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1. Introduction

Our objective is to study existence and uniqueness of two kinds of very weak
solutions to nonlinear measure data problem{

−divA(x,∇u) = μ in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
n is a bounded, n � 2, μ is an arbitrary bounded measure on Ω,

and A : Ω × R
n → R

n has growth prescribed be the means of an inhomogeneous
function ϕ : Ω × [0,∞) → [0,∞) of an Orlicz growth with respect to the second
variable. Special cases of the leading part of the operator A include p-Laplacian,
p(x)-Laplacian, but we cover operators with Orlicz, double-phase growth, as well
as weighted Orlicz or variable exponent double-phase one as long as it falls into
the realm of Musielak–Orlicz spaces within the natural regime described in § 2. The
existence of renormalized solutions to general measure data problem and uniqueness
for measure data is new even in the reflexive Orlicz case. It was also not known in
two cases enjoying lately particular attention – double-phase and variable exponent
double-phase ones.

Very weak solutions to measure data problems of the form (1.1) are already stud-
ied in depth in the classical setting of Sobolev spaces, that is when the growth of
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the leading part of the operator is governed by a power function with the celebrated
special case of p-Laplacian Δpu = div (|∇u|p−2∇u). To give a flavour let us mention
e.g. [12, 16, 17, 37, 38], where the existence is provided for various notions of very
weak solutions for L1 or measure data. Note that the notions in several cases coin-
cide [37, 38, 54]. In general, it is possible to find a proper notion enjoying existence,
but sharp assumptions on μ to ensure uniqueness for these type of problems are not
known even when the operator A exposes the mentioned standard p-growth. See
counterexamples in [16] showing non-uniqueness for concentrated measures. The
natural sufficient condition in the standard case is that μ is so diffuse that it does
not charge the sets of proper capacity zero and the proof of uniqueness essentially
employs its characterization of the form of theorem 1.1.

Analysis of problems exposing (p, q)-growth, where the operator is trapped
between polynomials |ξ|p � A(x, ξ) · ξ � 1 + |ξ|q, are already classical topic inves-
tigated since [45, 56, 60, 67]. Nowadays, there is a great interest in analysis under
nonstandard growth conditions that embraces more: problems with variable expo-
nent growth used in modelling of electrorheological fluids [1, 65], thermistor models
[71] or image processing [19], with double-phase growth good for description of com-
posite materials [34], as well as Orlicz one – engaged in modelling of non-Newtonian
fluids [46] and elasticity [7]. Studies on nonstandard growth problems form a solid
stream in the modern nonlinear analysis [9, 20, 23, 25, 29, 32, 34, 39, 40, 50,
51, 61, 68]. The theory of existence of very weak solutions to problems with non-
standard growth and merely integrable data is under intensive investigation [3, 11,
31, 33, 47, 48, 66, 69]. For the study on Musielak–Orlicz growth L1-data elliptic
equations we refer to [47] under growth restrictions on the conjugate of the modular
function and to [48, 55], where existence is provided either in (all) reflexive spaces
or when the growth of modular function is well-balanced (and the smooth functions
are modularly dense, cf. also [4, 18]). Analogous parabolic study can be found in
[26–28]. For measure data problems with Orlicz growth to our best knowledge we
can refer only to [6] for some class of measures, to [13, 33, 43] for general measures
in the reflexive case extended in [5, 24]. In [5, 24, 33], besides existence also reg-
ularity in the scale of Marcinkiewicz-type spaces is provided even for solutions to
measure data problems, but therein the uniqueness is obtained only if the datum
is integrable. In [25], precise regularity results are provided recently extended in
[30]. On the other hand, existence of very weak solutions and uniqueness in the
case of diffuse measures is studied in the variable exponent setting in [57, 59, 69].
Here, two kinds of very weak solutions are proven to exist and coincide for arbitrary
measure datum.

We consider (1.1) involving the leading part of the operator governed by a func-
tion ϕ : Ω × [0,∞) → [0,∞) and, thereby, placing our analysis in an unconventional
functional setting, where the norm is defined by the means of the functional

w �→
∫

Ω

ϕ(x, |Dw|) dx, (1.2)

Let us make an overview of the special cases of the functional framework we capture.
The operator can be governed by power function variable in space, namely ϕ(x, s) =
|s|p(x), where p : Ω → (1,∞) is log-Hölder continuous, i.e. when there exists c > 0
such that |p(x) − p(y)| � −c/log(|x− y|) for |x− y| < 1/2, cf. [36]. Another model
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example we cover is non-uniformly elliptic problems living in spaces with the double-
phase energy, ϕ(x, s) = |s|p + a(x)|s|q, where a ∈ C0,α(Ω) is nonnegative and can
vanish in some regions of Ω ⊂ R

n, while exponents satisfy 1 < p � q <∞ and are
close in the sense that q

p � 1 + α
n necessary for density of smooth functions [4,

34]. What is more, we admit problems posed in the reflexive Orlicz setting, when
ϕ is a doubling N -function ϕ(x, s) = ϕ(s) ∈ Δ2 ∩∇2, including Zygmund-type
spaces where ϕp,α(s) = sp logα(1 + s), p > 1, α ∈ R or compositions and multi-
plications of functions from the family {ϕp̄,ᾱ}p̄,ā with various parameters. More
generally, under certain nondegeneracy and continuity conditions, given as (A0)-
(A1) in § 2, we capture also general case (1.2). The remaining examples we can give
here cover all weighted reflexive Orlicz functionals with non-degenerating weights,
double-phase functions with variable exponents ϕ(x, s) = |s|p(x) + a(x)|s|q(x), dou-
ble phase with Orlicz phases ϕ(x, s) = ϕ1(s) + a(x)ϕ2(s) or multi-phase cases
ϕ(x, s) =

∑k
i=1 ai(x)ϕi(s) (with appropriately regular weights) as long as condi-

tions (A0)–(A1) are satisfied. We refer to [20] for a more detailed overview of
differential equations and to [49] for the fundamental properties of the functional
framework.

Diffuse measures

The natural property of a measure to ensure uniqueness of very weak solutions to
(1.1) is that μ is diffuse with respect to a relevant capacity. In order to characterize
such measures, let us denote by Mb(Ω) the set of bounded measures on Ω ⊂ R

n and
by W 1,ϕ(·)(Ω) the Musielak–Orlicz–Sobolev space. See § 2.3 for the introduction to
the functional setting and all assumptions and § 2.5 for the capacity. By Mϕ(·)

b (Ω)
we mean the set of ϕ(·)-diffuse measures (or ϕ(·)-soft measures) consisting of such
bounded measures μϕ(·) that do not charge sets of ϕ(·)-capacity zero (for every
Borel set E ⊂ Ω such that Cϕ(·)(E) = 0 it holds that μϕ(·)(E) = 0). One may think
that a measure μϕ(·) ∈ Mϕ(·)

b (Ω) is ‘absolutely continuous with respect to Cϕ(·)’.
Our first result is the following theorem.

Theorem 1.1 (Characterization of measures). Suppose ϕ ∈ Φc(Ω) on a bounded
domain Ω ⊂ R

n, n � 2. Assume that ϕ satisfies (aInc)p, (aDec)q, (A0) and (A1).
When μ ∈ Mb(Ω), then

μ ∈ Mϕ(·)
b (Ω) if and only if μ ∈ L1(Ω) + (W 1,ϕ(·)

0 (Ω))′,

i.e. there exist f ∈ L1(Ω) and G ∈ (Lϕ̃(·)(Ω))n, such that μ = f − divG in the sense
of distributions.

