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Abstract
Letk > 3 and n > 6k be positive integers. The equations

f&) =aix{ +-- +a.xk =0,
80 =bix{ + - +b,x; =0,
h(x) = c]xf +-~~+c,,x,’f =0,

with integer coefficients, have nontrivial p-adic solutions for all p > Ck®, where C is some
positive constant. Further, for values £ > K wecantake C =1+ O(K '%).

1991 Mathematics subject classification (Amer. Math. Soc.): 11 D 88.

1. Introduction

Before considering systems of 3 equations we recall the analogous results for
smaller systems of equations.

THEOREM A. Let n > 2k. A single additive equation
(1) aixy + -+ axk =0,

with integer coefficients, has a non-trivial p-adic solution for all p > k*.
© 1993 Australian Mathematical Society 0263-6115/93 $A2.00 + 0.00
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This is Theorem A of Atkinson and Cook (1989). The condition n > 2k is
best possible, since the equation

k
@ Y Tt -ah =0
i=1

where p = 1 mod & and q is a k-th power non-residue mod p, has no non-trivial
solutions.

THEOREM B. Let n > 4k. Any two additive equations

(3) alx{( + cc + anx,z - O’ }

bixf+---+buxt = 0,

with integer coefficients, have a non-trivial p-adic solution for all p > kS.

This is Theorem 1 of Atkinson and Cook (1989). The condition n > 4k is
best possible, as can be seen by taking two disjoint copies of the example (2).
Similarly, if we consider a system of r simultaneous additive forms

4) fi®) =anxi+--+aux;, =0

then the corresponding condition n > 2rk is best possible. Recently Dorner
(1990) has proved a result for forms over algebraic number fields which we
restate in our more specific setting.

THEOREM C. (Dorner) Let r, k, n be positive integers with n > 2rk. There
exists a bound py = po(r, k) such that every system of equations (4), with integer
coefficients, has a non-trivial p-adic solution for all p > po(r, k).

Dorner’s approach is based on techniques of Schmidt (1984) and does not
lead to particularly good bounds for p,. Dorner made no attempt to estimate p,
but rough calculations based on his paper appear to lead to a value

(5) po(r, k) > rP e,

Wooley (1990) has generalized Theorem B to the case when the two equations
have different degrees, and made a conjecture (in this more general setting) that
we can take
(6) po(r, k) = k"2,
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As a first step towards obtaining better bounds for po(r, k) we consider here
the particular case of 3 additive equations. Fern Ellison (1973) showed that
3 additive quadratic equations in n > 12 variables have non-trivial p-adic
solutions for all p # 2, so we restrict our attention to the case k > 3.

The major problem encountered lies in the combinatorial structure of sub-
spaces generated by columns of coefficients. It was recognized by Low, Pitman
and Wolff (1988) that such difficulties can be tackled using a combinatorial
result of Aigner (1979). These techniques are again useful in this context.

THEOREM 1. Let k > 3 and n > 6k. Any three additive equations

f&)=axf+---+axf = 0,
@) gx)=bxt+...+bxt = 0,
h(x) =cixf+---+cxt = 0,

with integer coefficients, have a non-trivial p-adic solution for all p > Ck®
where C is some positive constant. Further, we may take C = 38.39...

Wooley’s conjecture implies that Theorem 1 should hold with C = 1. In this
context the following variation on Theorem 1 may be of interest.

THEOREM 2. Let K > 3. For k > K and n > 6k the equations (7) have a
non-trivial p-adic solution for all p > Cxk® where Cx | 1 in such a way that
Cx =1+ O(K™1).

This paper was written whilst the third author (R. J. Cook) was a visitor in the
mathematics department at the University of British Columbia. He is grateful to
the department at the University of British Columbia for their kind hospitality.

2. Preliminary normalization

We begin by recalling the normalization procedure introduced by Davenport
and Lewis (1969). With the forms f, g, A we associate the parameter

®) 0 =0(f g.m)=[]An

i,j.k

where A, denotes the determinant obtained from columns , j, k of the matrix of
coefficients, and (i, j, k) runs through all 3 element subsets of {1,2, 3, ..., R}.
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For a given system of forms with 6(f, g, k) # 0 and a fixed prime p, there is
a related p-normalized system of forms ( f*, g*, h*). Further the equations (7)
have a non-trivial p-adic solution if and only if the equations f* = ¢g*=h* =0
do. Also, by the p-adic compactness argument in section 4 of Davenport and
Lewis (1969), it is sufficient to prove the theorem with the additional assumption
that 8 # 0. We may now suppose that the forms f, g, 4 are p-normalized, with
0 # 0, and use the following property which is essentially Lemma 11 of
Davenport and Lewis (1969).

