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Abstract
We formulate haptotaxis models of cancer invasion wherein the infiltrating cancer cells can occupy a spectrum
of states in phenotype space, ranging from ‘fully mesenchymal’ to ‘fully epithelial’. The more mesenchymal cells
are those that display stronger haptotaxis responses and have greater capacity to modify the extracellular matrix
(ECM) through enhanced secretion of matrix-degrading enzymes (MDEs). However, as a trade-off, they have lower
proliferative capacity than the more epithelial cells. The framework is multiscale in that we start with an individual-
based model that tracks the dynamics of single cells, which is based on a branching random walk over a lattice
representing both physical and phenotype space. We formally derive the corresponding continuum model, which
takes the form of a coupled system comprising a partial integro-differential equation for the local cell population
density function, a partial differential equation for the MDE concentration and an infinite-dimensional ordinary
differential equation for the ECM density. Despite the intricacy of the model, we show, through formal asymptotic
techniques, that for certain parameter regimes it is possible to carry out a detailed travelling wave analysis and
obtain invading fronts with spatial structuring of phenotypes. Precisely, the most mesenchymal cells dominate the
leading edge of the invasion wave and the most epithelial (and most proliferative) dominate the rear, representing
a bulk tumour population. As such, the model recapitulates similar observations into a front to back structuring of
invasion waves into leader-type and follower-type cells, witnessed in an increasing number of experimental studies
over recent years.

1. Introduction
1.1. Biological background

Phenomena of collective cell migration have received a significant amount of interest in recent years,
and a particularly large literature has been devoted to their role during cancer invasion processes [27].
Histopathological analysis of tissue specimens reveals a plurality of patterns within invading cell fronts,
ranging from individually migrating cells to collective strands and clusters that infiltrate the surrounding
healthy tissue. Increased invasiveness forms one of the key traits of cancer metastasis, and consequently
presents a significant impediment to successful treatment. Understanding the underlying biological
processes is therefore of manifest interest.

Invading cell fronts frequently present significant phenotypic heterogeneity, and particular atten-
tion has focussed on the extent to which a separation into ‘leader’ and ‘follower’ cells contributes to
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invasive spread [68]. Leader cells are those that (seemingly) drive the invasion process: positioned at
or near the front, modifying the extracellular matrix (ECM) – i.e. the network of macromolecules in
which cells reside, and coordinating with follower cells to facilitate their collective invasion into healthy
tissue. These leader cells can be derived from various sources, both from tumour cells that have under-
gone a phenotypic transition (e.g. following genetic mutations or epimutations) or from surrounding
stromal cells, such as fibroblasts, that have been activated and co-opted through factors in the tumour
microenvironment [68].

For carcinomas – cancers of epithelial origin – tumour-derived leader cells will typically have under-
gone an epithelial to mesenchymal transition (EMT), i.e. undergone a loss of their epithelial nature and
acquired mesenchymal characteristics [11]. Epithelial cells are often tightly bound through strong cell-
to-cell adhesion, therefore downregulation of adhesion can release leaders from the bonds that control
their normal position in the tissue. Mesenchymal characteristics involve (significantly) enhanced motil-
ity and strong interactions with the ECM. These interactions include a capacity to modify the matrix
and microenvironment, both mechanically and chemically, in a manner that can facilitate the invasion of
other leader and follower cells. First, increased production of fibronectin can increase matrix adhesivity,
allowing cells to gain more traction [38, 60, 68]; the directed movement that results from migration up
a matrix adhesivity gradient is referred to as haptotaxis [14]. Cells may also realign fibres, leading to
an oriented matrix that directs invasion along certain paths [58]. Leader cells may also start to secrete
(or increase the secretion of) matrix-degrading enzymes (MDEs) [17, 36, 60, 68, 73]. In turn, this can
reduce the volume fraction occupied by the ECM and liberate space into which cells can migrate (or pro-
liferate). Beyond these physical alterations to the microenvironment, leader cells may also drive invasion
through chemical means, e.g. through secreted factors leading to chemoattractant gradients that direct
follower cell movement [17, 32, 38, 68].

While leader cells may have enhanced motility and greater capacity to alter the surrounding
microenvironment, trade-offs may arise in the form of reduced proliferative potential. Analyses into het-
erogeneous groups composed from distinct follower and leader subpopulations indicate that the former
can be significantly more proliferative [38]. Furthermore, followers can produce factors that promote
a level of growth within the leader cells, hence maintaining the balance between leaders and followers
across the overall cell population [38]. Thus, collective invasion in certain leader-follower cancer cell
populations may be a cooperative process, with each subpopulation playing a key role in promoting
tumour expansion.

Dichotomising invading cells into leader and follower subtypes can be notionally convenient, but
masks the possibility that cells may fall into (significantly) more than two fundamental phenotypic
states. Unlike the ‘regulated’ EMTs that occur during embryogenesis or wound healing, EMT within
cancer cells can be highly variable, ranging from ‘partial’ to ‘full’ [11, 17, 39, 48, 59, 68]. Partial here
indicates a cell has only acquired a subset of mesenchymal characteristics, for example, resulting in
only a slight increase in motility, or a part reduction of proliferative potential. Moreover, it has been
shown that cells can undergo changes to these phenotypes over time [52, 68, 72, 74]. Consequently,
a more accurate picture of leader–follower heterogeneity in invading cancers would be that each cell
occupies a fluid position within a quasi-continuous phenotype space. Investigating the role of trade-offs
in leader–follower collective migration may form a beneficial treatment target. In fact, it has been shown
that leader cells are generally more resistant to treatment [9, 68]; however, if leader cells are removed
then the invasion of the tumour stops [38]. Furthermore, through inhibiting MDE secretion by leader
cells then further invasion can be slowed or prevented [13].

1.2. Mathematical modelling background

The use of mathematical modelling to investigate the invasion processes of cancer cells forms a well-
developed area of research, and for more details we refer to the extensive reviews detailed in [2, 26, 61].
A significant part of the literature on this subject has focussed on haptotaxis-fuelled invasion, in which a
cancer cell population secretes proteolytic factors that alter the surrounding matrix to generate adhesivity
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gradients. Early models in this field have been formulated as coupled systems of partial differential
equations (PDEs) and infinite-dimensional ordinary differential equations (ODEs), which rely on the
assumption that cell migration results from the superposition of random motion, modelled as linear
diffusion, and haptotaxis, modelled as advection according to the ECM gradient, e.g. [5, 56]. Focussing
on a 1D spatial scenario, as a prototypical example of these haptotaxis models of cancer invasion, we
can consider the following system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tρ − ∂x

(
D ∂xρ − ρ μ ∂xE

)
= R(ρ) ρ,

∂tM − DM ∂2
xxM = γ ρ − κM M,

∂tE = −κE E M,

x ∈R, (1)

where the functions ρ ≡ ρ(t, x), M ≡ M(t, x) and E ≡ E(t, x) model, respectively, the cancer cell density,
the MDE concentration and the ECM density at time t ∈R

+ and position x ∈R. In the system (1), the
parameters D and μ are the random motility coefficient and the coefficient of haptotaxis sensitivity (i.e.
sensitivity to matrix adhesivity gradients) of cancer cells, respectively, while the function R(ρ) is the
net growth rate of the cell population due to the proliferation (i.e. division and death) of cancer cells.
The dependence of this function on cell density ρ takes into account density-dependent inhibition of
growth (i.e. the fact that cessation of cell division occurs once a critical value of the cell density is
reached). Moreover, the parameter DM is the diffusion coefficient of MDEs, the parameter γ is the rate
of MDE production by cancer cells and the parameter κM is the rate of natural decay of MDEs. Finally,
the parameter κE is the rate at which the ECM is degraded by MDEs upon contact.

Haptotaxis models of cancer invasion of the form of (1) have been studied analytically through proof
of local existence, global existence, boundedness and uniqueness of solutions [66], investigations into
blow-up of solutions [62] and analysis of 2D radially symmetric solutions [10]. Numerical simulations
have also been used to investigate models of the form of (1) [28]. Further models extend systems of this
form, for example, to include more detailed mechanisms of ECM remodelling and enzyme activities [3,
15, 47], or through the inclusion of non-local terms to incorporate the effects of cell–cell adhesion [29,
51]. Models have also been formulated to include detailed cell mechanics – e.g. stress, strain, elasticity,
adhesion, transport by velocity fields and other interaction forces – in the context of invasive melanoma
growth through different skin layers [18].