Remark 1.2. Let us note that upon our assumptions tp � ϕ(·, t). If p > n it holds
that Mb(Ω) ⊂W−1,p′

(Ω) ⊂ (W 1,ϕ(·)
0 (Ω))′. In this case, all measures are absolutely

continuous with respect to the Lebesgue measure and, consequently, the result is
really meaningful only for slowly growing functions ϕ.
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Remark 1.3. The decomposition of theorem 1.1

Mϕ(·)
b (Ω) 	 μ = f − divG with f ∈ L1(Ω) and G ∈ (Lϕ̃(·)(Ω))n)

cannot be unique as L1(Ω) ∩ (W 1,ϕ(·)
0 (Ω))′ 
= {0}. On the other hand, for every μ ∈

Mb(Ω) there exists a decomposition μ = μϕ(·) + μ+
sing − μ−

sing with some μϕ(·) which
is absolutely continuous with respect to ϕ(·)-capacity, while μ+

sing, μ
−
sing � 0 are sin-

gular with respect to the Cϕ(·) (concentrated on some set of ϕ(·)-capacity zero) and
this decomposition is unique up to sets of ϕ(·)-capacity zero, see lemma 3.2. Con-
sequently, any μ ∈ Mb(Ω) admits a decomposition μ = f + divG+ μ+

sing − μ−
sing in

the sense of distributions, with some f ∈ L1(Ω), G ∈ (Lϕ̃(·)(Ω))n, and Cϕ(·)-singular
μ+

sing, μ
−
sing.

Let us point out a direct consequence of theorem 1.1 to the classical spaces.

Corollary 1.4 Orlicz case. Suppose B : [0,∞) → [0,∞) is a Young function, such
that B ∈ Δ2 ∩∇2. Then μB ∈ Mb(Ω) does not charge the sets of Sobolev B-capacity
zero if and only if μB ∈ L1(Ω) + (W 1,B

0 (Ω))′, that is there exist f ∈ L1(Ω) and G ∈
(LB̃(Ω))n, such that μB = f − divG. In particular, the special case of this result
is the classical measure characterization [16]: if p > 1, then μp ∈ Mb(Ω) does not
charge the sets of the Sobolev p-capacity zero if and only if μp ∈ L1(Ω) +W−1,p′

(Ω)
(there exist f ∈ L1(Ω) and G ∈ (Lp′

(Ω))n, such that μp = f − divG in the sense of
distributions).

Corollary 1.5 Variable exponent case. Suppose p : Ω → (1,∞) with 1 < p− �
p(·) � p+ <∞ is log-Hölder continuous and p′(x) := p(x)/(p(x) − 1). Then μp(·) ∈
Mb(Ω) does not charge the sets of Sobolev p(·)-capacity zero if and only if μp(·) ∈
L1(Ω) +W−1,p′(·)(Ω), i.e. there exist f ∈ L1(Ω) and G ∈ (Lp′(·)(Ω))n, such that
μp(·) = f − divG in the sense of distributions, cf. [70].

Measure-data problems

Assumptions Given ϕ ∈ Φc(Ω) on a bounded domain Ω ⊂ R
n, n � 2, such that ϕ

satisfies (aInc)p, (aDec)q, (A0) and (A1), we shall study equation (1.1) where vector
field A satisfies the following conditions:

(A1) A : Ω × R
n → R

n is Carathéodory function, i.e. it is measurable with respect
to the first variable and continuous with respect to the last one;

(A2) There exist numbers cϕ1 , c
ϕ
2 > 0 and a function 0 � γ ∈ Lϕ̃(·)(Ω), such that

for a.e. x ∈ Ω and all ξ ∈ R
n the following ellipticity and growth conditions

are satisfied

cϕ1ϕ(x, |ξ|) � A(x, ξ) · ξ and |A(x, ξ)| � cϕ2 (1 + γ(x) + ϕ(x, |ξ|)/|ξ|) .

(A3) A is monotone, i.e. for a.e. x ∈ Ω and all η 
= ξ ∈ R
n(

A(x, η) −A(x, ξ)
)
· (η − ξ) > 0.

(A4) For a.e. x ∈ Ω it holds that A(x, 0) = 0.
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Special cases Of course, (A1)–(A4) with ϕ ∈ Φc(Ω) satisfying (aInc)p, (aDec)q,
(A0) and (A1) generalize not only classical conditions in the case when ϕ(x, s) = sp:

cp1|ξ|p � A(x, ξ) · ξ and |A(x, ξ)| � cp2
(
1 + γ(x) + |ξ|p−1

)
with 0 � γ ∈ Lp′

(Ω) with the special case of p-Laplacian. When ϕ(x, s) = sp(x) it
covers

c
p(·)
1 |ξ|p(x) � A(x, ξ) · ξ and |A(x, ξ)| � c

p(·)
2

(
1 + γ(x) + |ξ|p(x)−1

)
with 0 � γ ∈ Lp(·)/(p(·)−1)(Ω) with the special case of (possibly weighted) p(x)-
Laplacian. We allow for all p : Ω → (1,∞) under typical assumptions that 1 < p− �
p(x) � p+ and p is log-Hölder continuous. In the double-phase case ϕdp(x, s) = sp +
a(x)sq, 0 � a ∈ C0,α(Ω), q/p � 1 + α/n, it covers non-uniformly elliptic operators
satisfying

c
(p,q)
1 |ξ|p � A(x, ξ) · ξ and |A(x, ξ)| � c

(p,q)
2

(
1 + γ(x) + |ξ|p−1 + a(x)|ξ|q−1

)
with 0 � γ ∈ Lϕ̃dp(·)(Ω). Finally, in Orlicz case when B ∈ C1([0,∞)) is a doubling
N -function it also simplifies to typically considered conditions

cB1 B(|ξ|) � A(x, ξ) · ξ and

|A(x, ξ)| � cB2 (1 + γ(x) +B′(|ξ|)) , with 0 � γ ∈ LB̃(Ω).

To give more examples one can consider problems in weighted Orlicz, double phase
with variable exponents, or multi-phase Orlicz cases, as long as ϕ(x, s) is comparable
to a function doubling with respect to the second variable and satisfy nondegeneracy
conditions (A0)–(A1).

Problem Distributional solutions to equation −Δpu = μ when p is small (1 < p <

2 − 1/n) do not necessarily belong to W 1,1
loc (Ω). The easiest example to give is the

fundamental solution (when μ = δ0). This restriction on the growth can be dis-
pensed by the use of a weaker derivative. We make use of the symmetric truncation
Tk : R → R defined as

Tk(s) =

{
s |s| � k,

k
s

|s| |s| � k. (1.3)

Note that as a consequence of [12, lemma 2.1] for every function u, such that
Tt(u) ∈W

1,ϕ(·)
0 (Ω) for every t > 0 there exists a (unique) measurable function Zu :

Ω → R
n such that

∇Tt(u) = χ{|u|<t}Zu for a.e. in Ω and for every t > 0. (1.4)

With an abuse of notation, we denote Zu simply by ∇u and call it a generalized
gradient.
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In order to introduce definitions of very weak solutions we define the space

T 1,ϕ(·)
0 (Ω) = {u is measurable in Ω : Tt(u) ∈W

1,ϕ(·)
0 (Ω) for every t > 0}, (1.5)

where W 1,ϕ(·)
0 (Ω) is the completion of C∞

0 (Ω) in norm of W 1,ϕ(·)(Ω). In fact, u ∈
W

1,ϕ(·)
0 (Ω) if and only if u ∈ T 1,ϕ(·)

0 (Ω) and Zu ∈ Lϕ(·)(Ω; Rn). In the latter case,
Zu = ∇u a.e. in Ω.

Very weak solutions We define two kinds of very weak solutions to problem (1.1)
under assumptions (A1)–(A4) involving a measure μ ∈ Mb(Ω).

Inspired by [14, 15, 33, 37], we define solutions that can be reached in the limit
of solutions to approximate problems.