LEMMA 1. Let f, g, h be a p-normalized system of forms, with 6 # 0. Then
we may write (after renumbering the variables)

f = fHh+prf
&) g8 = 8o+ pg,
h = ho+ ph.
Here fy, go, ho, are forms in variables xy, . . ., x,, where
(10 m>n/k.
Moreover, eachof x,, . . ., x, occursin at least one of fy, g0, ho with a coefficient

not divisible by p.

Further, ifwe form any v linear combinations of fy, go, ho (these combinations
being independent mod p), and denote by q, the number of variables that occur
in one at least of these combinations with a coefficient not divisible by p, then

(11) q, > vn/3k
forv =12
Our next lemma is a version of Hensel’s Lemma; it is essentially Lemma 9

of Davenport and Lewis (1969). (Since we have p > k%, ptk and so we may
take the parameter y of Davenport and Lewis to be 1.)

LEMMA 2. If ptk and the congruences
fo = axi+---+a,xt =0 modp

(12) g = bxf+.--+bxt =0 modp
hy = cixf+--+cnxt =0 modp
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have a solution § = (&, ..., &,) for which the matrix
ai§ ... ankny

(13) bi&i ... .bnén
161 ... Cmbnm

has rank 3 mod p then the equations fo = go = ho have a non-trivial p-adic
solution.

3. Choosing a submatrix

For n > 6k the inequalities (11) become
(14) m > 6, q > 2, g, > 4.

Let u(d) denote the maximum number of columns of coefficients from (12)
which lie in a d-dimensional subspace of Z;. Then

(15) gi=m—pnG3—i
and the inequalities (14) are equivalent to
(16) m =17, p(l) <m -5, pn2) <m-—3,

so that in particular the congruences have rank 3.

Let A denote the matrix of coefficients in (13). For any subset J of
{1,2,..., m} we denote by A, the submatrix of A consisting of the columns c;
with j € A;. We write

an p(A;) =rank of A; = dimlin{c; : j € J}
Our next lemma is Lemma 1 of Low, Pitman and Wolff (1988).

LEMMA 3. Let A be an r x m matrix over a field K and let t be a positive
integer. Then A includes t disjoint r X r submatrices which are non-singular
over K if and only if
(18) m—|J| =z t(r — p(A))

for all subsets J of {1,2, ..., m}.
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In our context r = 3 and we take ¢t = 2. Writing d for p(A;), (18) becomes
(19) [J]<m—-2(3—-d)

and from (16) we see that the matrix A contains two disjoint 3 x 3 non-singular
matrices.

LEMMA 4. If p & 1 mod k then the congruences (13) have a solution of rank
3 mod p.

PROOF. In this case every residue modp is a k-th power residue and, after a
substitution y; = x¥, we may treat the congruences as linear equations in Z,.
Relabelling the variables and using row operations we may take the matrix of
coefficients as [IC] where [ is the 3 x 3 identity and C is a 3 x (m — 3) matrix
of rank 3 mod p. We take y, = y, = y; = 1 and solve C; = —1 to give the
required solution of rank 3.

Since the inequalities (16) are stronger than (19) we can do better than merely
choosing two non-singular matrices from the coefficient matrix.

LEMMA 5. Suppose that m > 7. Then either

(i) we can choose a subset of 7 columns which still have g, > 3 and q, > 5;
or

(i) we havem =8, u(1) = 3 and w(2) = 5 in disjoint blocks; or

(ili) we can choose a subset of 9 columns which can be partitioned into 3
independent 1-dimensional subsets, each containing 3 columns.

PROOF. The inequalities ¢g; > 3 and g, > 5 are equivalent to u(1) <m — 5
and 1(2) < m — 3. While m > 7 we reduce m to m — 1 using the following
rule, which preserves these inequalities:

(i) Ifu(l) <m—>5and u(2) < m— 3 we discard any column.

