BULL. AUSTRAL. MATH. SOC. VOL. 15 (1976), 339-346.

Nilpotent groups acting fixed point freely on solvable groups

Beverly J. Bailey

All groups considered are finite. We enlarge the class of groups for which the conjecture below is known to hold, to include all nilpotent groups A such that every proper subgroup of A is $Z_p \sim Z_p$ free for all primes p.

CONJECTURE. If a nilpotent group A acts fixed point freely on a solvable group G where (|A|, |G|) = 1, then the Fitting height of G is bounded above by the number of primes, counting multiplicities, dividing |A|.

1. Introduction

Using his Theorems A and B of [1], Berger proves in [2, Section III] that the conjecture is true whenever A is $Z_p \sim Z_p$ free for all primes p. Here Z_n denotes the cyclic group of order n and $X \sim Y$ the (standard, restricted) wreath product. Camina and Lockett [3] use some partial results of Gross [4, 5] to show that the conjecture holds for D_8 , the smallest group not covered by Berger's result. We here modify Berger's work, obtaining Theorems A* and B* from which follows:

MAIN THEOREM. The conjecture is true for every nilpotent group A, such that every proper subgroup of A is $Z_p \sim Z_p$ free for all primes p.

In particular, it is true for $Z_p \sim Z_p$ (which is D_8 when p = 2). Received 24 June 1976. This research was supported by a Louise T. Dosdall fellowship from the University of Minnesota.

2. Preliminaries

We assume the following situation throughout this paper, except when otherwise indicated.

HYPOTHESIS. (i) AG is a solvable group with normal subgroup $G \neq 1$ and nilpotent complement A, where (|A|, |G|) = 1.

(ii) k is a field of characteristic $c \mid |A|$.

(iii) V is a sum of isomorphic copies of a faithful, irreducible k[AG] module.

(iv) $A = A^0 > A^1 > \ldots > A^n = 1$ is some central series for A, and m is such that $C_V(A^m) = (0)$ but $C_V(A^{m+1}) \neq (0)$.

We use the following definition and theorems of Berger.

DEFINITION [1, page 321]. Let H be a solvable group with normal subgroup L. We call R an L support subgroup of H if

- (a) R is a normal r-subgroup of H for some prime r,
- (b) R contains a unique maximal H-invariant subgroup $R^* \leq R$, and
- (c) $L/C_L(R/R^*)$ is a non-trivial H-chief factor, and

 $C_{T}(X/Y) = L$ for all *H*-chief factors X/Y of R^{*} .

THEOREM A [1, page 337]. Assume A is $Z_p \sim Z_p$ free for all primes p. If $R \leq G$ is an abelian normal subgroup of AG, then there is a subgroup $D \leq A^m$ such that

(a)
$$C_V(A^{m+1}D) = (0)$$
, and
(b) $C_R(D) \ge C_R(A^{m+1})$.

THEOREM B [1, page 331]. Assume A is $Z_p \sim Z_p$ free for all primes p. If R is an L support subgroup of AG, where $L \leq G$, then there is a subgroup $D \leq A^m$ such that

(a)
$$C_V(A^{m+1}D) = (0)$$
,

340

(b)
$$C_{G/F(G)}(D) \ge C_{G/F(G)}(A^{m+1})$$
, and
(c) $C_{R/R^*}(D) \ge C_{R/R^*}(A^{m+1})$.

We wish to replace the assumption that A is $Z_p \sim Z_p$ free with the weaker requirement that every proper subgroup of A is $Z_p \sim Z_p$ free. We will need to make the additional assumption that $C_G(A) = 1$. This will enable us to apply the lemma.

LEMMA. Assume AG is a solvable group with normal subgroup $G \neq 1$ and complement A, where (|A|, |G|) = 1 and $C_G(A) = 1$. Suppose V is an irreducible k[AG] module, where k is an algebraically closed field, and that G acts non-trivially on V. Then there is a proper subgroup $A_0 \leq A$ and a k $[A_0G]$ module U, such that $V \simeq U|^{AG}$.

REMARK. Here we do not assume the Hypothesis.

