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ABSOLUTE TAUBERIAN CONSTANTS FOR
HAUSDORFF TRANSFORMATIONS

SORAYA SHERIF

1. Introduction. Let {u,}50 be a fixed sequence of real or complex numbers.
The Hausdorff transform {#,} of a sequence {s,} by means of the fixed sequence
{un}meo (or, in short, the (H, u,) transform) is given by

(1.1) bn= 2, (Z)(A""‘u,,)sk, n=0120...
k=0
where, for r, ¢ = 0,
(1.2) Ap, = pgy  Apg = pg — pgp1, Ay, = A(ATg).

K. Knopp and G. G. Lorentz [6] have shown (a simpler proof was given by
Jakimovski [5, Equation (3.1)]) that if (1.1) and (1.2) hold and if

(13) ln=bo+b1+ ........ +bn, sk=a0+a1—l—...+ak,

then the series-to-series Hausdorff transform b, of > a, (unless otherwise
indicated, the symbol Y stands for >_¢) is such that

bo = moao
1 z n n—k
(1.4) b=, LZ_I (k)k(A w)a, no=1,2,3,...

If (1.1)-(1.4) hold, then we say that the sequence {s,} is absolutely summable
(H, ) or summable |H, u,|, if the sequence {#,} is of bounded variation or
equivalently if

2 [ba| < 0.

(For the definition of absolute summability, see [2; 4; 8; 10].)
In sections 2 and 3 of this paper, we shall prove the following two

inequalities:
(1.5) > b — @ £ K Y |A(nay)|,
(1.6) Db —a =4 Y A(% ; m,) ,

where K and A4 are absolute Tauberian constants.
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Estimates of this form have been shown in Sherif [9] for the absolute Cesaro
means. Since, as is well-known (cf. [3, p. 251]), when

(15) w=1/("FH),

the (H, w,) method reduces to the Cesaro method (C, k) the results of this
paper include those of [9]. This will be verified in Remarks 2.1 and 3.1.
The estimates (1.5) and (1.6) are analogous to results obtained for other
summability methods by various authors. For a discussion of these analogous
estimates, see Sherif [9].
I have much pleasure in expressing my gratitude to Professor B. Kuttner
for his criticisms and suggestions for improvements to present this paper.

2. THEOREM 2.1. Let {u,} be a moment sequence generated by the real function
of bounded variation x on 0 = t = 1 so that

1) = [ raxo,
where
(2.2) x(0+) = x(0) =0, x(1) =1,
and
(2.3) J;l I_X_Et_)_l dt < 0.

Then (1.5) holds with

_ (T1x0]

(2.4) K = fo ; dt.

I
(2.5) x(t) = 0,

the constant given in (2.4) s the best possible in the sense that (1.5) becomes false
if K is replaced by any smaller constant.

Remark 2.1. In the case of summability (C, k) (& > 0), we have x(¢) =
1 — (1 — )% (k> 0), and equation (2.4) becomes

X 1-1 =0,  ('l1-4, T'(k+1)
(2.6) K=‘£—t——dt— T a T Thrn T

(v is Euler’s constant) by Bateman [1, p. 16].
Thus, Theorem 2.1 for x(¢t) =1 — (1 — £)* (¢ > 0), is Theorem 2.1 of
Sherif [9].

For the proof of Theorem 2.1, we require the following lemma.
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LeEmMA [7, p. 167, Theorem 5]. Let

2.7) Ay =2 onyfo
Suppose that ’

(2.8) > || is bounded.
Let '

(2.9) K =sup 2. lan,s-
Then "

(2.10) 2 4. =K 3,

and this constant is the best possible in the sense that (2.11) becomes false if K is
replaced by any smaller constant.

Proof of Theorem 2.1. Since

1 1=
(2.11) Gy = My = — ; A(va,),

it follows from (1.4) and (2.11) that for n = 1,
1 n n . k—1
b= =15 (@ 3 a0
k=1 =0

(2.12) T Z;:: A(”""){kil(;:) (An_k“")} ‘

It thus follows from (2.11) and (2.12) that

-2, (e ]

v

Il

n—1

b, — a, = Z A(Va,,)

=0

n—1

= Z A(va,)

y=0

0 (Z) ( An_k#k)] (¢f. 13, Formula (11.5.5)])

k;vo (Z) f: 1~ t)""‘dx(t)]
J;ldx(l) LX; (Z)t"(l — t)"—k:l.
Now,

(2.14) ;id—t{ PO (Z)t’“(l — t)”"‘} = ; k(:)t’“—l(l — )t

= - ,;0 (n — k)(Z)t"(l oy,

n—1

Z A(va,)

r=0 -

T
RN~ V= Bl= I =
T

n—1

Z A(va,)

»=0 -

(2.13)
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where the first term on the right hand side of (2.14) is to be taken to be 0 if
v = 0. Since

n n
(2.15) (n — k)(k) = (k+ 1)(k 1 1)
we see on replacing k& by k£ -+ 1 in the first sum that the expression (2.14)
reduces to
n v n—1l—vy
(2.16) - @+1) (V 4 l)t Q-1 .

Integrating by parts in (2.13) and using (2.16) we obtain

2.17) b, —a, = 7:2: A(vap)[(n : 1) J: (1 — t)”_l_”x(t)dt:l, where (g) =1.

Now, (2.17) is a transformation of the type considered in the Lemma, and
forn = 1,

;

0, (v =n)

218) oy = {(ﬂ - 1) f:m — T (0l (0 € v < — 1),

Thus, the conditions of the Lemma are satisfied with

(2.19) K =supS,

S, = nil (" ; 1)’ f:t”(l — z)"‘l“”x(t)dt.

where

(2.20) < nil (” N 1) J: IxO (1 — )"*"dt
- [eod s ("7 )i ota
@21) - J I‘Lfl' d.