Definition 1.6. A function u ∈ T 1,ϕ(·)
0 (Ω) is called an approximable solution to

problem (1.1) if u is an a.e. limit of a sequence of solutions {us}s ⊂W
1,ϕ(·)
0 (Ω) to∫

Ω

A(x,∇us) · ∇φdx =
∫

Ω

φdμs for any φ ∈W
1,ϕ(·)
0 (Ω) ∩ L∞(Ω), (1.6)

when {μs} ⊂ C∞(Ω) is a sequence of bounded functions that converges to μ
weakly-∗ in the space of measures and such that

lim sup
s→0

|μs|(B) � |μ|(B) for every B ⊂ Ω. (1.7)

The definition seems very weak as we refrain from assuming any convergence of
the gradients of (us). Nonetheless, this is enough to show in the proofs that for
fixed k also A(·,∇(Tkus)) → A(·,∇(Tku)) a.e. in Ω and thus it is justified to call
u a solution (though in a very weak sense).

Having [38] and remark 1.3 we consider renormalized solutions defined as follows.

Definition 1.7. A function u ∈ T 1,ϕ(·)
0 (Ω) is called a renormalized solution to

problem (1.1) with μ ∈ Mb(Ω), if

(i) for every k > 0 one has A(x,∇(Tku)) ∈ Lϕ̃(·)(Ω);

(ii) μ is decomposed to μ = μϕ(·) + μ+
sing − μ−

sing, with μϕ(·) ∈ Mϕ(·)
b (Ω) and

nonnegative μ+
sing, μ

−
sing ∈ (Mb(Ω) \Mϕ(·)

b (Ω)) ∪ {0}, then∫
Ω

A(x,∇u) · ∇uh′(u)φdx+
∫

Ω

A(x,∇u) · ∇φh(u) dx

=
∫

Ω

h(u)φdμϕ(·)(x) + h(+∞)
∫

Ω

φdμ+
sing(x) − h(−∞)

∫
Ω

φdμ−
sing(x),

(1.8)

holds for any h ∈W 1,∞(R) having h′ with compact support and for all
φ ∈ C∞

0 (Ω), where h(+∞) := limr→+∞ h(r) and h(−∞) := limr→+∞ h(r)
are well-defined as h is constant close to infinities.
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Our main result reads as follows.

Theorem 1.8. Let ϕ ∈ Φc(Ω) on a bounded Lipschitz domain Ω ⊂ R
n, n � 2.

Suppose that ϕ satisfies (aInc)p, (aDec)q, (A0) and (A1), whereas a vector field
A : Ω × R

n → R
n satisfies (A1)–(A4). When μ ∈ Mb(Ω), then the following claims

hold true.

(i) There exists an approximable solution to problem (1.1).

(ii) There exists a renormalized solution to problem (1.1) satisfying (1.8) with
measures such that suppμϕ(·) ⊂ {|u| <∞}, suppμ+

sing ⊂ ∩k>0{u > k}, and
suppμ−

sing ⊂ ∩k>0{u < −k}.

(iii) A function u ∈ T 1,ϕ(·)
0 (Ω) is an approximable solution from (i) if and only if

it is a renormalized solution from (ii).

Uniqueness for approximable solution and renormalized solutions under addi-
tional assumption related to ϕ(·)-diffusivity of measure datum is provided in § 7.

As h ≡ 1 is an admissible choice in (1.8), we get the following remark.

Remark 1.9. Under the assumptions of theorem 1.8 if u is an approximable
(equivalently, renormalized) solution, then∫

Ω

A(x,∇u) · ∇φdx =
∫

Ω

φdμ for all φ ∈ C∞
0 (Ω),

so u is then a solution in the distributional sense (which in particular is proven to
exist).

Moreover, for problems involving ϕ(·)-diffuse measures, by theorem 1.1 and
proposition 6.1, we can formulate the following conclusion.

Corollary 1.10. Under the assumptions of theorem 1.8 if u is an approximable
(equivalently, renormalized) solution and μ ∈ (L1(Ω) + (W 1,ϕ(·)

0 (Ω))′) ∩Mb(Ω),
then u exists, is unique, and satisfies

lim sup
k→∞

∫
{k<|u|<k+1}

A(x,∇u) · ∇u dx = 0.

As a direct consequence of theorem 1.8 we retrieve the already classical exis-
tence results of [16, 38] involving p-Laplace operator, as well as variable exponent
ones [69, 70]. We extend the existence results for problems in reflexive Orlicz spaces
proven in [33] towards inhomogeneity of the spaces, as well as we extend the unique-
ness result from L1 to a class of diffuse measure data. It should be noted that
renormalized solutions to general measure data problems with Orlicz growth were
not studied so far. We also obtain the main goals of [47, 48] within a different
and a bit more restrictive functional framework (and slightly different kind of con-
trol on the modular function), but allowing for essentially broader class of data
and providing uniqueness. To our best knowledge no results on equivalence of very
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weak solutions has been so far addressed in problems stated in generalized Orlicz
spaces even in the L1-data case, for the p-Laplace case we refer to [38, 54]. Find-
ing a setting where they essentially do not coincide would be interesting. Given an
interest one may expect developing our main goals further towards anisotropic or
non-reflexive settings cf. [5, 24, 48], as well as by involving lower-order terms in
(1.1) as in [47], differential inclusions as in [41], or systems of equations.

There is some available information on the regularity of our very weak solutions
following from comparison to solutions to problems with Orlicz growth. The condi-
tions on ϕ(·) imply that there exists a Young function B : [0,∞) → [0,∞) such that
B(s) � ϕ(x, s) for a.a. x ∈ Ω and all s � 0. Then any of the very weak solutions of
theorem 1.8 belongs to T 1,ϕ(·)

0 (Ω) ⊂ T 1,B
0 (Ω). Thus, we can get the same regularity

of these solutions and their gradients expressed in Orlicz–Marcinkiewicz scale as in
[33, theorem 3.2]; see [33, example 3.4] for applications with particular growth of B
(including Zygmund-type ones). On the other hand, precise information on the local
behaviour of solutions to problems with Orlicz growth obtained as a consequence
of Wolff-potential estimates can be found in [25] depending on the scale of datum
(in Orlicz versions of Lorentz, Marcinkiewicz and Morrey scales). Furthermore, [21]
gives the Orlicz–Lorentz–Morrey-type regularity for gradients of solutions to prob-
lems involving related classes of measures, moreover, [22] describes the regularizing
effect of the lower-order term (in the same scale). For Riesz potential estimates for
such problems see [8]. For equations posed in the generalized Orlicz setting sharp
conditions on a measure datum ensuring Hölder continuity of solutions has been
recently provided via Wolff potential estimates [30].

The main ideas of the proofs follow several seminal papers including [12, 16,
17, 38] and involve analysis of fine convergence of solutions of some approximate
problems. Nonetheless, the functional setting is far more demanding. In fact, we
employ a lot of very recent results on structural properties of the generalized Orlicz
spaces and nonstandard capacities, see e.g. [10, 39, 49, 52], and study properties
of measures exposing certain capacitary properties.

As for organization – after preliminary part, the measure characterization is
proven in § 3 and § 4 is devoted to approximate problems. Approximable solutions
are investigated in § 5, while renormalized ones in § 6. Uniqueness is proven in § 7.
The summary of the main proof is presented in § 8.

2. Preliminaries

2.1. Notation

By Ω we always mean a bounded set in R
n, n � 2. We shall make use of a

Lipschitz continuous cut-off function ψl : R → R by

ψl(r) := min{(l + 1 − |r|)+, 1}. (2.1)

By μ1 � μ2 we denote we mean that μ1 is absolutely continuous with respect
to μ2.

