT TT(E-1) dp(t), it would follow that Tr(E-t)>0 for some t. But E-t is
an //-set corresponding to a subsequence {m'j}<^{m}} (if {m]} is chosen so that
{m'jt} is almost constant, then {m'jx} is not dense for xe E-t). Lemma 15 shows
that for a further subsequence {mj}c {mj}, we have

rm'j = s2"i~' + b with nje ./V.

Let e(-fem;x)^<Tx(fc) and e{-k2n'rx
x)^ fx(k) weak* in L°V). It is not hard to

calculate that

TX = [f 5(0) +15(2')] * [ *2 (£5(0) + ^(2"fc

(This can also be calculated by convolving the weak* limits in /^(TT) and L°°(p);
see [10].) Of course, supprx = T; since crx = T~l[S(bx) * TSTX], we also have
supp o-x = T, which completes the proof by contradicting Theorem 13. •
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