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Abstract

W. Rudin has proved that the union of the Riesz set N C R with a A( 1 )-subset of Z is again a
Riesz set. In this note we generalize his result to compact groups whose center contains a circle
group, thereby extending an earlier F. and M. Riesz theorem for such groups by the author.
We also investigate the possibility of constructing A(p)-sets for these groups, departing from
A(/»)-sets for the circle group in the center.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 43 A 05,
43 A 30, 43 A 46; secondary 22 E 30, 43 A 77.

1. Introduction

1.1 Notations. Throughout this note, let K be a metrizable compact group.
Let M{K) be the space of finite complex Borel measures on K and let dk
denote the Haar measure on K, normalized to total mass 1. Also LP(K) =
LP(K,dk) and ||/||p are denned as usual (0 < p < oo).

Let K, the dual of K, be a maximal set of pairwise inequivalent irreducible
representations of K. For n in M(K) define the Fourier transform fi, of n by

[
JK

Let spec ft := supp/i = {T e K: ji{x) ^ 0}.
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1.2 Riesz sets. A subset A of K is called a Riesz set if for any \x in M(K),
spec// c A implies that ft is absolutely continuous with respect to dk: n <

In [1] the author proved an F. and M. Riesz type theorem for compact
groups K whose center contains an isomorphic copy of the circle group T =
{e'e: 6 e (-n, n]}. Let K be such a group and fix an injective homomorphism
T — Z(K); ew will denote an element of T as well as of Z(K). By Schur's
lemma there exists for each T in K a unique «(r) e Z such that

(1.1) r(eie) = ein(T)eIdH(x), for all eie e T.

Note that the map x —* n{x) depends on the choice of the identification

One can prove the following extension of the F. and M. Riesz theorem (cf.
[1, Theorem 3.2]):

1.3 THEOREM. Let A c K be such that (i) for all m e Z the set {x G

A: n(x) = m) is finite and (ii) the set {n(x)\ x € A} c Z is bounded from
above or from below. Then A is a Riesz subset ofK

1.4 A(p)-sets. In [11] W. Rudin introduced the notion of a A(/>)-subset of
Z. Of interest to us here is the following theorem from [11] which we will
generalize in Section 2: the union of a A( 1 )-set of integers and the Riesz set
N is again a Riesz subset of Z = T.

The general theory of A(p)-sets was extended to arbitrary compact groups
in Hewitt and Ross [6, Chapter IX, Section 37]. Here we will need little more
than the definition.

Let T(K) denote the space of trigonometric polynomials on K: T(K) =
{ /€ L\K)\ s p e c / is a finite set}. If E C K let TE(K) = { / e T(K): spec /
C E}, the space of £-spectral polynomials.

DEFINITION. Let 0 < p < oo. A subset E of K is called a A(p)-set if for
some q < p there exists a constant C such that

(1.2) 11/11, < CH/II,, forall/er£(tf).

We call E central A(p) if (1.2) holds for all / in TE(K) which are central,
that is, for which f{yxy~x) = f(x) for all x,y eK.

One can prove that "for some q < p" may be replaced by "for all q < pn

(cf. [11], [6]).
For abelian groups A(/?)-sets exist in great abundance, but for nonabelian

groups the situation is rather disappointing: it is known that simple Lie
groups do not possess infinite central A(4) sets (Cecchini [2]), and Price [8]
proved that SU(2) does not contain an infinite A(p) set for any p > 0. This
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result was extended to all SU{n) in Rider [10]. On the other hand, the dual
of each compact connected Lie group contains an infinite central A(2)-set (cf.
Rider [9, Theorem 6]).

In Section 3 we try to construct A(/>)-sets for groups K whose center con-
tains the circle group. Roughly speaking there are, for nonabelian K, two
obstructions to the existence of infinite A(/?)-subsets of K. The first, at least
for p > 4, is the fact that the tensor product of two irreducible representa-
tions is not again itself irreducible but decomposes as a sum of irreducible
ones, the number of which may tend to infinity (cf. [6, Example (37.21)],
which in modified form also occurs in 3.4(a) below).

The second obstruction is the fact that there may not exist infinite subsets
E of K. for which the degrees dx, r e £ , remain bounded (cf. [8], [10] and
Example 3.4(b) below).

This last obstacle can sometimes be circumvented by restricting oneself to
central A(/?)-sets. In case of Lie groups one then can use Weyl's integration
and character formulae to show that the AT's we are interested in do posses a
large number of central A(l)-sets (cf. Proposition 3.3 below). This idea was
taken from Dooley [4].

2. Riesz sets and A( 1) sets

In this section we prove the following result, which generalizes Rudin [11,
Theorem 5.7], the latter being the case K = T of 2.1.

2.1 THEOREM. Let K be a compact group whose center Z(K) contains a
copy of the circle group. Let A be a Riesz subset ofK such that {n(x): x e A}
is bounded from above {where n(x) is defined by (1.1)), n(x) < N for x e A,
say (N e N). IfE c{xek: n(x) > N} is a A(\)-subset ofK, then EuAisa
Riesz subset ofK.