Proof. Now $V \simeq W \Big|^{AG}$, where W is a primitive k[H] module for some subgroup $H \leq AG$. $H \cap G$ is a normal Hall subgroup of H and so has a complement in H. Then, replacing H and W by appropriate conjugates, we may assume $H = A_0 G_0$, where $A_0 = A \cap H$ and $G_0 = G \cap H$.

Assume $A_0 = A$. Since $C_V(G) \neq V$ and V is irreducible, we have $C_V(G) = (0)$ and $C_{G_0}(W) \leq G_0$. Choose $\overline{N} = N/C_{G_0}(W) \leq G_0/C_{G_0}(W)$ minimal A invariant. Then \overline{N} is abelian and so, since W is primitive, \overline{N} acts on W via scalar multiplication. In particular, the action of \overline{N} on Wcommutes with the action of A on W, so that

$$[N, A] \leq C_{AG_0}(W) \cap N \leq C_{G_0}(W)$$

That is, $C_{\overline{N}}(A) = \overline{N}$. But A acts fixed point freely on N and hence on \overline{N} ; that is $C_{\overline{N}}(A) = 1$, so $\overline{N} = 1$, a contradiction. Then we must have $A_0 < A$. Setting $U = W |_{0}^{A_0 G}$ then gives the desired conclusion.

3. The theorems

THEOREM A*. Assume every proper subgroup of A is $Z_p \sim Z_p$ free for all primes p and that $C_G(A) = 1$. If $R \leq G$ is an abelian normal subgroup of AG, then there is a subgroup $D \leq A^m$ such that

(a)
$$C_V(A^{m+1}D) = (0)$$
, and
(b) $C_R(D) \ge C_R(A^{m+1})$.

THEOREM B*. Assume every proper subgroup of A is $Z_p \sim Z_p$ free for all primes p and that $C_G(A) = 1$. If R is an L support subgroup of AG, where $L \leq G$, then there is a subgroup $D \leq A^m$ such that

(a)
$$C_{V}(A^{m+1}D) = (0)$$

(b)
$$C_{G/F(G)}(D) \ge C_{G/F(G)}(A^{m+1})$$
, and

(c)
$$C_{R/R^*}(D) \ge C_{R/R^*}(A^{m+1})$$
.

The proofs of these theorems are essentially duplications of the first parts of Berger's proofs of his Theorems A and B (see [1], pages 331-339). The proofs of the two theorems are extremely similar. For that reason the theorems are proved together.

Proof. Step 1. Clearly we may assume that V is irreducible.

Step 2. We may assume k is algebraically closed.

Let \hat{k} be an algebraic closure of k and let $\hat{V} = \hat{k} \otimes_k V$. Then

$$\hat{v} \simeq \hat{v}_1 \oplus \hat{v}_2 \oplus \ldots \oplus \hat{v}_t$$
,

the \hat{V}_i 's the homogeneous $\hat{k}[AG]$ components, which are all algebraically conjugate. AG must be faithful on each of the V_i 's and, by [1, 1.10], $C_{\hat{V}}(A^j) = \hat{k} \otimes C_V(A^j)$. Then for some (and hence all) i,

$$C_{\hat{V}_{i}}(A^{m}) = (0) \text{ and } C_{\hat{V}_{i}}(A^{m+1}) \neq (0)$$
.

Thus, the hypotheses of the theorem are satisfied for \hat{V}_i , AG, \hat{k} , and m (all i) and the conclusion for each i implies the conclusion for V, AG, k, and m. Then it suffices to prove the theorems for algebraically closed fields.

Step 3. We may now apply the lemma. That is, $V \simeq U |^{AG}$, where U is a $k[A_0G]$ module and A_0 is a proper subgroup of A. We may take A_0 maximal in A and so normal of prime index p. Let $\{x_1 = 1, x_2, \dots, x_p\}$ be a transversal for A_0 in A. Then

$$V \simeq x_1 \otimes U \oplus x_2 \otimes U \oplus \cdots \oplus x_p \otimes U$$
.

Let $N = \ker \left(A_0^{\ G} \rightarrow \operatorname{aut} U\right)$. For $T \leq A_0^{\ G}$, let \overline{T} denote TN/N. Write $A_0^{\ j} = A_0^{\ \circ} A^{\ j}$. By [1, 1.11], $C_U^{\ } \left(A_0^m\right) = (0)$ and $C_U^{\ } \left(A_0^{m+1}\right), \neq (0)$.