(i) If u(1) = m — 5 and u(2) < m — 3 then there can be at most one
1-dimensional block of columns of length m — 5, for otherwise

u2)y=2m-—-5>m-3

for m > 7. We discard a column from this longest 1-dimensional block of
columns.
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(i) If u(1) =m — 5 and w(2) = m — 3 then, as before, there is a unique
1-dimensional block of length m — 5. Suppose that the 1-dimensional block and
any 2-dimensional block of length m — 3 are disjoint, then

m>m—-54+m-3)=2m-238

som < 8. Thus for m > 8 the 1-dimensional block of length m — 5 must sit
inside any 2-dimensional block of length m — 3 and we discard a column from
this longest 1-dimensional block. If m = 8 and the blocks are not disjoint then
we still discard a column from this block, otherwise we arrive at part (ii) in the
statement of the lemma.

(iv) Finally we have u(1) < m — 5 and «(2) = m — 3. If there were two
disjoint 2-dimensional blocks of length m — 3 thenm > 2(m — 3) orm < 6.
Thus any two 2-dimensional blocks must intersect in a 1-dimensional block. If
there are only two blocks we discard a column from their intersection.

Now suppose that there are k such blocks B;,i = 1,...,k,k > 3. Let B; and
B, intersect in the 1-dimensional block By. If each of Bjs, ..., By contains By
then we discard a column from this intersection By. Otherwise we may suppose
that B; does not contain By. Let |By| = €, we choose a column ¢, which
generates By. We obtain B;, i = 1, 2 by adjoining a column ¢; and including an
extram — 3 — £ columns. Thus B; U B, contains

£4+2m—-3—-80)=2m—-6—£L<m
columns, so £ > m — 6. Since u(l) < m — 5 we have £ = m — 6 and
m — 3 — £ = 3. Further B, U B, contains all the m columns so we see that
Bj; contains 6 columns, consisting of 3 multiples of ¢, and 3 multiples of c,.
Therefore m — 5 > 3, that is, m > 9 and we discard excess columns from B, to
give 3 multiples of ¢;. Thus we arrive at case (iii) in the statement of the lemma.
LEMMA 6. Let p = 1 mod k, p > k*. If aja;as # 0 mod p then
(20) axt + axxt + asx¥ = 0mod p
has a non-trivial solution (mod p).

This is essentially Lemma 2.4.1 of Dodson (1966).

LEMMA 7. Let p = 1 mod k, p > k8. Suppose that for the congruences

@1 aixf +---+asxt =0 modp}

bixt+---+bsx!* =0 modp
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at most 2 columns of coefficients take any particular value for a; /b; mod p, and
each column contains at least one non-zero entry. Then the congruences have a
simultaneous solution of rank 2 mod p.

This is proved in Section 3 of Atkinson and Cook (1989).
We now consider the cases (ii) and (iii) arising from Lemma 5. In case (ii)
the system of congruences is equivalent to a system with coefficient matrix

a, a, az 4as as 0 0 0
by by by by bs 0 0 O
0 0 0 0O 0 ¢ ¢7 cg

There is a unique 1-dimensional subspace of length 3 so at most two of the ratios
a; / b; take any particular value mod p. The system of congruences can then be
solved using Lemmas 6 and 7, and the solution obtained has rank 3 mod p.

In case (iii) the system is equivalent to one with coefficient matrix

a a a 0 0 0 0 0 O
0 0 0 by bs b¢ 0O 0O O
0 0 0 0 0 0 C7 Cg Cg

Solving three separate congruences, using Lemma 6, we obtain a simultaneous
solution of rank 3 mod p.
Now we can choose a subset of 7 columns to give a system with

22) m=17, q1 >3, g, > 5.

If we remove any column we have a set of 6 columns with ¢, > 2, g; > 4.
From Lemma 3 we see that any 6 columns can be partitioned into 2 non-singular
matrices mod p.

4. Exponential sums

We now count the number of solutions to a system of 3 congruences (12),
satisfying (22), using exponential sums. The number N of solutions (mod p)
to the congruences (13) is given by

(23) p’N = Z Z Z T(A)...T(Ay)

uy,U,u3 (mod p)
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where

(24) Aj = ula,- -+ uzb,- + u3cj
forj=1,...,7and

(25) T(A) = Z e(Ax*/p).

x (mod p)

Separating out the term u; = u, = u3 = 0 in (23) we see that

(26) PN=p' =) 3 3 TA)...T(Ay)

u#0

We classify the points u # 0 according to the number 7 of linear forms A; which

are 0 (mod p). Since any six columns of coefficients contain two non-singular

matrices, any 5 forms A; must contain 3 independent forms. Therefore v < 4.
Foru # 0 (mod p) we have, from Lemma 12 of Davenport (1963),

@7) IT@w)| < (k—1)\/p.

Let

(28) $ =Y ITwP
uz#0

then, from Lemma 2.5.1 of Dodson (1966),
(29) S =k—-Dpp—1).