We study spaces of functions defined in Ω, R, or R
n. L0(Ω) denotes the set of

measurable functions defined on Ω, C0(Ω) are continuous functions taking value
zero on ∂Ω, while Cb(Ω) – continuous functions bounded on Ω; Mb(Ω) are Radon
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measures with bounded total variation in Ω; Mϕ(·)
b (Ω) – bounded Radon measures

diffuse with respect to ϕ(·)-capacity. If μ ∈ Mb(Ω), E is a Borel set included in Ω,
the measure μ E is defined by (μ E)(B) = μ(E ∩B) for any Borel set B ⊂ Ω.
If μ ∈ Mb(Ω) is such that μ = μ E, then we say that μ is concentrated on E.
In general, one cannot define the smallest set (in the sense of inclusion) where the
measure is concentrated. By L1(Ω, μ) we denote classically functions with absolute
value integrable with respect to μ, shortened to L1(Ω) if μ is Lebesgue’s measure.

When μk, μ ∈ Mb(Ω), we say that μk → μ weakly-∗ in the space of measures if

lim
k→∞

∫
Ω

φdμk =
∫

Ω

φdμ for every φ ∈ C0(Ω).

Lemma 2.1. If gn : Ω → R are measurable functions converging to g almost every-
where, then for each regular value t of the limit function g we have 1{t<|gn|} −−−−→

n→∞
1{t<|g|} a.e. in Ω.

Here, the term ‘regular value’ denotes a value t such that g−1(t) has measure
zero.

Lemma 2.2. Suppose wn → w in L1(Ω), vn, v ∈ L∞(Ω), and vn → v a.e. in Ω. Then
wnvn → wv in L1(Ω).

2.2. Generalized Orlicz functions

The framework we employ comes from the monograph [49]. For the classical
treatment of the setting we refer to [62, 63], while for recent developments within
the related functional settings see [4, 10, 18, 26, 35, 52].

A real-valued function is L-almost increasing, L � 1, if Lf(s) � f(t) for s > t.
L-almost decreasing is defined analogously.

Definition 2.3. We say that ϕ : Ω × [0,∞) → [0,∞] is a convex Φ–function, and
write ϕ ∈ Φc(Ω), if the following conditions hold:

(i) For every s ∈ [0,∞) the function x �→ ϕ(x, t) is measurable and for a.e. x ∈ Ω
the function s �→ ϕ(x, t) is increasing, convex, and left-continuous.

(ii) ϕ(x, 0) = lims→0+ ϕ(x, s) = 0 and lims→∞ ϕ(x, s) = ∞ for a.e. x ∈ Ω.

Furthermore, we say that ϕ ∈ Φc(Ω) satisfies

(aInc)p if there exists Lp � 1 such that s �→ ϕ(x, s)/sp is Lp-almost increasing in
[0,∞) for every x ∈ Ω,

(aDec)q if there exists Lq � 1 such that s �→ ϕ(x, s)/sq is Lq-almost decreasing in
[0,∞) for every x ∈ Ω.

We write (aInc), if there exist p > 1 such that (aInc)p holds and (aDec) if there
exist q > 1 such that (aDec)q holds. The corresponding conditions with L = 1 are
denoted by (Inc) or (Dec).

We shall consider those ϕ ∈ Φc(Ω), which satisfy the following set of conditions.

(A0) There exists β0 ∈ (0, 1] such that ϕ(x, β0) � 1 and ϕ(x, 1/β0) � 1 for all
x ∈ Ω.
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(A1) There exists β1 ∈ (0, 1), such that for every ball B with |B| � 1 it holds that

β1ϕ
−1(x, s) � ϕ−1(y, s) for every s ∈ [1, 1/|B|] and a.e. x, y ∈ B ∩ Ω.

Condition (A0) is imposed in order to exclude degeneracy, while (A1) can be
interpreted as local continuity.

We say that a function ϕ satisfies Δ2-condition (and write ϕ ∈ Δ2) if there exists
a constant c > 0, such that for every s � 0 it holds ϕ(x, 2s) � c(ϕ(x, s) + 1). When
a function ϕ ∈ Φc(Ω) satisfies (aInc)p and (aDec)q, then ϕ ∈ Δ2.

The Young conjugate of ϕ ∈ Φc(Ω) is the function ϕ̃ : Ω × [0,∞) → [0,∞] defined
as

ϕ̃(x, s) = sup{r · s− ϕ(x, r) : r ∈ [0,∞)}.

The fact that Young conjugation is involute, i.e. (̃ϕ̃) = ϕ is attributed to Fenchel
and Moreau, see direct proof in [26, theorem 2.1.41]. Moreover, if ϕ ∈ Φc(Ω), then
ϕ̃ ∈ Φc(Ω). If ϕ̃ ∈ Δ2, we say that ϕ satisfies ∇2-condition and denote it by ϕ ∈ ∇2.
If ϕ, ϕ̃ ∈ Δ2, then we call ϕ a doubling function. If ϕ ∈ Φc(Ω) satisfies (aInc)p and
(aDec)q, then ϕ, ϕ̃ ∈ Δ2, so within our framework ϕ is assumed to be doubling.

For ϕ ∈ Φc(Ω), the following inequality of Fenchel–Young type holds true

rs � ϕ(x, r) + ϕ̃(x, s). (2.2)

In fact, within our framework with, since ϕ is comparable to a doubling function
there exist some constants depending only on ϕ for which we have

ϕ̃ (x, ϕ(x, s)/s) ∼ ϕ(x, s) for a.e. x ∈ Ω and all s > 0. (2.3)

2.3. Function spaces

We always deal with spaces generated by ϕ ∈ Φc(Ω) satisfying (aInc)p, (aDec)q,
(A0) and (A1). For f ∈ L0(Ω) we define the modular 
ϕ(·),Ω by


ϕ(·),Ω(f) =
∫

Ω

ϕ(x, |f(x)|)dx.

When it is clear from the context we skip writing the domain.
Musielak–Orlicz space is defined as the set

Lϕ(·)(Ω) =
{
f ∈ L0(Ω) : lim

λ→0+

ϕ(λf) = 0

}
endowed with the Luxemburg norm ‖f‖ϕ(·) = inf{λ > 0 : 
ϕ(·)( 1

λf) � 1}. For ϕ ∈
Φc(Ω), the space Lϕ(·)(Ω) is a Banach space [49, theorem 2.3.13]. Moreover, the
following Hölder inequality holds true

‖fg‖L1(Ω) � 2‖f‖Lϕ(·)(Ω)‖g‖Lϕ̃(·)(Ω). (2.4)

If a := max{Lp, Lq} for constants from (aInc)p and (aDec)q, then

‖w‖Lϕ(·)(Ω) � max
{(
aρϕ(·);Ω(w)

)1/p
,
(
aρϕ(·);Ω(w)

)1/q
}
. (2.5)

Sometimes it would be convenient for us to denote vector-valued functions
integrable with the modular as (Lϕ(·)(Ω))n. Since there is no difference between
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claiming H = (H1, . . . , Hn) ∈ (Lϕ(·)(Ω))n and |H| ∈ Lϕ(·)(Ω), we are not very
careful with stressing it in the sequel. A function f ∈ Lϕ(·)(Ω) belongs to
Musielak–Orlicz–Sobolev space W 1,ϕ(·)(Ω), if its distributional partial derivatives
∂1f, . . . , ∂nf exist and belong to Lϕ(·)(Ω) too. Because of the growth conditions
W 1,ϕ(·)(Ω) is a separable and reflexive space. Moreover, smooth functions are dense
there. As a zero-trace spaceW 1,ϕ(·)

0 (Ω) we mean the closure of C∞
0 (Ω) inW 1,ϕ(·)(Ω).