We are now in a position to apply Berger's Theorems A and B.

Step 4 (a). Applying Theorem A to U , $\overline{A_0G}$, \overline{R} , and m we obtain a subgroup $\overline{D} \leq \overline{A}_0^m$ such that

(a) $C_U\left(A_0^{m+1}D\right) = (0)$, and (b) $C_{\overline{R}}(D) = C_{\overline{R}}\left(A_0^{m+1}\right)$.

Replacing D by $DN \cap A_0^m$, we may take $D \leq A^m$.

Step 4 (b). By [1, 3.8], there exist $H_0 \leq R$ and $L_0 \leq L$, such that \overline{H}_0 is an \overline{L}_0 support subgroup of $\overline{A_0G}$. $(H_0 \leq R$ is minimal A_0G invariant such that $H_0 \notin R^*(N \cap R)$, $H_0^* = H_0 \cap R^* = H_0 \cap R^*(N \cap R)$, and $L_0/C_L(H_0/H_0^*)$ is an A_0G chief factor.) Applying Theorem B to U, $\overline{A_0G}$, \overline{H}_0 , and m, we obtain a subgroup $D \leq A^m$ such that

(a)
$$C_U\left(A_0^{m+1}D\right) = (0)$$
,
(b) $C_{\overline{G}/F(\overline{G})}(D) \ge C_{\overline{G}/F(\overline{G})}\left(A_0^{m+1}\right)$, and

$$\begin{array}{lll} (\text{c}) & C_{\overline{H}_0}/\overline{H}_0^\star(D) \geq C_{\overline{H}_0}/\overline{H}_0^\star\left(A_0^{m+1}\right) & . \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Set $M = N \cap R$ and $M_i = x_i M x_i^{-1} = \ker (R \to \operatorname{aut} U_i)$. From (b) of Step 4 (a), we conclude that $C_{R/M}(A^{m+1}) = C_{R/M}(A^{m+1}D)$. Recalling that A^{m+1} and $A^{m+1}D$ are normal in A, this implies

$$C_{R/M_{i}}(A^{m+1}) = C_{R/M_{i}}(A^{m+1}D) \leq C_{R/M_{i}}(D)$$
,

all i. Then $C_R(A^{m+1}) \leq C_R(D)M_i$, all i, and so

$$C_R(A^{m+1}) \leq C_R(D) \begin{pmatrix} \bigcap M_i \end{pmatrix} = C_R(D)$$
.

This concludes the proof of Theorem A*. We need now consider only Theorem B*.

Step 6 (b).
$$C_{G/F(G)}(D) \ge C_{G/F(G)}(A^{m+1})$$
.

Set $N_i = x_i N x_i^{-1} = \ker (G \neq \operatorname{aut} U_i)$ and $M_i / N_i = F(G/N_i)$. Since $\bigcap_i N_i = 1$, we have $\bigcap_i M_i = F(G)$. From (b) of Step 4 (b), we conclude that $C_{G/M_1}(A^{m+1}) = C_{G/M_1}(A^{m+1}D)$. As in Step 6 (a), this yields $C_G(A^{m+1}) \leq C_G(D)F(G)$, so that $C_{G/F(G)}(A^{m+1}) \leq C_{G/F(G)}(D)$. Step 7 (b). $C_{R/R^*}(D) \geq C_{R/R^*}(A^{m+1})$. Recall from Step 4 (b) that $\hat{R} = R/R^*$ is an irreducible AG module and $\overline{H}_0/\overline{H}_0^* \simeq H_0/H_0^* \simeq H_0R^*/R^*$ is an irreducible A_0G module. Then

$$\hat{R}|_{A_0^G} \simeq \hat{R}_1 \stackrel{\bullet}{+} \hat{R}_2 \stackrel{\bullet}{+} \dots \stackrel{\bullet}{+} \hat{R}_t ,$$