While model (1) has been restricted to a homogeneous cancer population, cognate models have also
been developed that explore the consequences of phenotypic heterogeneity on invasion. Binary state
models consider a division of cancer cells into two phenotypic states. These include models in which
cells of the invading population switch between a proliferating state and a migrating state, to inves-
tigate ramifications of the “go-or-grow” hypothesis for glioma growth [37, 57, 63]. Invasion models
that feature two competing phenotypes with distinct migratory and proliferation properties have also
been formulated in the context of acid-mediated invasion, where the heterogeneity extends to distinct
acid-resistance and matrix-altering behaviour [65].

Greater phenotypic heterogeneity can be accounted for through the inclusion of more discrete states,
but this becomes impractical if the phenotypic space becomes almost continuous. As such, an alterna-
tive approach is to extend a model like (1) to include a continuous structuring variable representing
intercellular variability in certain phenotypic characteristics [54]. In the context of cell invasion type
dynamics, though not specifically in cancer, models of this nature have been developed to describe
how a trade-off between chemotactic ability and proliferation may shape the phenotypic structuring of
chemotaxis-driven growth processes [40], and how trade-offs between mobility and proliferation may
impact on density- or pressure-driven growth processes [41, 46]; directly relevant to cancer, structured
phenotype models of this type have also been developed to explore avascular tumour growth [23] and
the evolutionary dynamics underpinning the emergence of intra-tumour phenotypic heterogeneity [24,
42, 69]. In recent work by Guilberteau et al. [31], the authors presented a PIDE model that captures
transitions between fully-epithelial, hybrid epithelial/mesenchymal and fully-mesenchymal cell states
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and demonstrated this model to be capable of reproducing experimental observations into the dynamics
of EMT. This model, however, does not account for spatial dynamics or invasion processes of cells.

While the above discussions have focussed on continuum models, which provide a population-level
description of cell dynamics, it is important to note that a very large number of modelling studies have
explored haptotaxis-driven cancer invasion using individual-based models (i.e. models that track the
dynamics of single cells) [70, 71]. Advantages lie in the ability of these models to capture the dynam-
ics and stochasticity of single-cell movement, and a notable early example within the context of cancer
invasion was developed in [5]. Here, a model of the type of (1) was discretised in space, with the dis-
cretised terms subsequently used to specify probabilities of movement in different directions, according
to the ECM distribution. Extensions were introduced in the model considered in [6], where each cell
was allowed to undergo random movement, haptotaxis up the gradient of the ECM, produce MDEs,
consume oxygen and undergo cell cycle controlled proliferation depending on the availability of oxygen
and free space. Moreover, this model comprised cells of different discrete phenotypic states, controlling
aspects such as each cell’s adhesion, oxygen consumption, haptotactic ability, secretion rate of MDEs
and proliferative potential. Recently, this underlying modelling framework has been further extended
to investigate the role of two specific phenotypes, namely epithelial and mesenchymal phenotypes, in
cancer invasion and metastasis [26].

The original framework in the above method constituted of starting with a continuum model
and subsequently discretising it to derive the governing rules for cell movement in a corresponding
individual-based model [5]. An alternative approach for transitioning between discrete and continuum
descriptions of cell motion is to first postulate a model at the single-cell level and then employ coarse-
graining procedures to derive a continuous description; these methods have been extensively adopted in
recent decades, particularly in the context of motivating PDE models to describe taxis-like behaviours,
e.g. [50, 53, 64].

1.3. Outline

In this paper, we consider the following generalisation of the haptotaxis model of cancer invasion (1),
where the continuous structuring variable y ∈ [0, Y] ⊂R

+, with Y > 0, represents the cell phenotype
(i.e. the position of the cells in phenotypic space) and captures intercellular variability in haptotactic
response, proliferative potential and production of MDEs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tn − ∂x

(
D ∂xn − n χ (y) ∂xE

)
= R(y, ρ) n + λ ∂yyn,

ρ(t, x) :=
∫ Y

0

n(t, x, y) dy,

∂tM − DM∂xxM =
∫ Y

0

p(y) n(t, x, y) dy − κMM,

∂tE = −κE E M,

(x, y) ∈R× (0, Y). (2)

Compared to model (1), here the PDE for the cell density, ρ(t, x), is replaced by the partial integro-
differential equation (PIDE) (2)1 for the local cell population density function, n ≡ n(t, x, y), which is
linked to the cell density through the relation (2)2. Moreover, the functions χ (y), p(y) and R(y, ρ) are,
respectively, the haptotaxis sensitivity coefficient, the MDE production rate and the net growth rate of the
cell population density due to the proliferation (i.e. division and death) of cancer cells with phenotype
y. Finally, the diffusion term on the right-hand side of the PIDE (2)1 models the effect of phenotypic
changes, which occur at rate λ.

We first formulate a phenotype-structured individual-based haptotaxis model of cancer invasion (cf.
Section 2), where the dynamics of individual cells are governed by a set of rules that result in a branching
random walk over a lattice [34], which represents both physical and phenotype spaces. In this model,
the rules governing cell dynamics are coupled with a balance equation for the MDE concentration and
a balance equation for the density of ECM. Then, using an extension of the limiting procedure that we
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previously employed in [12, 16, 45, 46], we formally derive the model (2) as the continuum limit of this
individual-based model (cf. Section 3 and Appendix A.1). After that, building upon the formal asymp-
totic method that we developed in [40, 41], we carry out travelling wave analysis of an appropriately
rescaled version of the model (2) (cf. Section 4). The results obtained provide a mathematical formalisa-
tion for the idea that trade-offs between proliferative potential and the ability to sense spatial gradients of
ECM and produce MDEs may promote the emergence of phenotypically structured invading cell fronts.
Specifically, wherein leader cells (i.e. cells with a higher haptotactic and MDE production ability but a
lower proliferative potential) are localised at the leading edge of the front, while follower cells (i.e. cells
with a higher proliferative potential but a lower haptotactic and MDE production ability) occupy the
region behind the leading edge. Finally, we report on numerical solutions of such a rescaled continuum
model and numerical simulations of the corresponding rescaled version of the individual-based model,
and we compare them with the results of travelling wave analysis (cf. Section 5). We conclude with a
discussion of our findings and propose some future research directions (cf. Section 6).

2. The individual-based model

In this section, integrating the modelling approaches that we developed in [12, 46], we formulate
a phenotype-structured individual-based haptotaxis model of cancer invasion. In this model, indi-
vidual cells are represented as agents, while the density of ECM and the concentration of MDEs
are described by non-negative functions. We allow cells to undergo undirected random movement,
phenotype-dependent haptotactic movement in response to the ECM, heritable spontaneous phenotypic
changes (i.e. heritable phenotypic changes that occur randomly and are not biased by the cell microen-
vironment) and phenotype-density-dependent proliferation (i.e. division and death). We consider the
scenario where cells also perform phenotype-dependent secretion of MDEs, which then diffuse through-
out the spatial domain according to Fick’s first Law of diffusion and undergo natural decay. Furthermore,
the MDEs break down the ECM to create a gradient that affects the haptotaxis of cancer cells.

Focussing on a 1D spatial scenario, we let the cells, the density of ECM and the concentration of
MDEs be distributed along the real line R. Furthermore, we describe the phenotypic state of each cell
by means of a structuring variable y ∈ [0, Y] ⊂R

+, which takes into account the intercellular variability
in haptotactic sensitivity, MDE secretion rate and proliferation rate.

In particular, we consider the case where larger values of the structuring variable y correspond to a
higher ability to sense spatial gradients of ECM and produce MDEs but a lower proliferative potential
(cf. Figure 1). This choice is motivated by the energetic costs associated with enhanced motility and
greater capacity to alter the surrounding microenvironment, which lead to trade-offs in the form of
reduced proliferative potential [38].

Hence, cells in phenotypic states characterised by values of y closer to 0 display a more epithelial-like
phenotype (i.e. they behave more like follower cells), whereas cells in phenotypic states characterised
by values of y closer to Y display a more mesenchymal-like phenotype (i.e. they behave more like leader
cells).

We discretise the time variable t ∈R
+ and the space variable x ∈R, respectively, as tk = kτ and

xi = i	x with k ∈N0, τ ∈R
+
∗ , i ∈Z and 	x ∈R

+
∗ , where R

+
∗ denotes the set of positive real numbers.