In fact, due to [49, theorem 6.2.8] given a bounded domain Ω there exists a constant
c = c(n,Ω) > 0, such that for any u ∈W

1,ϕ(·)
0 (Ω) it holds that

‖u‖Lϕ(·)(Ω) � c‖∇u‖Lϕ(·)(Ω). (2.6)

Moreover, [49, theorem 6.3.7] yields that

W
1,ϕ(·)
0 (Ω) ↪→↪→ Lϕ(·)(Ω), (2.7)

where ‘↪→↪→’ stands for a compact embedding.

Remark 2.4 [49]. If ϕ ∈ Φc(Ω) with Ω bounded, satisfies (aInc)p, (aDec)q, (A0)
and (A1), then strong (norm) topology of W 1,ϕ(·)(Ω) coincides with the modular
topology. Moreover, smooth functions are dense in this space in both topologies.
Thus, W 1,ϕ(·)

0 (Ω), under our assumptions, is a closure of C∞
0 (Ω) with respect to

the modular topology of gradients in Lϕ(·)(Ω).

Space (W 1,ϕ(·)
0 (Ω))′ is considered endowed with the norm

‖H‖
(W

1,ϕ(·)
0 (Ω))′ = sup

{
〈H, v〉

‖v‖W 1,ϕ(·)(Ω)

: v ∈W
1,ϕ(·)
0 (Ω)

}
.

2.4. The operator

Let us motivate that the growth and coercivity conditions from (A1)–(A4)
imply the expected proper definition of the operator involved in problem (1.1).
We consider the operator Aϕ(·) : W 1,ϕ(·)

0 (Ω) → (W 1,ϕ(·)
0 (Ω))′ defined as

Aϕ(·)(v) = −divA(x,∇v),

that is acting

〈Aϕ(·)(v), w〉 :=
∫

Ω

A(x,∇v) · ∇w dx for w ∈ C∞
0 (Ω), (2.8)

where 〈·, ·〉 denotes dual pairing between reflexive Banach spaces W 1,ϕ(·)(Ω)) and
(W 1,ϕ(·)(Ω))′ is well-defined. Note that when v ∈W 1,ϕ(·)(Ω) and w ∈ C∞

0 (Ω),
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growth condition (A2), Hölder’s inequality (2.4), equivalence (2.3) justify that

|〈Aϕ(·)(v), w〉| � c

∫
Ω

ϕ(x, |∇v|)
|∇v| |∇w| dx � c

∥∥∥∥ϕ(·, |∇v|)
|∇v|

∥∥∥∥
Lϕ̃(·)(Ω)

‖∇w‖Lϕ(·)(Ω).

Note that due to (2.3) the norm ‖ϕ(·, |∇v|)/|∇v|‖Lϕ̃(·)(Ω) < c with c depending on
‖∇v‖Lϕ(·) , p, q only. Therefore

|〈Aϕ(·)(v), w〉| � c‖∇w‖Lϕ(·)(Ω) � c‖w‖W 1,ϕ(·)(Ω).

By density argument, the operator is well-defined on W 1,ϕ(·)
0 (Ω).

What is more, by (A1)–(A2) and [32, lemma 4.12] we have the following.

Remark 2.5. For u ∈ T 1,ϕ(·)(Ω), such that for some M,k0 > 0 it holds that

ϕ(·),Ω(∇Tku) � Mk for all k > k0, there exists a continuous function ζ : [0, |Ω|] →
[0,∞), such that lims→0+ ζ(s) = 0 and for any measurable E ⊂ Ω∫

E

|A(x,∇u)|dx � ζ(|E|),

where ‘∇’ is understood as in (1.4). In particular, A(·,∇u) ∈ (L1(Ω))n.

2.5. Capacities

Understanding capacities is needed to describe pointwise behaviour of Sobolev
functions. We employ the generalization of classical notions of capacities, cf. [2, 53,
64], as well as unconventional ones [42, 58] to the Musielak–Orlicz–Sobolev setting
according to [10, 52].

For a set E ⊂ R
n we define

S1,ϕ(·)(E) := {0 � v ∈W 1,ϕ(·)(Rn) : v � 1 in an open set containing E}

and its generalized Orlicz capacity of Sobolev type (called later W 1,ϕ(·)-capacity)
by

Cϕ(·)(E) = inf
v∈S1,ϕ(·)(E)

{∫
Rn

ϕ(x, v) + ϕ(x, |∇v|) dx
}
.

We shall consider generalized relative ϕ(·)-capacity capϕ(·). With this aim for every
K compact in Ω ⊂ R

n let us denote

Rϕ(·)(K,Ω) := {v ∈W 1,ϕ(·)(Ω) ∩ C0(Ω) : v � 1 on K and v � 0} (2.9)

and set

capϕ(·)(K,Ω) := inf
{

ϕ(·),K(|∇v|) : v ∈ Rϕ(·)(K,Ω)

}
.

For open sets A ⊂ Ω we define

capϕ(·)(A,Ω) = sup
{

capϕ(·)(K,Ω) : K ⊂ A and K is compact in A
}
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and finally, if E ⊂ Ω is an arbitrary set

capϕ(·)(E,Ω) = inf
{

capϕ(·)(A,Ω) : E ⊂ A and A is open in Ω
}
.

This notion of capacity enjoys all fundamental properties of classical capacities
[10, 52].

Let us pay some attention to sets of zero capacity. If BR is a ball in R
n, E ⊂ BR

and capϕ(·)(E,BR) = 0, then |E| = 0. Having bounded Ω ⊂ R
n for a set E ⊂ Ω

we have capϕ(·)(E,Ω) = 0 if and only if Cϕ(·)(E) = 0. What is more, each set of
W 1,ϕ(·)-capacity zero is contained in a Borel set of W 1,ϕ(·)-capacity zero. Countable
union of sets of W 1,ϕ(·)-capacity zero has W 1,ϕ(·)-capacity zero.

Function u is called Cϕ(·)-quasi-continuous if for every ε > 0 there exists an open
set U with Cϕ(·)(U) < ε, such that f restricted to Ω \ U is continuous. We say that
a claim holds ϕ(·)-quasi-everywhere if it holds outside a set of Sobolev ϕ(·)-capacity
zero. A set E ⊂ Ω is said to be Cϕ(·)-quasi-open if for every ε > 0 there exists an
open set U such that E ⊂ U ⊂ Ω and Cϕ(·)(U \ E) � ε.

Lemma 2.6. For every Cauchy sequence in W 1,ϕ(·)(Ω) (equivalently under our
regime, with respect to the W 1,ϕ(·)(Ω)-modular topology) of functions from C(Rn) ∩
W 1,ϕ(·)(Ω) there is a subsequence which converges pointwise Cϕ(·)-quasi-everywhere
in Ω. Moreover, the convergence is uniform outside a set of arbitrary small capacity
Cϕ(·).

In the sequel, we shall always identify u with its Cϕ(·)-quasi-continuous represen-
tative.

Lemma 2.7. For each u ∈ T 1,ϕ(·)
0 (Ω) there exists a unique Cϕ(·)-quasi-continuous

function v ∈ T 1,ϕ(·)
0 (Ω) such that u = v holds Cϕ(·)-quasi-everywhere in Ω.

As a direct consequence of lemma 2.7, we have the following observations.

Lemma 2.8. For a Cϕ(·)-quasi-continuous function u and k > 0, the sets {|u| > k}
and {|u| < k} are Cϕ(·)-quasi-open.

Lemma 2.9. For every Cϕ(·)-quasi-open set U ⊂ Ω there exists an increasing
sequence {vn} of nonnegative functions in W

1,ϕ(·)
0 (Ω) which converges to 1U

Cϕ(·)-quasi-everywhere in Ω.