Let ) denote the contribution to the right hand side of (26) coming from
those points u # 0 with exactly  forms A; = 0. Since u # 0 we have r < 4.

Now
DS hk=Dypd D Y ITAY...T(AQl.
0

(30)

0
The forms Ay, ..., Ag can be partitioned into 2 sets, {A;, Az, Az}, {A4, As, Ag}
say, of 3 independent forms. Then

172
‘Z <(k-1p [ZZZ IT(AI)T(Az)T(As)Iz}
0

u0 0

172
31) x [ZZZIT(A4)T(A5)T(A6)|2} :

uz 0
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Now the mappings (A, Ay, As) — (uy,up,u3) and (Agy, As, Ag) —
(u1, u,, u3) are both bijections so both bracketed terms on the right are

(32) DX D IT@)T@)T ) = ;.
uy,uz,u3#E0
Hence

(33) < (k= D/p{tk = Dp(p — DY < k*p"2.

2

0

To estimate Zt, T > 1, we choose a form A, # 0 on the subset, say A;.
The remaining 6 forms can be partitioned into 2 subsets of 3 independent forms,
say {A1, Az, Az} and {A4, As, Ag}. Then the contribution of this set of T forms
A; =0to ), is bounded by

1/2
(34) (k= Dy/p [ZZZ |T<A1)T(A2>T(A3)|2}

1/2
X[ZZZIT(A4)T(A5)T(A6)I2} :

where s + ¢ = 1 and s forms of the first set and ¢ forms from the second set are

0 mod p.
To estimate the first bracketed term we map the s forms A; = Oontouy, ..., u;
and the remaining forms in {A, A,, A3} onto u,,,...,us;. Then the first

bracketed term is

P

(35) P>y

Us=]

p
D T @er) - T(s)? = p* S5~ < k*~*p°.
u;:l

Hence the terms (34) are bounded by k*-7/2p!3/2,

We now have to consider geometric properties of the seven columns of
coefficients ¢; (or forms A;). Since any 6 columns can be partitioned into two
non-singular matrices, no more than 4 columns can lie in a plane. Suppose that
there are a pairs of linearly dependent columns, b sets of just 3 coplanar columns
and c sets of 4 coplanar columns. Then, from (35),

(36) Z +Z+Z+Z < (7 = 2a)k** + ak + bk"? + c)k*p'¥2.
1 2 3 2
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With the geometric configuration of columns we associate the polynomial ax? +
bx + ¢, and call two systems equivalent if they are associated with the same
polynomial. We need to determine the dominant (largest) polynomial for each
value x > V3. Let e, e, e; denote the usual orthonormal basis for R3.

(1) a = 3. In this case the system is equivalent to ey, e, e,, €, €3, €3, C; =
e, + e, + e;. Then b = 3, on taking ¢; with any axis, and ¢ = 3, on taking any
pair of axes. Thus we obtain the polynomial

37 x> +3x2 4+ 3x + 3.

(ii) a = 2. In this case we can take ¢;,...,Cs as €;, €, €, €5, €3, If ¢ > 1
then one or both of the remaining columns ¢ and ¢; must lie in the planes x = 0
or y = 0, or ¢ and ¢; are coplanar with e, or e,. If both columns lie in these
planes we obtain the polynomial 2x? + 2x + 3. If just one column, ¢ say, lies
in a plane, x = 0 say, then we have the polynomials 2x? + 4x + 2, when ¢; is
not in the e, — ¢4 plane, or 2x% + 2x + 3 if ¢; is in the e, — ¢ plane. If ¢5 and
¢; are coplanar with e, we obtain the polynomials 2x? + 4x + 2 if neither ¢ nor
¢, lies in the plane x = 0, 2x2 + 2x + 3 otherwise.

If neither ¢4 nor ¢; lies in the planes x = Qor y = Othenc = 1 and b
is maximized when e;, ¢ and ¢; are coplanar. This gives b = 7 by taking
¢s or ¢; with e; or e,, e, or e, with e; and the e3, g, ¢; plane; for example
¢s, ¢; = (1, 1, £1). Thus the dominant polynomial in case (iii) is

(38) 3 +2x7 +Tx + 1.
(i) a = 1. We can take ¢, ..., C4 as €3, €3, €, €;. We have 3 coplanar
columns either by taking e; with one of ¢3,...,¢;, or if 3 of ¢;3,...,¢; are

coplanar: say ¢;, €5, € and ¢4, €5, ¢;. Thus b < 7 and an example of this
configuration is ¢s = (1,1, )7, ¢ = (0,1, 1)T and ¢; = (1,0, 1)7. When
b =7 no 4 columns are coplanar so ¢ = 0.