Moreover, we discretise the phenotype variable via yj = j	y ∈ [0, Y] with j ∈N0 and 	y ∈R
+
∗ . Here, τ ,

	x and 	y are the time-step, space-step and phenotype-step, respectively.
Each individual cell is represented as an agent that occupies a position on the lattice {xi}i∈Z × {yj}j∈N0

and we introduce the dependent variable Nk
i,j ∈N0 to model the number of cells in the phenotypic state yj

at position xi at time tk. The cell population density and the corresponding cell density are then defined,
respectively, as

nk
i,j ≡ n(tk, xi, yj) := Nk

i,j

	x	y

and ρk
i ≡ ρ(tk, xi) := 	y

∑
j

nk
i,j. (3)
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Figure 1. Schematic overview of the trade-offs between haptotactic and MDE production ability and
proliferative potential incorporated into the individual-based model.

The concentration of MDEs and the density of ECM at position xi at time tk are denoted by Mk
i ≡ M(tk, xi)

and Ek
i ≡ E(tk, xi), respectively.

The biological mechanisms incorporated into the model and the corresponding modelling strategies
are summarised by the schematics in Figure 2 and are described in the remainder of this section.

2.1. Modelling the dynamics of cancer cells

As summarised in Figure 2a-d, between time-steps k and k + 1, each cell in phenotypic state yj ∈ (0, Y)
at position xi ∈R can undergo undirected random movement and haptotactic movement (which are
regarded as independent processes), heritable spontaneous phenotypic changes and cell division and
death according to the rules provided in the following subsections.

2.1.1. Random cell movement
We model undirected cell movement as a random walk along the spatial dimension, with movement
probability 0 < θ ≤ 1. In particular, for a focal cell in the phenotypic state yj at spatial position xi at time
tk, we define the probability of moving left or right to spatial positions xi−1 or xi+1 as Pk

Li,j
or Pk

Ri,j
, respec-

tively. As we consider this random movement to be undirected and not affected by the cell phenotype,
we define

Pk
Li,j

= Pk
Ri,j

:= θ

2
. (4)

Note that cells will not undergo random movement with probability

Pk
Si,j

:= 1 −
(

Pk
Li,j

+ Pk
Ri,j

)
.

2.1.2. Haptotactic cell movement
We model haptotactic cell movement in response to the ECM as a biased random walk along the spatial
dimension. Since cells move up the gradient of the ECM (i.e. they move towards higher ECM densities),
we let the haptotactic movement probabilities depend on the difference between the ECM density at the
position occupied by the cell and the ECM density at neighbouring positions. Furthermore, we consider
the case where larger values of yj correlate with a higher haptotaxis sensitivity (cf. Figure 1). Hence,
we modulate the probabilities of haptotactic cell movement by the function μ(yj), which provides a
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Figure 2. Schematic overview of the mechanisms incorporated into the individual-based model along
with the corresponding modelling strategies. Between time-steps k and k + 1, each cell in phenotypic
state yj ∈ (0, Y) at spatial position xi ∈R may: a. move via random motion to either of the positions
xi−1 and xi+1 with probabilities Pk

Li,j
and Pk

Ri,j
defined via (4) or do not undergo random movement with

probability Pk
Si,j

= 1 − (Pk
Li,j

+ Pk
Ri,j

); b. move via haptotactic motion to either of the positions xi−1 and xi+1

with probabilities Pk
HLi,j

and Pk
HRi,j

defined via (6) or do not undergo haptotactic movement with probability
Pk

HSi,j
= 1 − (Pk

HLi,j
+ Pk

HRi,j
); c. undergo a phenotypic change and thus enter either of the phenotype states

yj−1 and yj+1 with probabilities Pk
Di,j

and Pk
Ui,j

defined via (7) or remain in the same phenotypic state with
probability Pk

Ni,j
= 1 − (Pk

Di,j
+ Pk

Ui,j
); d. die and divide with probabilities Pk

Ai,j
and Pk

Bi,j
defined via (8) or

remain quiescent with probability Pk
Qi,j

= 1 − (Pk
Ai,j

+ Pk
Bi,j

). The concentration of MDEs will change over
time through: e. diffusion at the rate DM; f. secretion by cells at the phenotypic-dependent rate p; g.
natural decay at rate κM. The ECM density will change over time through: h. degradation by MDEs at
rate κE.

measure of the sensitivity to matrix adhesivity gradients of cells in phenotypic state yj and thus satisfies
the following assumptions

μ(0) = 0,
dμ(y)

dy
> 0 for y ∈ (0, Y]. (5)

We then assume that between time-steps k and k + 1 a cell in phenotypic state yj at position xi may move
to the position xi−1 (i.e. move left) with probability Pk

HLi,j
or move to the position xi+1 (i.e. move right)

with probability Pk
HRi,j

, where we define

Pk
HLi,j

:= η μ(yj)

(
Ek

i−1 − Ek
i

)
+

2 Emax
, Pk

HRi,j
:= η μ(yj)

(
Ek

i+1 − Ek
i

)
+

2 Emax
, with (·)+ := max(0, ·). (6)

Here, Emax ∈R
+
∗ is the maximum value of the ECM density before cell invasion starts (see also Section

2.2.2). Moreover, the parameter η ∈R
+
∗ is a scaling factor which we consider small enough to ensure

η μ(yj) ≤ 1. Hence, the quantities defined via (6) satisfy 0 < Pk
HLi,j

+ Pk
HRi,j

≤ 1 for all values of i, j and k.
Note that cells will not undergo haptotactic movement with probability

Pk
HSi,j

:= 1 −
(

Pk
HLi,j

+ Pk
HRi,j

)
.
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2.1.3. Cell phenotypic changes
We model phenotypic changes by allowing cells to update their phenotypic states according to a random
walk along the phenotypic dimension. Between time-steps k and k + 1 every cell enters a new phenotypic
state with probability 0 < β ≤ 1, or remains in its current phenotypic state with probability 1 − β. Since
we consider spontaneous phenotypic changes, we assume that a cell originally in phenotypic state yj

enters state yj−1 with probability Pk
Di,j

or enters state yj+1 with probability Pk
Ui,j

, where we define

Pk
Di,j

= Pk
Ui,j

:= β

2
. (7)

Therefore, cells will not undergo phenotypic changes with probability

Pk
Ni,j

:= 1 −
(

Pk
Di,j

+ Pk
Ui,j

)
.

Moreover, no-flux boundary conditions are implemented by aborting any attempted phenotypic change
of a cell if it requires moving into a phenotypic state outside of the interval [0, Y].

2.1.4. Cell division and death
To incorporate the effects of cell proliferation, we assume that a dividing cell is instantly replaced by two
identical progeny cells that inherit the spatial position and phenotypic state of the parent cell. Conversely,
a cell undergoing cell death is instantly removed from the population. To take into account phenotypic
heterogeneity along with density-dependent inhibition of growth, at time-step tk we assume that the
probabilities of division and death for a cell at spatial position xi depend both on the phenotypic state of
the cell and the local cell density ρk

i .
In particular, to define the probabilities of cell division and death, we introduce the function R(yj, ρk

i ),
which describes the net growth rate of the cell population density at spatial position xi and time tk due
to division and death of cells in the phenotypic state yj, and assume that between time-steps k and k + 1
a cell in phenotypic state yj at position xi may die with probability Pk

Ai,j
, divide with probability Pk

Bi,j
, or

remain quiescent with probability Pk
Qi,j

:= 1 −
(

Pk
Ai,j

+ Pk
Bi,j

)
, where

Pk
Ai,j

:= τ R(yj, ρ
k
i )−, Pk

Bi,j
:= τ R(yj, ρ

k
i )+, with (·)− := −min(0, ·), (·)+ := max(0, ·). (8)

By considering the time-step τ sufficiently small, we ensure Pk
Ai,j

+ Pk
Bi,j

≤ 1 for all values of i, j, and k
We consider the scenario where: larger values of yj correlate with a lower cell proliferation rate (cf.

Figure 1); cells stop dividing if the cell density at their current position becomes larger than a critical
value ρmax ∈R

+
∗ . Therefore, we make the following assumptions

R(Y , 0) = 0, R(0, ρmax) = 0,
∂R(y, ρ)

∂ρ
< 0 and

∂R(y, ρ)

∂y
< 0 for (y, ρ) ∈ (0, Y) ×R

+. (9)

In particular, we focus on a similar case to that considered in [46], that is, we assume

R(y, ρ) := α

(
r(y) − ρ

ρmax

)
, r(Y) = 0, r(0) = 1, and

dr(y)

dy
< 0 for y ∈ (0, Y), (10)

with α ∈R
+
∗ . Note that, under assumptions (9), the definitions given by (8) ensure that if ρk

i ≥ ρmax

then every cell at position xi can only die or remain quiescent between time-steps k and k + 1. Hence,
throughout the rest of the paper, we will assume

max
i∈Z

ρ0
i ≤ ρmax (11)

so that

ρk
i ≤ ρmax for all (k, i) ∈N0 ×Z. (12)
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2.2. Modelling the dynamics of the MDEs and the ECM

The dynamics of the MDE concentration and the ECM density are governed by the rules provided in
the following subsections, which are summarised by the schematics in Figure 2e-h and are coupled with
the individual-based model for the dynamics of cancer cells that is presented in Section 2.1.