where the R_i 's are the homogeneous components, and t = 1 or p. Further, we may label the \hat{R}_i 's so that $H_0 R^* / R^*$ is a summand of \hat{R}_1 , and, if t = p, $\hat{R}_i = x_i \hat{R}_i$. From (c) of Step 4 (b), we conclude that $C_{\hat{R}_1}(A^{m+1}D) = C_{\hat{R}_1}(A^{m+1})$. When t = p,

$$C_{R_{i}}^{\circ}(A^{m+1}D) = C_{R_{i}}^{\circ}\left[x_{i}A^{m+1}Dx_{i}^{-1}\right] = C_{R_{i}}^{\circ}\left[x_{i}A^{m+1}x_{i}^{-1}\right] = C_{R_{i}}^{\circ}(A^{m+1})$$

Thus, whether t = 1 or p, $C_{\widehat{R}}(D) \ge C_{\widehat{R}}(A^{m+1})$. This concludes the proof of Theorem B*.

Berger's proof of the conjecture in [2, Section III] now holds for any nilpotent group A, all of whose proper subgroups are $Z_p \sim Z_p$ free for all primes p. Thus we have the Main Theorem.

4. Examples

We now briefly consider nilpotent groups A which satisfy

(*) A involves
$$Z_q \sim Z_q$$
 while every proper subgroup of A is $Z_p \sim Z_p$ free for all primes p .

Any such group must be a q group generated by two elements. Clearly $Z_q \sim Z_q$ satisfies (*) and if A satisfies (*), with $N \triangleleft A$ such that $A/N \simeq Z_q \sim Z_q$, then A/M satisfies (*) for any $M \leq N$ normal in A.

We give an example of a class of groups which satisfy (*). Let $D = Z_{qn} \sim Z_{q} = B\langle y \rangle$ where B is the base group and $\langle y \rangle = Z_{q}$ complements B in D. Set

$$W = \{ \{x_1, \ldots, x_q\} : x_i \in qZ_q, i = 1, 2, \ldots, q \}$$

and

346

 $M = \langle (q, q, \ldots, q) \rangle .$

Take A = D/M. Then A satisfies (*). Now $D/N \simeq Z_q \sim Z_q$. Suppose $H/K \simeq Z_q \sim Z_q$ where $M \leq K \triangleleft H \leq D$. Choose $\bar{x}, \bar{y} \in H$ such that

$$\bar{x} \mapsto (1, 0, \dots, 0)$$
 and $\bar{y} \mapsto z$,

where $\langle (1, 0, ..., 0), z \rangle = Z_q \sim Z_q$. It can be shown that $\bar{x} \in B$, the base group, and $\bar{y} = wy^i$, where $w \in B$ and $q \nmid i$. Let $\bar{x} = (x_1, x_2, ..., x_q)$ and $u = x_1 + x_2 + ... + x_q$. Now

$$\bar{x} + \bar{y}^{\bar{y}} + \ldots + \bar{x}^{\bar{y}^{q-1}} = (u, u, \ldots, u) \notin K$$

and so is not in M. Then (u, q) = 1. Consequently, it can be shown that $\langle \bar{x}, \bar{x}^{\bar{y}}, \ldots, \bar{x}^{\bar{y}^{Q-1}} \rangle = B$. Then $H = \langle \bar{x}, \bar{y} \rangle K = D$ and so Asatisfies (*).

References

- [1] T.R. Berger, "Automorphisms of solvable groups", J. Algebra 27 (1973), 311-340.
- [2] Thomas R. Berger, "Nilpotent fixed point free automorphism groups of solvable groups", Math. Z. 131 (1973), 305-312.
- [3] Alan R. Camina and F. Peter Lockett, "On solvable groups which admit the dihedral group of order eight fixed-point-freely", Bull. Austral. Math. Soc. 8 (1973), 305-312.
- [4] Fletcher Gross, "Fixed-point-free operator groups of order 8 ", Pacific J. Math. 28 (1969), 357-361.
- [5] Fletcher Gross, "Elementary abelian operator groups", Bull. Austral. Math. Soc. 7 (1972), 91-100.

Department of Mathematics,	Department of Pure Mathematics,
University of Minnesota,	School of General Studies,
Minneapolis,	Australian National University,
Minnesota, USA;	Canberra, ACT.