If ¢ > O then either 4 of c3, .. ., ¢; are coplanar, and we can take that plane
as z = 0, or one of ¢s, ..., ¢; lies in the planes x = 0 or y = 0. In the first
case suppose ¢s and ¢ lie in the plane z = 0, depending on the position of ¢;
the polynomial is x> + 5x + 1 or x? + 3x + 2. If two columns, ¢s and ¢ lie
respectively in the planes x = 0 and y = 0 then ¢ = 2, taking ¢; to be the
intersection of the e; — ¢¢ and e, — ¢5 planes we obtain b = 3 and the polynomial
x2 + 3x + 2. If just one column, ¢ say, lies in a plane, x = 0 say, then ¢ < 3
and also b < 5. Since x > +/3 the dominant polynomial for case (iii) is

(39) 5x3 4 x2 4 Tx.
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(iv) a = 0. If any coplanar sets exist we can take the first plane as x = 0
and, if any other plane exists we take it as y = 0. We can then take ¢, ¢, C;
as e, ey, e;. If at most one plane exists then the polynomial is O, 1, or x.
Otherwise we can take ¢4, Cs as e; + e, e, + e; respectively, and position ¢s and
¢; to maximize b and c.

If ¢s and ¢; lie in the planes x = 0, y = O respectively then b = 0 and ¢ = 2.
If just one of them, ¢s say, lies in the plane x = 0 then ¢ = 1 and we maximize
b, at b = 2, to lie on the intersection of two planes determined by the other
columns, say the e; — ¢s and €, — ¢, planes. Now suppose that neither ¢¢ nor
¢; lies in the planes x = 0, y = 0. If ¢5 and ¢, lie in a set of 4 coplanar vectors
then, reversing the roles of e,, ¢, and e,, ¢ if necessary, both ¢g and ¢, lie in the
plane z = 0. Thus ¢ = 1 and b < 3 (when ¢ lies in the ¢; — ¢5 plane).

Finally, no 4 vectors are coplanar, so ¢ = 0. We maximize b when each of
¢s and ¢; lies in a plane formed by the other columns and the plane determined
by ¢ and ¢; also contains one of the other columns; for example ¢4 in e, — ¢4
planes, ¢; in the e; — ¢ and e; — e, planes. Thus » < 6 and the dominant
polynomial of this case is

(40) 7x® + 6x.
The dominant polynomial, in the region x > 1 is (40). We take k = x? and see,
from (36), that

41) Z+Z+Z+Z < (7k3/2+6k1/2)k2p13/2.
1 2 3 4

5. Singular solutions

Finally, we estimate the number of solutions to the congruences (12) which
do not have rank 3. Suppose that we have a solution of rank v > 0 with ¢
variables non-zero, then v + 1 <t < 2v. We can transform the section of
coefficients on these ¢ columns into the shape [IB] where [ is the v x v identity
matrix and B is a v X (¢ — v) matrix, using row operations and relabelling
the variables. The variables corresponding to the columns in B can be chosen
freely, (p — 1)'™¥ choices, and this determines the variables corresponding to /
up to the kth powers, k" choices. Thus the total number of solutions with these
parameters ¢, v is at most

7
42) (t)k"(p — 1.
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Summing over the possible values of v < 3 and ¢, the total number of singular
solutions is bounded by

2 2v
7
1+ Z} Zl (t)k"(p —1)'™ < 1+ 21kp + 35kp? + 35k p + 35k*p>
v=1 1=v+
(43) < 48k*p?

provided that k > 3 and p > k5.
Thus the congruences (12) will have the required solution of rank 3 if

p4 . (k2 + 7k3/2 + 6k1/2)k2p13/2 > 48k2p2

or
44) p— (k2 + 7k 4+ 6k”2)k2p”2 > 48k2p_‘.

For p > k® the right side is bounded above by 48k—® < 0.066 as k > 3. For
p > Ck® the left side is bounded below by

45) CPE(CY? = (1 + Tk + 6k7%))

so we have the required solution if C is chosen suitably large. For k > 3 we
take C > (1 + 3+/3) ~ 38.39. For k > K we choose

(46) Ce =(1+TK 2+ 6K ¥ + K2 =1+ O(K™?).

to complete the proof of the theorems.
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