2.2.1. Dynamics of the MDE concentration
We let DM ∈R

+
∗ be the diffusivity of the MDEs and we denote by κM ∈R

+
∗ the rate at which the MDEs

undergo natural decay. To incorporate into the model the secretion of MDEs by cells in the phenotypic
state yj, we introduce the function p(yj). We focus on the scenario where larger values of yj correlate
with a higher MDE secretion rate (cf. Figure 1), i.e. we make the assumptions

p(0) = pmin ∈R
+
∗ ,

dp(y)

dy
> 0 for y ∈ (0, Y). (13)

In this framework, the principle of mass balance gives us the following difference equation for the
concentration of MDEs

Mk+1
i = Mk

i + τ

[
DM (L Mk)i − κM Mk

i + 	y

∑
j

(
p(yj) nk

i,j

)]
, (14)

where L is the finite-difference Laplacian on the lattice {xi}i∈Z, that is,

(L Mk)i := Mk
i+1 + Mk

i−1 − 2 Mk
i

	2
x

.

2.2.2. Dynamics of the ECM density
We denote by κE ∈R

+
∗ the rate at which the ECM is degraded by MDEs. The principle of mass balance

gives us the following difference equation for the density of ECM

Ek+1
i = Ek

i − τ κE Mk
i Ek

i . (15)

Recalling that, as mentioned earlier, Emax ∈R
+
∗ is the maximum value of the ECM density before cell

invasion starts, we complement the difference equation (15) with an initial condition such that

max
i∈Z

E0
i ≤ Emax (16)

so that

Ek
i ≤ Emax for all (k, i) ∈N0 ×Z. (17)

3. The corresponding continuum model

Through an extension of the limiting procedure that we previously employed in [12, 16, 45, 46], letting
the time-step τ → 0, the space-step 	x → 0 and the phenotype-step 	y → 0 in such a way that

	2
xθ

2τ
→ D ∈R

+
∗ ,

	2
xη

2Emaxτ
→ ν ∈R

+
∗ , and

	2
yβ

2τ
→ λ ∈R

+
∗ , (18)

and introducing the definition

χ (y) := ν μ(y), (19)

one can formally show (cf. Appendix A.1) that the deterministic continuum counterpart of the
individual-based model presented in Section 2 is given by the PIDE (2)1 for the local cell population den-
sity function, n(t, x, y), subject to zero Neumann (i.e. no-flux) boundary conditions at y = 0 and y = Y ,
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complemented with the relation (2)2 for the cell density, ρ(t, x) and coupled with the PDE (2)3 for the
MDE concentration, M(t, x), along with the infinite-dimensional ODE (2)4 for the ECM density, E(t, x).
Consistently with assumptions (11) and (16), the PIDE (2)1 and the infinite-dimensional ODE (2)4 are
subject to some initial conditions such that

max
x∈R

∫ Y

0

n(0, x, y) dy ≤ ρmax, max
x∈R

E(0, x) ≤ Emax. (20)

4. Formal asymptotic analysis

In this section, building on the formal asymptotic method that we developed in [40, 41], which relies on
the Hamilton-Jacobi approach developed in [8, 20, 44, 55], we carry out travelling wave analysis of an
appropriately rescaled version of the model (2).

4.1. Rescaled model

We focus on a biological scenario wherein cell proliferation, cell production of MDEs and ECM degra-
dation have a stronger impact on the dynamics of the system than haptotactic cell movement and
diffusion of MDEs, which in turn have a stronger impact than random cell movement and cell phenotypic
changes [4, 5, 33, 49, 67]. To this end, we introduce a small parameter ε ∈R

+
∗ and choose the parameter

scaling

ν := ε, DM := ε, D := ε2, λ := ε2. (21)

Moreover, in order to explore the long-time behaviour of the system, we use the time scaling t → t

ε
in

the model (2). In so doing, recalling the definition given by (19), we obtain the following rescaled system
for the local cell population density function, nε(t, x, y), the MDE concentration, Mε(t, x) and the ECM
density, Eε(t, x):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε ∂tnε − ε ∂x

(
ε ∂xnε − nε μ(y) ∂xEε

)
= R(y, ρε) nε + ε2 ∂yynε,

ρε(t, x) :=
∫ Y

0

nε(t, x, y) dy,

ε ∂tMε − ε ∂xxMε =
∫ Y

0

p(y) nε(t, x, y) dy − κM Mε,

ε ∂tEε = −κE Eε Mε,

(x, y) ∈R× (0, Y). (22)

4.2. Formal limit for ε → 0

We make the real phase WKB ansatz [7, 22, 25]

nε(t, x, y) = e
uε (t,x,y)

ε , (23)

which gives

∂tnε = ∂tuε

ε
nε, ∂xnε = ∂xuε

ε
nε, ∂2

yynε =
(

1

ε2

(
∂yuε

)2 + 1

ε
∂2

yyuε

)
nε.

Substituting the above expressions into the PIDE (22)1 for nε and rearranging terms gives the following
Hamilton-Jacobi equation for uε ≡ uε(t, x, y)

∂tuε + μ(y) ∂xEε ∂xuε = R(y, ρε) + (∂xuε)
2 + (

∂yuε

)2 +
+ ε

(
∂2

xxuε − μ(y) ∂2
xxEε + ∂2

yyuε

)
, (x, y) ∈R× (0, Y).
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Now let ρ(t, x) be the leading-order term of the asymptotic expansion for ρε(t, x) as ε → 0. Considering
x ∈R such that ρ(t, x) > 0 (i.e. x ∈ Supp(ρ)) and letting ε → 0 in the above PDE we formally obtain the
following equation for the leading-order term u ≡ u(t, x, y) of the asymptotic expansion for uε(t, x, y)

∂tu + μ(y) ∂xE ∂xu = R(y, ρ) + (∂xu)
2 + (

∂yu
)2

, (x, y) ∈ Supp(ρ) × (0, Y), (24)

where E ≡ E(t, x) is the leading-order term of the asymptotic expansion for Eε(t, x).

Constraint on u. When ρε < ∞ for all ε ∈R
+
∗ , if uε is a strictly concave function of y and u is also a

strictly concave function of y whose unique maximum point is ȳ(t, x) then considering x ∈ Supp(ρ) and
letting ε → 0 in (23) formally gives the following constraint on u

u(t, x, ȳ(t, x)) = max
y∈[0,Y]

u(t, x, y) = 0, x ∈ Supp(ρ), (25)

which implies that

∂yu(t, x, ȳ(t, x)) = 0 and ∂xu(t, x, ȳ(t, x)) = 0, x ∈ Supp(ρ). (26)

Relation between ȳ(t, x) and ρ(t, x). Evaluating (24) at y = ȳ(t, x) and using (25) and (26), we find

R(ȳ(t, x), ρ(t, x)) = 0, x ∈ Supp(ρ),

from which, using the fact that the function R(y, ρ) is defined via (10), we obtain the following
formula

ρ(t, x) = ρmax r(ȳ(t, x)), x ∈ Supp(ρ). (27)

The monotonicity assumption (10) ensures that (27) gives a one-to-one correspondence between ȳ(t, x)
and ρ(t, x).

Expressions of M(t, x) and E(t, x). When nε is in the form (23), if uε is a strictly concave function of y and
u is also a strictly concave function of y that satisfies the constraint (25) then the following asymptotic
result formally holds

nε(t, x, y) −−⇀
ε→0

ρ(t, x) δȳ(t,x)(y) weakly in measures,

where δȳ(t,x)(y) is the Dirac delta centred at y = ȳ(t, x). In this case, focussing on a biological scenario
wherein the ECM density is at the maximum level Emax before cell invasion starts at t = 0, letting ε → 0 in
the PDE (22)3 for Mε and in the infinite-dimensional ODE (22)4 for Eε we formally obtain the following
expressions of the leading-order terms of the asymptotic expansions for Mε(t, x) and Eε(t, x)

M(t, x) = p(ȳ(t, x))

κM

ρ(t, x), E(t, x) = Emax
(
1 − 1Supp(M(t,·))(x)

)
, (28)

where 1(·) denotes the indicator function of the set (·).
Remark 1. Note that the behaviour of E(t, x) depicted by (28) shares similarities with the behaviour of
the nutrient concentration in the model analysed in [35].