Lemma 2.10. If μϕ(·) ∈ Mϕ(·)
b (Ω) and u ∈W

1,ϕ(·)
0 (Ω), then Cϕ(·)-quasi-continuous

representative û of u is measurable with respect to μϕ(·). If additionally u ∈ L∞,
then û ∈ L∞(Ω, μϕ(·)) ⊂ L1(Ω, μϕ(·)).

3. Measure characterization

In order to prove theorem 1.1 let us concentrate on the continuity of μ ∈
(L1(Ω) + (W 1,ϕ(·)

0 (Ω))′) ∩Mb(Ω) with respect to the generalized capacity. Note
that for a nonnegative measure having decomposition μ = f − divG ∈ (L1(Ω) +
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(W 1,ϕ(·)
0 (Ω))′) ∩Mb(Ω) with f ∈ L1(Ω) and G ∈ (Lϕ̃(·)(Ω))n and for an arbitrary

set E ⊂ Ω, we have

μ(E) �
∫

E

f φdx+
∫

E

G · ∇φdx

� ‖f‖L1(E)‖φ‖L∞(E) + ‖G‖(Lϕ̃(·)(Ω))n‖∇φ‖(Lϕ(·)(Ω))n

for every φ ∈W 1,ϕ(·)(Ω). In general, it is possible that a set has zero measure, but
positive capacity. This is excluded if the measure enjoys the above decomposition.

Lemma 3.1. If μ ∈ (L1(Ω) + (W 1,ϕ(·)
0 (Ω))′) ∩Mb(Ω) and a set E ⊂ Ω is such that

capϕ(·)(E,Ω) = 0, then μ(E) = 0.

Proof. By the assumption μ can be represented with the use of f ∈ L1(Ω) and
G ∈ (Lϕ̃(·)(Ω))n, such that μ = f − divG in the sense of distributions. Let us fix
arbitrary (small) ε > 0. We consider a sequence of truncations {T�f}�. Note that
{T�f}� converges to f strongly in L1(Ω), so we can choose k large enough for
‖Tkf − f‖L1(Ω) < ε/2.

Note that for any ε̃ > 0 there exists an open set A ⊃ E with capϕ(·)(A,Ω) < ε̃.
Parameter ε̃ will be chosen in a few lines. Let us fix a compact set K ⊂ A. By
definition of capϕ(·) there exists a sequence {φj}j ⊂ C∞

0 (A) of functions such that

K ⊂ {φj = 1}, 0 � φj � 1 and for j � j0 ‖∇φj‖(Lϕ(·)n )(A) � 2ε̃.

Indeed to restrict to φj such that 0 � φj � 1 let us point out that the map
t �→ min{t, 1} is Lipschitz, so f̃ := min{f, 1} ∈ Rϕ(·)(K,Ω) and 
ϕ(·),K(|∇f̃ |) �

ϕ(·),K(|∇f |). On the other hand, we substituted the modular used in definition
of capϕ(·) with the norm. This is justified by the fact that the sequence realiz-
ing the infimum converges also in norm topology, which follows from the doubling
growth of ϕ via (2.5).

We note that

|μ|(K) �
∣∣∣∣∫

A

φj dμ
∣∣∣∣ =

∣∣∣∣∫
A

f φj dx+
∫

A

G · ∇φj dx
∣∣∣∣ .

Due to Hölder inequality (2.4) and then the Poincaré inequality (2.6), we have

|μ|(K) �
∫

A

|Tkf − f | |φj |dx+
∫

A

|Tkf | |φj |dx+
∫

A

|G · ∇φj |dx

� ‖Tkf − f‖L1(A) ‖φj‖L∞(A) + 2‖Tkf‖Lϕ̃(·)(A) ‖φj‖Lϕ(·)(A)

+ 2‖G‖(Lϕ̃(·)(A))n ‖∇φj‖(Lϕ(·)(A))n

� ‖Tkf − f‖L1(A) + 2
(
‖Tkf‖Lϕ̃(·)(A) + ‖G‖(Lϕ̃(·)(Ω))n

)
‖∇φj‖(Lϕ(·)(A))n .

We pick ε̃ = ε/(8(2k + ‖G‖(Lϕ̃(·)(Ω))n)). Then |μ|(K) < ε with arbitrary ε > 0, so
|μ|(K) = 0. Therefore

|μ|(E) � |μ|(A) = sup{|μ|(K) : K ⊂ A, K compact} = 0,

which ends the proof. �
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We are in position to prove theorem 1.1. We take basic ideas from [16] with
classical growth. Similar reasoning in variable exponent setting is given in [69].

Proof of theorem 1.1. Lemma 3.1 provides the implication: if μ belongs to (L1(Ω) +
(W 1,ϕ(·)

0 (Ω))′) ∩Mb(Ω), then μ ∈ Mϕ(·)
b (Ω). Therefore, we concentrate now on the

essentially more demanding converse, that is, if μϕ(·) ∈ Mϕ(·)
b (Ω), then μϕ(·) ∈

L1(Ω) + (W 1,ϕ(·)
0 (Ω))′.

Step 1. Initial decomposition. We will show that for a nonnegative μϕ(·) ∈
Mϕ(·)

b (Ω) there exists a nonnegative measure γmeas ∈ (W 1,ϕ(·)
0 (Ω))′ and nonnegative

Borel measurable function h ∈ L1(Ω, γmeas) such that dμϕ(·) = hdγmeas.
For any ũ ∈W 1,ϕ(·)(Ω) we can find its Cϕ(·)-quasi-continuous representative

denoted by u (lemma 2.7). We define a functional F : W 1,ϕ(·)
0 (Ω) → [0,∞] by

F [u] =
∫

Ω

u+ dμϕ(·)

and observe that it is convex and lower semicontinuous on a separable space
W

1,ϕ(·)
0 (Ω). Thus, F can be expressed as a supremum of a countable family of

continuous affine functions [26, lemma 2.1.11]. By its very definition (W 1,ϕ(·)
0 (Ω))′

consists of all linear functionals on W
1,ϕ(·)
0 (Ω). Therefore, there exist sequences of

functions {ξn}n ⊂ (W 1,ϕ(·)
0 (Ω))′ and numbers {an}n ⊂ R

n such that

F [u] = sup
n∈N

{〈ξn, u〉 − an} for all u ∈W
1,ϕ(·)
0 (Ω).

Then, for any s > 0, sF [u] = F [su] � s〈ξn, u〉 − an for every n. When we divide
it by s and let s→ ∞ we obtain that F [u] � 〈ξn, u〉 for all u ∈W

1,ϕ(·)
0 (Ω). As

F [0] = 0 we infer that an � 0. Therefore, F [u] � supn∈N〈ξn, u〉 � supn∈N{〈ξn, u〉 −
an} = F [u] and, in turn,

F [u] = sup
n∈N

〈ξn, u〉. (3.1)

This means that for all φ ∈ C∞
0 (Ω) we have

〈ξn, φ〉 � sup
n∈N

〈ξn, φ〉 = F [φ] =
∫

Ω

φ+ dμϕ(·) � ‖μϕ(·)‖Mb(Ω)‖φ‖L∞(Ω).

By the same arguments for −ϕ we get

|〈ξn, φ〉| � ‖μϕ(·)‖Mb(Ω)‖φ‖L∞(Ω)

implying that ξn ∈ (W 1,ϕ(·)
0 (Ω))′ ∩Mb(Ω). By the Riesz representation theorem

there exists nonnegative ξmeas
n ∈ Mb(Ω), such that

〈ξn, φ〉 =
∫

Ω

φ dξmeas
n for all φ ∈ C∞

0 (Ω).