For the proof we need an auxiliary result. If / is a function on K and k e
K, define the "slice function" fk on T by fk{eie) := f(ei8k), eie e T -» Z(K).
Note that for / in T(K), fk e T(T) and

(2.1) fk(e
ie)

where the projections FIOT are defined by

(2.2) nmf(k)= £ dTTr[f(x)x(k)].

Define the projection PN on T{K) by PN[f] =
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2.2 LEMMA. For all p, 0 < p < 1, there exists a constant C = C(p) such
that for all f in T(K), \\PNf\\p < C

PROOF. Let S denote the Cauchy-Szegd projection of L2(T) onto the Hardy
space

H2(T): S{F)(eie) = ] £ F(n)ein6, F e T(T).
n>0

Note that PNf{eiek) = eiNeS{e~iNefk{eie)). Let 0 < p < 1. By a theorem
of Kolmogorov (cf., for example, Koosis [7, pages 137-138]) there exists a
C such that for all F in T(T): \\S(F)\\P < C\\F\\U the norms being taken in
L"(T) and L> (T), respectively. Apply this inequality to F(eie) = e~iNe fk{ew)
and integrate over K. Then by Jensen's inequality, since l/p > 1,

\\PN/\\P = (IJr \Psf{eiek)\" dk

\ N f ( ) y / ) dk

<c\\f\\l
P R O O F OF 2.1. Let n e M(K), spec/i CEuA. Let { F n } n € N be an approx-

imate identity, consisting of trigonometric polynomials. Let N e N be as in
the statement of 2.1 and let P = PN. Then P[Fn *n]& TE(K) for all n and
if 0 < p < 1 then by 2.2, \\P[Fn * fi]\\p < C\\Fn * fi\\{ < C\\fi\\ for all n. Since
E is a set of type A(l) the sequence {P[Fn * /i]: n e N} is norm bounded in
M(K). Hence there exists a subsequence converging weak-* to a measure v.
Obviously, specf c E and i>(t) = //(T) for T in E, since Fn(r) —* Id//(r) as
n —> oo. Hence spec(/i - v) c A and therefore n - v < dk. On the other
hand, each A(l)-subset of K is a Riesz subset (this follows from [1, Theorem
2.7]). Hence v < rffc and so n < dk.

As we will see in the next section, central A(p)-sets are more abundant
than ordinary ones. It seems appropriate therefore to formulate a "central"
version of 2.1. Call a subset A of K central Riesz if spec^i C A implies
fi <g.dk for all central measures //.

2.3 THEOREM. Suppose that, in Theorem 2.1, A c {T G K: «(T) < JV} is
central Riesz and that E C {T e K: n{x) > N} is a central A(l)-set which is
also central Riesz. Then E u A is central Riesz.

The proof of this theorem is the same as that of 2.1, provided one uses an
approximate identity consisting of central trigonometric polynomials, which
is possible.
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REMARK. It is not clear whether "central A(1)M implies "central Riesz".
The central A(p) sets of Proposition 3.3 below will automatically be Riesz
sets by [1, Remark 3.4].

3. Examples of (central) A(p)-sets

Let K again be a compact group whose center contains a circle group. One
might hope that the generous supply of A(p)-sets in the dual of T will give
rise to some interesting A(p)-sets in K.

3.1 PROPOSITION. Let E CK be such that for some p > 2:
(i) n{E) := {«(T): T G E) is a A(p)-subset of! = f;
(ii) the sets E(m) := {x e E: n(x) = m} (m e Z) are uniformly A(p) (that

is, (1.2) holds with the same constant C for all E(m)).
Then E is a A(p)-subset ofk.

REMARK. Condition (ii) is obviously necessary for E to be a A(p)-set;
condition (i) is not (cf. 3.4(c) below).

PROOF. We have to treat the cases p > 2 and p = 2 separately. First
suppose that p > 2. Let / e TE(K). By (2.1) and (2.2) the slice function
fk is in rn(£)(T) for all k in A". Since n(E) is A(p) and p > 2 there exists a
constant C = C(E,p) such that

V2

Integration over K yields

(3.1) *

by Minkowski's inequality for p/2 > 1. For each m, Hmf e TE(m){K) and
since the £(m)'s are uniformly A(p), (3.1) implies that ||/||2 < C||/||^ which
proves that E is A{p).

We now turn to the case p = 2. Arguing as above, we see that since n(E)
is A(2) there exist a q < 2 and a constant C such that for all / e TE(K)

dk\
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By Minkowski's inequality for q/2 < 1 (cf. Hardy, Littlewood and Polya [5,
Theorem 198]) the left hand side of (3.2) is larger than or equal to

(3.3) EQhiWWd*) \

Since the E(m)'s are uniformly A(2), the expression (3.3) is larger or equal
to a constant times £ m ||IIm/||l = ||/||^.