Transport equation for ȳ. When R(y, ρ) is defined via (10), differentiating (24) with respect to y,
evaluating the resulting equation at y = ȳ(t, x) and using (25) and (26) yields

∂2
ytu(t, x, ȳ) + μ(ȳ) ∂xE ∂2

yxu(t, x, ȳ) = ∂yr(ȳ), x ∈ Supp(ρ). (29)

Moreover, differentiating (26) with respect to t and x we find, respectively,

∂2
tyu(t, x, ȳ) + ∂2

yyu(t, x, ȳ) ∂t ȳ(t, x) = 0 ⇒ ∂2
ytu(t, x, ȳ) = −∂2

yyu(t, x, ȳ) ∂t ȳ(t, x), x ∈ Supp(ρ)

and

∂2
xyu(t, x, ȳ) + ∂2

yyu(t, x, ȳ) ∂xȳ(t, x) = 0 ⇒ ∂2
yxu(t, x, ȳ) = −∂2

yyu(t, x, ȳ) ∂xȳ(t, x), x ∈ Supp(ρ).
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Substituting the above expressions of ∂2
ytu(t, x, ȳ) and ∂2

yxu(t, x, ȳ) into (29), and using the fact that if u is
a strictly concave function of y whose unique maximum point is ȳ(t, x) then ∂2

yyu(t, x, ȳ) < 0, gives the
following transport equation for ȳ(t, x)

∂t ȳ + μ(ȳ) ∂xE ∂xȳ = ∂yr(ȳ)

−∂2
yyu(t, x, ȳ)

, x ∈ Supp(ρ). (30)

4.3. Travelling wave analysis
4.3.1. Travelling wave problem
Substituting the travelling-wave ansatz

u(t, x, y) = u(z, y), ρ(t, x) = ρ(z), ȳ(t, x) = ȳ(z), M(t, x) = M(z), and E(t, x) = E(z)

with

z = x − c t, c ∈R
+
∗ ,

into (27), (28), and (30) gives

ρ(z) = ρmax r(ȳ(z)), z ∈ Supp(ρ), (31)

M(z) = p(ȳ(z))

κM

ρ(z), E(z) = Emax
(
1 − 1Supp(M)(z)

)
, (32)

(c − μ(ȳ)E′) ȳ′ = ∂yr(ȳ)

∂2
yyu(z, ȳ)

, z ∈ Supp(ρ). (33)

The expression (32) of E(z) makes it possible to simplify the differential equation (33) as follows

c ȳ′ = ∂yr(ȳ)

∂2
yyu(z, ȳ)

, z ∈ Supp(ρ). (34)

We complement the differential equation (34) with the following asymptotic condition

lim
z→−∞

ȳ(z) = 0, (35)

so that, since r(0) = 1 (cf. assumptions (10)), the relation (31) gives

lim
z→−∞

ρ(z) = ρmax. (36)

4.3.2. Shape of travelling waves
Since ∂yr(y) < 0 for y ∈ (0, Y] (cf. assumptions (10)) and given the fact that if u is a strictly concave
function of y whose unique maximum point is ȳ(t, x) then ∂2

yyu(t, x, ȳ) < 0, the differential equation (34)
along with the relation (31) ensure that

ȳ′(z) > 0 and ρ ′(z) < 0, z ∈ Supp(ρ). (37)

The relation (31) and the monotonicity results (37) along with the fact that r(Y) = 0 (cf. assumptions
(10)) imply that the position of the edge of the travelling front ρ(z) coincides with the unique point
� ∈R such that ȳ(�) = Y and ȳ(z) < Y on (−∞, �). Hence, Supp(ρ) = (−∞, �) and, since p(y) > 0 for
all y ∈ [0, Y] (cf. assumptions (13)), the expressions (32) of M(z) and E(z) yield

M(z) = ρmax
p(ȳ(z)) r(ȳ(z))

κM

1(−∞,�)(z), E(z) = Emax
(
1 − 1(−∞,�)(z)

)
. (38)
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5. Numerical simulations

In this section, we report on numerical solutions of the rescaled continuum model (22) and numerical
simulations of the corresponding rescaled version of the individual-based model, and we compare them
with the results of travelling wave analysis presented in the previous section.

5.1. Set-up of numerical simulations

We start by describing the set-up used to carry out numerical simulations.

5.1.1. Model functions and parameters
To allow the individual-based model to represent the same scenario as the rescaled continuum model
(22), we use the same time scaling tk → tk

ε
= k τ

ε
and reformulate the governing rules for the cell

dynamics detailed in Section 2 in terms of

nk
εi,j

≡ nε(tk, xi, yj) = n
( tk

ε
, xi, yj

)
:= Nk

εi,j

	x	y

, ρk
εi

≡ ρε(tk, xi) = ρ
( tk

ε
, xi

)
:= 	y

∑
j

nk
εi,j

,

Mk
εi

≡ Mε(tk, xi) = M
( tk

ε
, xi

)
, Ek

εi
≡ Eε(tk, xi) = E

( tk

ε
, xi

)
.

To ensure that conditions (18) and (21) are simultaneously satisfied, we additionally set

θ = 2τ

	2
x

ε2, η = 2Emaxτ

	2
x

ε, β = 2τ

	2
y

ε2.

In order to carry out numerical simulations, we consider the time interval [0, T] with T = 30.
Furthermore, we restrict the physical domain to the interval [0, X], with X = 100, and choose Y = 1.

Moreover, we specifically choose 	x = 5 × 10−2, 	y = 2 × 10−2 and τ = 	2
x

2
.

To satisfy assumptions (5), we use the definition

μ(y) := y2, (39)

while in order to satisfy assumptions (9), we define R(y, ρ) via (10) with α = 0.1 and, having chosen
Y = 1, we further define

r(y) := 1 − y2. (40)

To satisfy assumptions (13) on p(y), we also define

p(y) := pmin + ζy2, (41)

where ζ = 10−5 and pmin = 10−7. Furthermore, in the simulations we choose κM = 1, κE = 1 and Emax = 1.

5.1.2. Initial conditions
We consider a biological scenario in which, initially, the cell population is localised along the x = 0
boundary of the spatial domain and most of the cells are in the phenotypic state y = ȳ0 at every position
x ∈ [0, X]. Specifically, we implement the following initial cell distribution for the IB model

N0
i,j = int(F(xi, yj)) with F(x, y) := A0 C e−x2

e− (y−ȳ0)
2

ε , (42)

where int(·) is the integer part of (·) and C is a normalisation constant such that

C
∫ Y

0

e− (y−ȳ0)
2

ε dy = 1.
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Figure 3. Numerical simulation results of the individual-based model (top row) and numerical solutions
of the corresponding continuum model (22) (bottom row) in the case where ε = 10−2. The plots display,
from left to right, the cell population density, nε, the cell density, ρε, the MMP concentration, Mε, and
the ECM density, Eε, at progressive times (i.e. t = 10, t = 20 and t = 30) for both modelling approaches.
Top row. The results from the individual-based model were obtained by averaging over five simulations
(solid blue lines), and we additionally plot the corresponding results of each simulation (solid cyan
lines). We also include the equivalent numerical solutions of the continuum model (dotted red lines)
for comparison. Bottom row. The values of ρε, Mε and Eε (solid red lines) are plotted along with the
corresponding values obtained by substituting ȳ(t, x) = ȳε(t, x) into the formulas given by (27) and (28)
(black dotted lines), with ȳε(t, x) being the maximum point of the numerical solution nε(t, x, y) to the
PIDE (22)1 at position x at time t.

We choose ȳ0 = 0.2 and A0 = 100. The initial cell density ρ0
i is then calculated from (42) according to

the definition given by (3), and we set ρmax = max
i

ρ0
i .

Moreover, we assume that there are initially no MDEs and the density of ECM is uniform, that is,

M0
i = 0 and E0

i = Emax for all i.

Finally, we consider different values of ε, that is, ε ∈ {
10−2, 5 × 10−3, 10−3

}
, in order to verify whether,

for ε small enough, there is a good agreement between the results of numerical simulations and the
results of formal asymptotic analysis for ε → 0 presented in Section 4.