Hence (1.5) holds with K given by (2.4), as claimed. Further if (2.5) holds,
then there is equality in (2.20) and the final conclusion follows from the
Lemma.

3. THEOREM 3.1. Let x(t) be a real valued function defined for 0 <t < 1,
satisfying (2.2), and with x(¢)/t of bounded variation there. Let {u,} be the
moment sequence generated by x so that (2.1) holds. Then (1.6) holds with

()

3.1) 4 =sup {(V + l)f0 £ x (@) dt + J; t1— 1)
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If (2.5) holds, and if x(t)/t is monotonic (in the case in which x(¢)/t is non-
increasing, this hypothesis implies that (2.5) holds (since x(1) = 1) and the
assumption (2.5) may therefore be omitted), then (3.1) is the best possible
result in the sense that (1.6) becomes false if A is replaced by any smaller constant.

Further (3.1) can be simplified; if x(¢)/t is non-increasing, we have

(3.2) A4 = j: lt@—) di;

if (2.5) holds and x(t)/t is increasing, we have

(3.3) A=201-1) — fol—’ig—tldz,
where
(3.4) I=lmpu, = x(1) — x(A1-).

Remark 3.1. When x(¢) = 1 — (1 — ¢)*, then condition (2.5) is satisfied in
any case. If & > 1, x(¢)/¢ is non-increasing, while if 0 < & < 1, x(¢)/¢ is non-
decreasing. Hence, it is easily seen using (2.6) that Theorem 3.1 for x(¢) =
1 — (1 — #)* is Theorem 3.1 of Sherif [9].

Proof of Theorem 3.1. Let

{On-—O
Uy
n+12va,,n_1

Write
O = —Aup_y = u, — U,y forn = 1.
Then
na, = (n + Du, — nu,_y,

= U, + 1y,

= ; by + NP,
Thus
(35) __Z o+ ¢y, n= 1.

n =1

Substituting with (3.5) in (1.4), we find that for n = 1,

1 Z n n—k 1 £
=B+ D (say).
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But
1 (m) anr )y
B - n = (k) (A F‘k) ; ¢v

_1ly5 s~ (7) (gnt

- n = ¢l’ = (k) (A ”k)

1% o= 8 ()]
n =1 ’ k=0 k Ha
1 n 1 y—1 n

= - qb,[l — ) dx® 2 ( )t"(l - t)"“"].
n =1 0 k=0 k

Using an argument similar to that used in deducing (2.16), and integration
by parts, we obtain

3.7) B=1 y; qs,[l _ y(’z) JOI LOra — t)”“”dt:‘.
Also
(3.8) D= ;11- ; (’z)mp, fo L (O (1 — 1y

Integrating the integral in (3.8) by parts, and using (2.15), it follows that

n

(39) D=15 vs, f: x(t){(v + 1)(V v l)m —

n =1

— (’Z)t”‘l(l — t)”‘”}dt + 6

(The extra term ¢, occurs in (3.9) since in the integration by parts of the
integral in (3.8), the term (1 — )" does not vanish at { = 1 in the case
v = n.) It thus follows from (3.5), (3.6), (3.7) and (3.9) that

b= L3 m[ J: X(t){v(u n 1)(V " 1)‘ @ — oy

n =
- (v + 1)(’:)15”“(1 - t)““”}dt].

Thus

(3.10) by — an = 21; (’: - i)qs, f:ﬂ {(n e — gy

— v+ 1)a - t)"‘"}dt.
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Now (3.10) is a transformation of the type considered in the Lemma, and for
n=1,

0, (»>mn)
n—1 ! x (£)
G.11) a,, = (V-— 1).[0 T
TN = DA = G DE A=l 6 S 1),
e+ 1)f0 P Odt, o = n).

It follows by integration by parts thatfor1 < v < n — 1,

_(n—1 ! n—r 1 (X(t))
(3.12) an,,,-—(y_1>J;(1—t) 1" a )
Thus, the conditions of the Lemma are satisfied with
(3.13) A = sup ¢,.

where

(3.14) ¥, = Z .

Now, we can deduce at once from (3.11), (3.12) and (3.14) that

lIA

b oD [ ol

(3.15) e (1; - 1) pr - t),,_,}

0 \n=p+1 1
=@+n£7ﬂWWHgfm-”d@9)

with equality in the case in which (2.5) holds and x(¢)/¢ monotonic.

This completes the proof except for the simplification when (2.5) holds and
x (¢)/t is monotonic.

If x(¢)/t is non-increasing, we may omit the modulus signs in (3.15) provided
we alter the sign of the second integral. On integrating the second integral by
parts we get

(3.16) v, = ‘f@dt.

Thus, equation (3.2) follows from (3.13) and (3.16).
If x(¢t)/t is non-decreasing, we omit the modulus signs in (3.15). Again
integrating the second integral by parts we get

)

(3.16) ¢y=2(u+1)f0 P ()dt — fol%dz.
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Now, since x(t)/t is non-decreasing, it follows from (3.4) that for 0 < ¢ < 1,
x@®)/t=xQ=)=1-—1

Hence, the first integral in (3.16) does not exceed

(3.17) 20 + 1)(1 — 1) ftw _ o1 — ).

On the other hand, it tends to 2(1 — 1) as » — o0, so that its supremum
equals 2(1 — [). This can be seen most easily by integrating it by parts, when
we find that it is equal to

(3.13) L )

Combining (3.4), (3.13) and (3.16)-(3.18), equation (3.3) clearly follows.
This completes the proof of Theorem 3.1.
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