Note that

ξmeas
n � μϕ(·) and ‖ξmeas

n ‖Mb(Ω) � ‖μϕ(·)‖Mb(Ω). (3.2)
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Let us define

η =
∞∑

n=1

ξn
2n(‖ξn‖(W

1,ϕ(·)
0 (Ω))′ + 1)

(3.3)

and observe that the series in absolutely convergent in (W 1,ϕ(·)
0 (Ω))′. Therefore, for

φ ∈ C∞
0 (Ω) we can write

|〈η, φ〉| �
∞∑

n=1

|〈ξn, φ〉|
2n(‖ξn‖(W

1,ϕ(·)
0 (Ω))′ + 1)

�
∞∑

n=1

‖ξmeas
n ‖Mb(Ω)

2n
‖φ‖L∞(Ω) � ‖μϕ(·)‖Mb(Ω)‖φ‖L∞(Ω)

and so η ∈ (W 1,ϕ(·)
0 (Ω))′ ∩Mb(Ω) too. We denote

ηmeas =
∞∑

n=1

ξmeas
n

2n(‖ξn‖(W
1,ϕ(·)
0 (Ω))′ + 1)

and note that this is a series of positive elements that is absolutely convergent in
Mb(Ω). Moreover, ξmeas

n � ηmeas and thus for every n there exists a nonnegative
function hn ∈ L1(Ω,dηmeas) such that dξmeas

n = hn dηmeas. Having (3.1) we deduce
that

〈μϕ(·), φ〉 =
∫

Ω

φdμϕ(·) = sup
n∈N

∫
Ω

φdξmeas
n

= sup
n∈N

∫
Ω

hn φdηmeas for any φ ∈ C∞
0 (Ω). (3.4)

On the other hand, (3.2) ensures that hnη
meas � μϕ(·). This means that for any

measurable set E ⊂ Ω and every n we have∫
E

hn dηmeas � μϕ(·)(E). (3.5)

We denote hk
max = max{h1(x), . . . , hk(x)} and

Ej,k = {x ∈ E : hj
max(x) > hi(x) for every i = 1, . . . , k − 1}. (3.6)

Then Ej,k for i = 1, . . . , k are pairwise disjoint and E = ∪k
j=1E

j,k, so

∫
E

hk
max(x) dηmeas �

k∑
j=1

∫
Ej,k

hk
max(x) dηmeas �

k∑
j=1

μϕ(·)(Ej,k) = μϕ(·)(E). (3.7)

Let us pass with k → ∞ and take h(x) = supl∈N hl(x). We infer that for any
measurable set E ⊂ Ω ∫

E

hdηmeas � μϕ(·)(E). (3.8)
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According to (3.4), for every nonnegative φ ∈ C∞
0 we have∫

Ω

φdμϕ(·) = sup
l∈N

∫
Ω

hl φdηmeas �
∫

Ω

hφdηmeas �
∫

Ω

φdμϕ(·)

that is dμϕ(·) = hdηmeas. Since μϕ(·)(Ω) ∈ Mb(Ω), we deduce that h ∈
L1(Ω,dηmeas) and the aim of this step is achieved with γmeas = ηmeas ∈
(W 1,ϕ(·)

0 (Ω))′.
Step 2. Auxiliary sequence of measures. We take an increasing sequence of sets

{Ki}i compact in Ω, such that ∪∞
i=1Ki = Ω. We set

μ̃i = Ti(h1Ki
)γmeas for every i ∈ N.

Then {μ̃i}i is an increasing sequence of positive measures in (W 1,ϕ(·)
0 (Ω))′ with

supports compact in Ω. Let us denote

μ0 = μ̃0 and μi = μ̃i − μ̃i−1 for every i ∈ N.

Then
∑k

i=1 μi = Tk(h1Kk
)γmeas ∈ Mb(Ω). Since μi � 0, we have

∑∞
i=1 ‖μi‖M(Ω) <

∞. Furthermore, μϕ(·) =
∑∞

i=1 μi and this series is absolutely convergent in Mb(Ω).
Step 3. Construction of decomposition. Suppose 
 ∈ C∞

0 (B(0, 1)) is a standard
mollifier (nonnegative and symmetric function with

∫
Rn 
dx = 1) and set 
k(x) =

kn
(kx). We consider mollification

μ�
i,k(x) =

∫
Rn


k(x− y) dμi(y)

For k large enough, we can decompose μi = fi + wi with

fi = μ�
i,ki

∈ C∞
0 (Ω) and wi = μi − μ�

i,ki
∈ (W 1,ϕ(·)

0 (Ω))′

by choosing for every i sufficiently large ki
0 such that for ki > ki

0, μ
�
i,ki

belongs
to C∞

0 (Ω), so we restrict our attention to such ki. Therefore, we get – up to a
subsequence – convergence of {fi}i = {μ�

i,ki
}i to μϕ(·) in measure and for every

i we have ‖fi‖L1(Ω) � ‖μϕ(·)‖Mb(Ω). By step 2 the series
∑∞

i=1 fi is convergent
in L1(Ω) and there exists its limit f0 =

∑∞
i=1 fi ∈ L1(Ω). As for convergence of

wi we observe first that due to [49, lemma 6.4.5] we get convergence of {μ�
i,k}k

to μi in (W 1,ϕ(·)
0 (Ω))′ as k → ∞. We note that the series

∑∞
i=1 wi converges in

(W 1,ϕ(·)
0 (Ω))′ and there exists its limit w0 =

∑∞
i=1 wi ∈ (W 1,ϕ(·)

0 (Ω))′. Therefore,
the three following series converge in the sense of distributions

∞∑
i=1

μi = μϕ(·),
∞∑

i=1

fi = f0 and
∞∑

i=1

wi = w0

and, consequently, μϕ(·) = f0 + w0.
Step 4. Summary. Let us recall that the proof starts with justification that for

a nonnegative measure μ ∈ L1(Ω) + (W 1,ϕ(·)
0 (Ω))′ ⊂ Mϕ(·)

b (Ω). Step 3 provides the
reverse implication.
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If the measure was not nonnegative, we can write that μϕ(·) = ((μϕ(·))+ +
(μϕ(·))−) and repeat the above reasoning separately for its positive and nega-
tive part. Note that by the monotonicity of capacity, if capϕ(·)(A,Ω) = 0, then
(μϕ(·))+(A) = 0 = (μϕ(·))−(A) (ϕ(·)-capacity can be exhausted over Borel sets
included in A), see [10]. Note that if μϕ(·) is nonnegative, then f � 0. Hence,
for a signed measure μ ∈ Mb(Ω) we infer that μ ∈ Mϕ(·)

b (Ω) if and only if
μ ∈ (L1(Ω) + (W 1,ϕ(·)

0 (Ω))′) ∩Mb(Ω), that is when there exists f ∈ L1(Ω) and
G ∈ (Lϕ̃(·)(Ω))n, such that μϕ(·) = f − divG in the sense of distributions. Hence,
the proof of the capacitary characterization is completed. �

To conclude remark 1.3 we need the following decomposition lemma. Its proof is
essentially the one of [44, lemma 2.1], but we find it valuable to present it for the
sake of completeness.

Lemma 3.2. Suppose Ω is a bounded set in R
n and M is a family of its measurable

subsets. Then for every μ ∈ Mb(Ω) there exist a decomposition μ = μac + μsing,
such that

(a) μac(D) = 0 for all sets D ⊂ M with Cϕ(·)(D) = 0,

(b) μsing = μ1N for some set N ⊂ M with Cϕ(·)(N) = 0.

Moreover, such decomposition is unique up to sets of W 1,ϕ(·)-capacity zero.

Proof. We fix an arbitrary sequence D1 ⊂ D2 ⊂ · · · ⊂ M of sets with Cϕ(·)(Di) = 0,
such that

lim
i→∞

μ(Di) = α := sup{μ(D) : D ∈ M and Cϕ(·)(D) = 0} <∞.