5.2. Computational implementation of the individual-based model

All simulations of the individual-based model were performed in Matlab, and the numerical scheme
used to solve the rescaled system (22) was also implemented in Matlab.

In the individual-based model, at each time-step, every single cell undergoes a four-step process: (i)
random cell movement, according to the probabilities defined via (4); (ii) haptotactic cell movement,
according to the probabilities defined via (6); (iii) phenotypic changes, according to the probabilities
defined via (7); and (iv) cell division and death, according to the probabilities defined via (8). For every
single cell, during each step of this process, a random number is drawn from the standard uniform
distribution on the interval (0, 1) using the built-in Matlab function rand. It is then evaluated whether
this number is lower than the probability of the event occurring and if so the event occurs. Since to carry
out numerical simulations we have to restrict the spatial domain to the interval [0, X], the attempted
movement of a cell is aborted if it requires moving out of this interval. Furthermore, the concentration
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Figure 4. Numerical simulation results of the individual-based model (top row) and numerical solutions
of the corresponding continuum model (22) (bottom row) in the case where ε = 5 × 10−3. The plots
display, from left to right, the cell population density, nε, the cell density, ρε, the MMP concentration,
Mε and the ECM density, Eε, at progressive times (i.e. t = 10, t = 20 and t = 30) for both modelling
approaches. Top row. The results from the individual-based model were obtained by averaging over five
simulations (solid blue lines), and we additionally plot the corresponding results of each simulation
(solid cyan lines). We also include the equivalent numerical solutions of the continuum model (dotted
red lines) for comparison. Bottom row. The values of ρε, Mε and Eε (solid red lines) are plotted along
with the corresponding values obtained by substituting ȳ(t, x) = ȳε(t, x) into the formulas given by (27)
and (28) (black dotted lines), with ȳε(t, x) being the maximum point of the numerical solution nε(t, x, y)
to the PIDE (22)1 at position x at time t.

of MDEs and the density of ECM are calculated using the discrete difference equations (14) and (15),
respectively.

5.3. Numerical methods for the continuum model

To solve numerically the rescaled system (22) posed on (0, T] × (0, X) × (0, Y) subject to zero-flux
boundary conditions and complemented with the continuum analogues of the initial conditions selected
for the individual-based model, we employ a finite volume scheme modified from our previous
work [12].

5.4. Main results of numerical simulations

Our main results of the numerical simulations of the individual-based model and the corresponding
numerical solutions of the continuum model (22) for three distinct values of the scaling parameter ε

are summarised by the plots in Figures 3-5, which correspond to ε = 10−2, ε = 5 × 10−3 and ε = 10−3,
respectively.

The plots in the top rows of Figures 3–5 are the results of the individual-based model averaged over
5 simulations. In particular, from left to right, we have the cell population density, nk

εi,j
, the cell density,

ρk
εi
, the MDE concentration, Mk

εi
and the ECM density, Ek

εi
, at progressive times. On the other hand, the

plots in the bottom rows of Figures 3–5 are the numerical solutions of the continuum model, which are
plotted along with the corresponding analytical results presented in Section 4.
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Figure 5. Numerical simulation results of the individual-based model (top row) and numerical solutions
of the corresponding continuum model (22) (bottom row) in the case where ε = 10−3. The plots display,
from left to right, the cell population density, nε, the cell density, ρε, the MMP concentration, Mε and
the ECM density, Eε, at progressive times (i.e. t = 5, t = 10 and t = 15) for both modelling approaches.
Top row. The results from the individual-based model were obtained by averaging over five simulations
(solid blue lines), and we additionally plot the corresponding results of each simulation (solid cyan
lines). We also include the equivalent numerical solutions of the continuum model (dotted red lines)
for comparison. Bottom row. The values of ρε, Mε and Eε (solid red lines) are plotted along with the
corresponding values obtained by substituting ȳ(t, x) = ȳε(t, x) into the formulas given by (27) and (28)
(black dotted lines), with ȳε(t, x) being the maximum point of the numerical solution nε(t, x, y) to the
PIDE (22)1 at position x at time t.

These plots show that there is a good agreement between the results of numerical simulations of the
individual-based model and numerical solutions of the continuum model. This validates the limiting pro-
cedure that we employed to formally derive the continuum model. The same plots also demonstrate that
the smaller is the value of ε, then the better the agreement between numerical solutions of the rescaled
continuum model and the analytical results presented in Section 4. This validates the formal asymptotic
method that we used to construct, in the limit as ε → 0, invading fronts with spatial structuring of cell
phenotypes. In particular, the plots in Figure 5 demonstrate that, when ε is sufficiently small:

(i) The local cell population density function nε(t, x, y) becomes concentrated as a sharp Gaussian
with maximum at a point ȳε(t, x) for all x where ρε(t, x) > 0.

(ii) The maximum point ȳε(t, x) behaves like a compactly supported and monotonically increasing
travelling front that connects 0 to Y – recall that here Y = 1. This indicates that cells in pheno-
typic states y ≈ Y are concentrated towards the leading edge of the invading front, while cells in
phenotypic states corresponding to smaller values of y make up the bulk of the population in the
rear.

(iii) The cell density ρε(t, x) behaves like a one-sided compactly supported and monotonically
decreasing travelling front that connects ρmax to 0.

(iv) The values of ρε, Mε and Eε are consistent with the values obtained by substituting ȳ(t, x) = ȳε(t, x)
into the formulas given by (27) and (28).

6. Conclusion

We have formulated a model for cancer invasion in which the infiltrating cancer cells can occupy a
spectrum of states in the phenotype space, ranging from ‘fully mesenchymal’ to ‘fully epithelial’. More
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precisely, the more mesenchymal cells are those that display stronger haptotaxis responses and have
greater capacity to modify the ECM through enhanced secretion of MDEs. However, as a trade-off,
they have lower proliferative capacity than the more epithelial cells. The framework is multiscale in
that we start with an individual-based model that tracks the dynamics of single cells and is based on
a branching random walk over a lattice, where cell movements take place through both physical and
phenotype space. By applying limiting techniques, we have formally derived the corresponding contin-
uum model, which takes the form of system (2). Despite the intricacy of the model, we showed, through
formal asymptotic techniques, that for certain parameter regimes it is possible to carry out a detailed
travelling wave analysis and obtain the form for the wave profile. Simulations have been performed of
both the individual-based model and the continuum model, which generally show excellent correspon-
dence. Moreover, when parameter values are chosen from the appropriate parameter regime, numerical
solutions to the continuum model match closely with the corresponding analytical form. This validates
the formal limiting procedure that we employed to derive the continuum model alongside the formal
asymptotic method that we used to characterise the wave profile.

Notably, solutions to the model reveal a capacity for self-organisation, in the sense that an initially
almost homogeneous population resolves itself into an invading front with spatial structuring of phe-
notypes. Precisely, the most mesenchymal cells dominate the leading edge of the invasion wave and
the most epithelial (and most proliferative) dominate the rear, representing a bulk tumour population.
As such, the model recapitulates similar observations into a front to back structuring of invasion waves
into leader-type and follower-type cells, witnessed in an increasing number of experimental studies over
recent years [68].

A number of other continuum models have been formulated to study how phenotypic diversity alters
cancer invasion processes. These include those intended to describe “go-or-grow” dynamics, a term
coined for glioma growth processes where a dichotomy of cells into proliferating or migrating cell types
has been suggested [30]. In many of these models, heterogeneity is restricted to binary states (a pro-
liferating class and a migrating class), with functions defining the state to state transitions. Often these
models have restricted to relatively simple assumptions for cell migration processes, e.g. a simple diffu-
sion process [57, 63], although more complex movement models have also been considered, e.g. [19].
The model here expands the potential framework for modelling go-or-growth processes, to cover all
potential states between fully proliferative and fully migratory. Binary cell state models with distinct
proliferative and migratory characteristics have also been developed to describe acid-mediated cancer
invasion [65], where a similar wave structuring of the distinct populations can be found under certain
configurations. Invasion models with continuous phenotypes that range from more migratory to more
proliferative states have been applied to avascular cancer growth, where further variables are included to
describe tissue oxygen levels [23]. The study here provides a structure for more detailed analytical studies
into the travelling wave dynamics observed in these primarily numerically-based investigations. While
not specifically focussing on cancer invasion, continuous phenotypic structuring models have also been
developed and analysed for chemotaxis-driven wave invasion in [40] and density- or pressure-driven
wave invasion in [41, 46]; the study here expands on the methodologies introduced therein, reinforcing
their utility to study a diverse range of models used to explain invasion processes.