3.2 COROLLARY. Let E c k be such that for some p > 2:
(i) n(E) := {n(r) :reE}ciisa A(p) subset ofl;
(ii) there exists an M e N, such that for all m el, #{T e E: n(x) — m) <

M;
(iii) there exists an N e N, such that for all x e E, dx < N.

Then E is a A(p)-subset ofK.

PROOF. Let F be a finite subset of K and let V be the subspace of T(K)
spanned by the matrix elements of the representations in F. Then it is not
difficult to show that for all p > 1 there exist constants C\, C2, depending
only on p, #F and max{rfT: T e F} such that Ci| | / | |p < ||/| |2 < C2||/||p, for
all / e V. From this it follows immediately that under conditions (ii) and
(iii) on E, the is(m)'s are uniformly A(p) for all p > 1.

If AT is a compact connected Lie group, as we will suppose from now
on, and if we restrict ourselves to central A(p) sets, then condition (iii) is
superfluous. The argument which we use below is due to Dooley [4], where
it is used in another context. We will need Weyl's integration formula, (cf.
Wallach [12]).

Let Tr be a maximal torus in K (r = rank AT). Then for / e C{K), f
central,

(3.4) w f f(k)dk= f f(t)\q(t)\2dt,
JK Jv

where q(t) is a certain trigonometric polynomial on Tr and w is the order of
the Weyl group. Clerc [3] has proved that

(3.5)
JY

We will also need the following observation, which is a direct consequence
of the Weyl character formula (cf. Dooley [4]):

(3.6) ||0*T||L°°(T') < w, for all x e K.

For K = U(n) or SU(n), (3.5) and (3.6) were already noted and used by
Rider [9].
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3.3 PROPOSITION. Let K be a compact connected Lie group, T c Z(K)
(that is, K has non discrete center). Let 2 < p < 2 + eK and let E c k be such
that

(i) n(E) = {n(r): x e E} is a A(p)-subset of 2,
(ii) there exists an M e Z, such that for all kel, #{x e E: n(x) = k} < M.

Then E is a central A(p)-subset ofK.

PROOF. Let Xx denote the character of x e K. Let / e TE(K) be central,
f(k) = Z)crXt{k) with cz = f f(k)Xr(k~l) dk. Arguing as in the proof of 3.1
we see that

dk.

Now because of 3.3(ii),

n(z)=m

<M
n{x)=m

Hence by (3.4), (3.5), (3.6) and the fact that p-2<eK,

\q(t)\2-»dt

3.4 EXAMPLES, (a) The following modification of Example (37.2 l)(b) from
Hewitt and Ross [6] will show that condition (ii) of 3.2 and 3.3 is necessary.
We have to recall some facts from the representation theory of SU(2).

For each m e {0,1/2,1,3/2,. . .} there exists an irreducible representation
xm of SU(2); xm can be realized, for example, on the space of polynomials
in two variables which are homogeneous of degree 2m + 1 (cf. Hewitt and
Ross [6, Section (29.13)ffJ for details). The Tm's are pairwise inequivalent
and each irreducible representation of SU(2) is equivalent to some xm.

Now take K = 5(7(2) x T. Then K = {rm<n: 2m e N, n e Z}, where
*m,n(g,eie) - ein0rm(g), g e SU(2), eie e T. Note that Z{K) = {1} x T and
that «(im>w) = n. Let Xm,n denote the character of xm>n. By the decomposition
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of the tensor product: xm <8> xm = ® { T , : 0 < / < 2m) (cf. [6, (29.26.i)]),

2m

/=0

Hence ||#m,n||4 = 2m + l and if £" C K is such that (#{rm>n eE:n = k})keZ

is unbounded, £" can not be central A(4) since HXm.nlU = 1 f° r all w, «.
As it stands, this is not a counterexample to 3.3 minus (ii), since eg = 2.

To correct this, take K = T2 x 5(7(2) instead.
(b) That condition (iii) of 3.2 is necessary follows from the main result of

Price [8]: if (xm)u denotes the (1, l)-matrix element of xm w.r.t. the standard
basis of H{xm) as in [6], loc. cit., then for all p > 0, ||(Tm)n||p ~ m~llp as
m —»oo.

To make a counterexample to 3.2 minus condition (iii), again take K =
SU{2) x T. If {n{l),n(2),...} is an infinite A(p)-subset of T (p > 2), let
E = {Tm>/i(2m+i)." 2m e N}. Then E satisfies 3.2(i) and (ii) but fails to be a
A(/?)-subset of K.

(c) Finally, 3.1(i), 3.2(i) and 3.3(i) are in general not necessary: take K =
T2 and identify K with Z2 in the usual way. Let {n(m): m e Z} be an
(infinite) A(p)-subset of Z for some p > 2. If we use the embedding ew -*
(eie, 1) of T into T2 the map x -* n(x): K = Z2 -* Z is the projection on the
first coordinate. Hence the set E := {{n(m), m): m e Z} C Z2 is A(p) by 3.2.
But if we use the embedding e'e —»(l,e'e), the associated map x —»• /I(T) is
the projection on the second coordinate and n{E) = Z then, which obviously
is not A(p).
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