There are, clearly, various further extensions that could be considered. The current study has concen-
trated on invasion processes in 1D for each of physical space (i.e. a transect across the invading front)
and phenotype space (from epithelial-like to mesenchymal-like). It is possible, of course, to extend the
dimensionality of either or both of these spaces. As a way of illustration, preliminary simulations are
presented in Figure 6 for an extension to 2D for the physical space in the individual-based model, where
from an initial population concentrated at the origin we observe the emergence of a quasi-symmetric
growing tumour with leader-to-follower structuring across the radial transect (consistent with the cor-
responding 1D model). A natural question to explore in two dimensions would be whether there are
conditions under which the symmetric growth breaks, e.g. whether spatial structuring such as ‘tumour
fingering’ emerges. Previous models have shown that fingering can occur in various scenarios, such as
tumour infiltration into heterogeneous ECM environments [6] and tumour growth in the presence of
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Figure 6. Preliminary 2D results from the individual-based model, obtained by averaging over 15
simulations, in the case where ε = 10−2. Top and middle rows. The plots display, from left to right,
the maximum point of the cell population density, ȳε = arg maxy∈[0,Y]nε, the cell density, ρε, the MMP
concentration, Mε, and the ECM density, Eε, at the start and end of simulations – i.e. t = 0 (top) and t = 5
(middle). Bottom row. The plots display, from left to right, ȳε, ρε, Mε and Eε across the radial transect at
the end of simulations (i.e. at t = 5). Here x ≡ (x1, x2) ∈ [0, 10] × [0, 10] with 	x1 = 	x2 = 0.1, y ∈ [0, 1]
with 	y = 0.02, and the initial cell distribution is the 2D analogue of (42) with A0 = 1, while all the
other parameters and functions are kept the same as in the 1D simulations of Figures 3–5.

cells with different mobilities [21, 43]. Whether it is also possible for such phenomena to develop under
certain assumptions for the manner in which phenotypic transitions occur could be a point of focus.

Extensions in the dimensionality of the phenotype space may also be of interest. Here we have consid-
ered a linear pathway from the fully epithelial state to the fully mesenchymal state – i.e. where reduced
proliferation is accompanied simultaneously by an upregulation in both haptotaxis and secretion of
MDEs. Given that EMTs in cancers can often be ‘partial’ in nature [68], it is possible that different
pathways could be taken from epithelial to mesenchymal: cells could follow separate pathways in which
first haptotactic movement is upregulated and then secretion of MDEs, or vice versa. Extensions to a
higher dimensionality in the phenotype space would allow exploration into whether this can give rise to
additional subtlety in the positioning of different phenotypes.

Another natural extension would be to target the model towards particular experimental studies of
leader–follower behaviour, by incorporating system-specific phenomena. For example, studies of col-
lective invasion in non-small cell lung cancer (NSCLC) tumour spheroids have led to an experimental
model of invasion with intricate signalling between leader and follower cells [38]: in terms of move-
ment, leader cells secrete fibronectin and release VEGF that guides follower cell movements through
chemotaxis; in terms of proliferation, followers secrete factors to promote leader cell proliferation, while
leaders secrete factors that hinder follower growth. Adapting the model to include these additional fac-
tors and their impact on follower/leader behaviour would provide a means to test the experimental model
and, for example, investigate how perturbations to various aspects of the signalling system would impact
on the rate of infiltration.
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Further exploration could be made into the processes that lead to phenotypic changes. Here, we
have adopted the relatively simple assumption of (unbiased) random phenotype switches, which at the
cell-population level leads to diffusion across phenotype space. It is also quite plausible that phenotype
changes may be biased in particular directions – e.g. from epithelial towards mesenchymal (or vice versa)
– and that the direction and strength of the bias changes with the tumour microenvironment [1]. Our
model has also decoupled proliferation from phenotypic changes, effectively assuming that proliferative
events lead to daughter cells of the same phenotype; divisions may also occur in an asymmetric manner
– e.g. division of a follower cell leading to a daughter of leader phenotype. With our framework, the
impact of such changes can be investigated both at the individual and continuous level.

Summarising, the work here provides the framework for developing and analysing sophisticated
haptotaxis models for cancer invasion in which the cell population contains significant phenotypic het-
erogeneity. While these models present significant challenges at both a numerical and analytical level,
we believe the methods developed and described here can allow for further progress in this area.
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Appendix A

A.1 Formal derivation of the continuum model (2)
We provide the full details of the formal derivation of the continuum model (2) from the individual-based
model presented in Section 2, which relies on an extension of the limiting procedure that we previously
employed in [12, 16, 45, 46].
A.1.1 Equation for cell population density. When cell dynamics are governed by the rules underlying
the individual-based model presented in Section 2, the principle of mass balance gives, for the cell
population density,
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Using the fact that for τ , 	x and 	y sufficiently small the following relations hold

nk
i,j ≈ n(t, x, y) ≡ n, nk+1
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(E − E(t, x − 	x))+

]}
(A2)

+ n(t, x, y + 	y)

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ n(t, x, y − 	y)

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}
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+ n(t, x + 	x, y)

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ n(t, x − 	x, y)

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ n

{
(1 − β) [1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}
.

Assuming the function n to be sufficiently regular, we now use the following Taylor expansions

n(t, x, y ± 	y) = n ± 	y

∂n

∂y
+ 	2

y

2

∂2n

∂y2
+ h.o.t., n(t, x ± 	x, y) = n ± 	x

∂n

∂x
+ 	2

x

2

∂2n

∂x2
+ h.o.t.,

n(t, x + 	x, y ± 	y) = n + 	x

∂n

∂x
± 	y

∂n

∂y
+ 	2

x

2

∂2n

∂x2
+ 	2

y

2

∂2n

∂y2
± 	x	y

∂2n

∂x∂y
+ h.o.t.,

n(t, x − 	x, y ± 	y) = n − 	x

∂n

∂x
± 	y

∂n

∂y
+ 	2

x

2

∂2n

∂x2
+ 	2

y

2

∂2n

∂y2
∓ 	x	y

∂2n

∂x∂y
+ h.o.t.,

which allow us to rewrite (A2) as

n(t + τ , x, y) = (A3)

n

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	x

∂n

∂x

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	y

∂n

∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	x	y

∂2n

∂x∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ n

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

− 	x

∂n

∂x

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	y

∂n

∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

− 	x	y

∂2n

∂x∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}
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+ 	2
x

2

∂2n

∂x2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ n

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	x

∂n

∂x

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	y

∂n

∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x	y

∂2n

∂x∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ n

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

− 	x

∂n

∂x

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

− 	y

∂n

∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	x	y

∂2n

∂x∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ n

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ 	y

∂n

∂y

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ n

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

− 	y

∂n

∂y

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}
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+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ n

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	x

∂n

∂x

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ n

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

− 	x

∂n

∂x

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ n

{
(1 − β) [1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}
+ h.o.t.

Then rearranging and collecting terms of derivatives of n, we obtain

n(t + τ , x, y)

= n

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}
(A4)

+ n

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ n

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ n

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ n

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ n

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ n

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ n

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ n

{
(1 − β) [1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}
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+ 	x

∂n

∂x

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x

∂n

∂x

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	x

∂n

∂x

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x

∂n

∂x

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	x

∂n

∂x

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x

∂n

∂x

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	y

∂n

∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	y

∂n

∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

− 	y

∂n

∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	y

∂n

∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	y

∂n

∂y

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

− 	y

∂n

∂y

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ 	x	y

∂2n

∂x∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x	y

∂2n

∂x∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

− 	x	y

∂2n

∂x∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	x	y

∂2n

∂x∂y

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}
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+ 	2
x

2

∂2n

∂x2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ 	2
y

2

∂2n

∂y2

{
β

2
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}
+ h.o.t.

Further simplifying yields

n(t + τ , x, y) = (A5)

n

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}
+ n

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ n

{
β [1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ n

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ n

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ n

{
(1 − β) [1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ 	x

∂n

∂x

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x

∂n

∂x

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	x

∂n

∂x

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x

∂n

∂x

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}
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+ 	y

∂n

∂y

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	y

∂n

∂y

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
(1 − β) [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}
+ h.o.t.

Cancelling out β terms, where possible, we find

n(t + τ , x, y) = n

{
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}
(A6)

+ n

{
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ n

{
[1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ 	x

∂n

∂x

{
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x

∂n

∂x

{
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	y

∂n

∂y

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	y

∂n

∂y

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
[1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}
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+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
θ

2
+ ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
1 − θ − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}
+ h.o.t.

Cancelling out θ terms, where possible, we obtain

n(t + τ , x, y) = n

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

+ n

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}
(A7)

+ n

{
[1 + τR]

[
1 − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}

+ 	x

∂n

∂x

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x

∂n

∂x

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	y

∂n

∂y

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	y

∂n

∂y

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
[1 + τR]

[
θ + ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
1 − ημ

2Emax

[
(E(t, x + 	x) − E)+ + (E(t, x − 	x) − E)+

]]}
+ h.o.t.

We can then rearrange the equations to obtain

n(t + τ , x, y) = n

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

+ n

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}
(A8)
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+ n [1 + τR] − n

{
[1 + τR]

[
ημ

2Emax

[
(E(t, x + 	x) − E)+

]]}

− n

{
[1 + τR]

[
ημ

2Emax

[
(E(t, x − 	x) − E)+

]]}

+ 	x

∂n

∂x

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x

∂n

∂x

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	y

∂n

∂y

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	y

∂n

∂y

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2
θ [1 + τR] + 	2

x

2

∂2n

∂x2

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2
β [1 + τR] − 	2

y

2

∂2n

∂y2

{
β [1 + τR]

[
ημ

2Emax

[
(E(t, x + 	x) − E)+

]]}

− 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
ημ

2Emax

[
(E(t, x − 	x) − E)+

]]}
+ h.o.t.

Now, using the fact that, for real functions f , the relation (f )+ − ( −f )+ = f holds, we have

n(t + τ , x, y) = n

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))

]}
(A9)

+ n

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))

]}
+ n [1 + τR]

+ 	x

∂n

∂x

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

− 	x

∂n

∂x

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	y

∂n

∂y

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}
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− 	y

∂n

∂y

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
x

2

∂2n

∂x2
θ [1 + τR] + 	2

x

2

∂2n

∂x2

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))+

]}

+ 	2
x

2

∂2n

∂x2

{
[1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))+

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x + 	x))

]}

+ 	2
y

2

∂2n

∂y2

{
β [1 + τR]

[
ημ

2Emax
(E − E(t, x − 	x))

]}

+ 	2
y

2

∂2n

∂y2
β [1 + τR] + h.o.t.

Next, assuming the function E to be sufficiently regular, substituting the following Taylor expansion

E(t, x ± 	x) = E ± 	x

∂E

∂x
+ 	2

x

2

∂2E

∂x2
+ h.o.t.

into (A9) and removing higher-order terms, we obtain

n(t + τ , x, y) = n

{
[1 + τR]

[
ημ

2Emax

(
−	2

x

∂2E

∂x2

)]}
+ n [1 + τR] (A10)

+	x

∂n

∂x

{
[1 + τR]

[
ημ

2Emax

(
−	x

∂E

∂x

)
+

]}
− 	x

∂n

∂x

{
[1 + τR]

[
ημ

2Emax

(
	x

∂E

∂x

)
+

]}

+	y

∂n

∂y

{
β [1 + τR]

[
ημ

2Emax

(
−	x

∂E

∂x

)
+

]}
− 	y

∂n

∂y

{
β [1 + τR]

[
ημ

2Emax

(
	x

∂E

∂x

)
+

]}

+	2
x

2

∂2n

∂x2
θ [1 + τR] + 	2

y

2

∂2n

∂y2
β [1 + τR] + h.o.t.

Absorbing terms of order O(τ	2
x) and O(τ	2

y) into h.o.t. yields

n(t + τ , x, y) = n

{[
ημ

2Emax

(
−	2

x

∂2E

∂x2

)]}
+ n [1 + τR] (A11)

+	x

∂n

∂x

{[
ημ

2Emax

(
−	x

∂E

∂x

)
+

]}
− 	x

∂n

∂x

{[
ημ

2Emax

(
	x

∂E

∂x

)
+

]}

+	y

∂n

∂y

{
β

[
ημ

2Emax

(
−	x

∂E

∂x

)
+

]}
− 	y

∂n

∂y

{
β

[
ημ

2Emax

(
	x

∂E

∂x

)
+

]}

+	2
x

2

∂2n

∂x2
θ + 	2

y

2

∂2n

∂y2
β + h.o.t.
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Once again, using the relation (f )+ − (−f )+ = f for real functions f , we find

n(t + τ , x, y) = n

{[
ημ

2Emax

(
−	2

x

∂2E

∂x2

)]}
+ n [1 + τR] + 	x

∂n

∂x

{[
ημ

2Emax

(
−	x

∂E

∂x

)]}
(A12)

+	y

∂n

∂y

{
β

[
ημ

2Emax

(
−	x

∂E

∂x

)]}
+ 	2

x

2

∂2n

∂x2
θ + 	2

y

2

∂2n

∂y2
β + h.o.t.

Further rearranging gives

n(t + τ , x, y) = θ	2
x

2

∂2n

∂x2
− 	2

xημ

2Emax

[
n
∂2E

∂x2
+ ∂n

∂x

∂E

∂x

]
+ n + τRn + 	2

yβ

2

∂2n

∂y2
(A13)

− β	y	x

[
ημ

2Emax

∂E

∂x

]
∂n

∂y
+ h.o.t.

Dividing both sides of (A13) by τ yields

n(t + τ , x, y) − n

τ
= θ	2

x

2τ

∂2n

∂x2
− 	2

xημ

2Emaxτ

[
n
∂2E

∂x2
+ ∂n

∂x

∂E

∂x

]
+ Rn

+ 	2
yβ

2τ

∂2n

∂y2
− β	y	x

τ

[
ημ

2Emax

∂E

∂x

]
∂n

∂y
+ h.o.t.

Now letting the time-step τ → 0, the space-step 	x → 0 and the phenotype-step 	y → 0 in such a way
that

	2
xθ

2τ
→ D ∈R

+
∗ ,

	2
xη

2Emaxτ
→ ν ∈R

+
∗ , and

	2
yβ

2τ
→ λ ∈R

+
∗

and using the definition for χ (y) given by (19), we formally obtain

∂n

∂t
= D

∂2n

∂x2
− χ (y)

[
n
∂2E

∂x2
+ ∂n

∂x

∂E

∂x

]
+ Rn + λ

∂2n

∂y2
, (A14)

which further simplifies to

∂n(t, x, y)

∂t
= D

∂2n(t, x, y)

∂x2
− χ (y)

∂

∂x

(
n(t, x, y)

∂E(t, x)

∂x

)
+ R(y, ρ)n(t, x, y) + λ

∂2n(t, x, y)

∂y2
, (A15)

from which, rearranging terms, we recover the PIDE (2)1 for n(t, x, y).

Remark 2. Under the initial conditions and the assumptions on the model functions and in the asymp-
totic regime considered here, the cell density ρ(t, x) behaves like a one-side compactly supported and
monotonically decreasing travelling front, while the ECM density E(t, x) is identically equal to 0 on
the support of ρ(t, x) and identically equal to Emax = 1 outside the support of ρ(t, x) (i.e. ahead of the
cell travelling front). Hence, since for each t the relation Supp (n(t, x, y)) ⊆ Supp (ρ(t, x)) holds y by y,
despite the fact that the ECM density E(t, x) jumps from 0 to Emax = 1 moving from inside to outside
Supp (ρ(t, x)), we expect the formal method that we have employed to derive the PIDE (A15) from the
underlying IB model to apply for x ∈ Supp (ρ(t, x)). This is confirmed by the good agreement between
the cell dynamics predicted by numerical simulations of the IB model and numerical solutions of the
corresponding continuum model.

A.1.2 Equations for the MDE concentration and the ECM density. Using first the fact that for τ , 	x

and 	y sufficiently small the following relations hold
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nk
i,j ≈ n(t, x, y), Ek

i ≈ E(t, x), Mk
i ≈ M(t, x), Mk

i±1 ≈ M(t, x ± 	x),

nk+1
i,j ≈ n(t + τ , x, y), Ek+1

i ≈ E(t + τ , x), Mk+1
i ≈ M(t + τ , x), p(yj) ≈ p(y),

and then letting 	τ → 0, 	x → 0 and 	y → 0 in the difference equations (14) and (15), one formally
obtains the PDE (2)3 for M(t, x) and the infinite-dimensional ODE (2)4 for E(t, x).
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