Denote D∞ =
⋃∞

i=1Di and note that D∞ ∈ M, Cϕ(·)(D∞) = 0 and μ(D∞) = α.
Let us observe that μ(D \D∞) = 0 for every D ∈ M with Cϕ(·)(D) = 0. By setting

μac = 1Rn\D∞μ and μsing = 1D∞μ

we get the decomposition of the desired properties. Due to [10, proposition 7]
countable sum of sets of W 1,ϕ(·)-capacity zero is of W 1,ϕ(·)-capacity zero, so the
uniqueness of the decomposition Cϕ(·)-quasi-everywhere is evident. �

4. Approximate problems

This section is devoted to analysis of approximate problems with general datum.
In the case of a measure μ ∈ Mb(Ω) we shall consider an approximate sequence

of bounded functions {μs} ⊂ C∞(Ω) that converges to μ weakly-∗ in the space of
measures and satisfies (1.7). We study solutions to{

−divA(x,∇us) = μs in Ω,
us = 0 on ∂Ω.

(4.1)

It is known that there exists at least one distributional solution us ∈W 1,ϕ(·)(Ω) to
(4.1), see the proof by Galerkin approximation in [47, § 5.1.1] under more general
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growth conditions embracing our case. In fact, since smooth functions are dense in
the space where the solutions live i.e. W 1,ϕ(·)

0 (Ω), we can test the equation by the
solution itself to get energy estimates and, consequently, the distributional solutions
us are weak solutions.

Remark 4.1. Note that requiring regularity of μs is not a restriction. In fact, the
proof requires only μs ∈ (W 1,ϕ(·)

0 (Ω))′ ∩Mb(Ω).

Proposition 4.2 (Basic a priori estimates). Let Ω be bounded open domain in R
n,

A : Ω × R
n → R

n satisfy (A1)–(A4), ϕ ∈ Φc(Ω) satisfy (aInc)p, (aDec)q, (A0), and
(A1) and μϕ(·) ∈ Mb(Ω). Then, for a weak solutions us to (4.1) and k > 1, we have

∫
Ω

ϕ(x, |∇Tk(us)|) dx � c̄1k , (4.2)∫
Ω

ϕ̃
(
x, |A(x,∇Tk(us))|

)
dx � c̄2k, (4.3)

with constants c̄1 = 2‖μ‖Mb(Ω)/c
ϕ
1 , c̄2 = c(cϕ1 , c

ϕ
2 , cΔ2(ϕ), q, ‖μ‖Mb(Ω),

‖1 + γ‖Lϕ̃(·)(Ω)) > 0. Furthermore, for some c̄3 = c̄3(Ω, n) > 0

|{|us| � k}| � c̄3k
1−p. (4.4)

Since constants in the above estimates do not depend on s, we can infer what
follows.

Remark 4.3. Note that within our doubling regime this implies that for
any fixed k > 0 the sequence {∇Tk(us)}s is uniformly bounded in Lϕ(·)(Ω),
{|A(x,∇Tk(us))|}s is uniformly bounded in Lϕ̃(·)(Ω) and the set {|us| � k} for
increasing k is shrinking uniformly in s.

Proof of proposition 4.2. To get (4.2), we use first (A2)1, (4.1) tested by Tk(us) ∈
W

1,ϕ(·)
0 (Ω), and the above remark, in the following way

cϕ1

∫
Ω

ϕ(x, |∇Tk(us)|) dx �
∫

Ω

A(x,∇Tk(us)) · ∇Tk(us) dx

=
∫

Ω

A(x,∇us) · ∇Tk(us) dx

=
∫

Ω

Tk(us) dμs � 2k‖μs‖Mb(Ω).

We conclude the last inequality above because of the assumed properties of μs.
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In order to get (4.3), we use (A2)2, doubling growth (2.3), and finally (4.2) to
conclude that for any k > 1 we have∫

Ω

ϕ̃
(
x, |A(x,∇Tk(us))|

)
dx �

∫
Ω

ϕ̃
(
x, 1 + γ(x) + ϕ(x, |∇Tk(us)|)/|∇Tk(us)|

)
dx

� 1
2

(∫
Ω

ϕ̃
(
x, 2

(
1 + γ(x)

))
dx+

∫
Ω

ϕ̃
(
x, ϕ

(
x, 2|∇Tk(us)|

)
/|∇Tk(us)|

)
dx

)
� c

(∫
Ω

ϕ̃
(
x, 1 + γ(x)

)
dx+

∫
Ω

ϕ
(
x, |∇Tk(us)|

)
dx

)
� c k, (4.5)

where c = c(cϕ1 , c
ϕ
2 , cΔ2(ϕ), q, ‖μ‖Mb(Ω), ‖1 + γ‖Lϕ̃(·)(Ω)).

To get (4.4) we start with observing that |{|us| � k}| = |{Tk(|us|) � k}|. Then
by Tchebyshev inequality, Poincaré inequality and (4.2) as follows

|{|us| � k}| �
∫

Ω

|Tk(us)|p
kp

dx � c

kp

∫
Ω

|∇Tk(us)|p dx

� c

kp

∫
Ω

ϕ(x, |∇Tk(us)|) dx � ck1−p −−−−→
k→∞

0.

�

5. Approximable solutions

Let us find the fundamental properties of limits of approximate problems.

Proposition 5.1 (Existence of approximable solutions and convergences). Let Ω
be bounded open domain in R

n, A : Ω × R
n → R

n satisfy (A1)–(A4), ϕ ∈ Φc(Ω)
satisfy (aInc)p, (aDec)q, (A0) and (A1), and μ ∈ Mb(Ω). Then there exists at least
one approximable solution u (see definition 1.6). Namely, up to a subsequence {us}s

consisting of solutions to (4.1), there exists a function u ∈ T 1,ϕ(·)
0 (Ω), such that

when s→ 0 and k > 0 is fixed we have

us → u a.e. in Ω, (5.1)

Tk(us) → Tk(u) strongly in Lϕ(·)(Ω), (5.2)

∇Tk(us) ⇀ ∇Tk(u) weakly in (Lϕ(·)(Ω))n, (5.3)

A(x,∇Tk(us)) → A(x,∇Tk(u)) a.e. in Ω, (5.4)

A(x,∇Tk(us)) ⇀ A(x,∇Tk(u)) weakly in (Lϕ̃(·)(Ω))n (5.5)

A(x,∇Tk(us)) → A(x,∇Tk(u)) strongly in (L1(Ω))n. (5.6)

Moreover, for k → ∞

A(x,∇Tk(u)) → A(x,∇u) strongly in (L1(Ω))n. (5.7)

Proof. Having (4.2) we get that {Tk(us)}s is uniformly bounded in W 1,ϕ(·)
0 (Ω). By

recalling the Banach–Alaoglu theorem in the reflexive space, we infer that there
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exists a (non-relabelled) subsequence of {us} and function u ∈ T 1,ϕ(·)
0 such that

for s→ 0 we have (5.3). Note that in the general case we would have here weak-∗
convergence, but our space is reflexive and these notions of convergences coincide.
Since embedding (2.7) is compact, up to a non-relabelled subsequence, for s→ 0
also (5.2). Consequently, due to the Dunford–Pettis theorem, up to an (again) non-
relabelled subsequence {Tk(us)}s is a Cauchy sequence in measure and (5.1) holds.
By the same arguments, due to (4.3), there exists A∞

k ∈ (Lϕ̃(·)(Ω))n such that for
s→ 0

A(x,∇Tk(us)) ⇀ A∞
k weakly in (Lϕ̃(·)(Ω))n for every k > 0. (5.8)

The effort will be put now in identification of the limit function

A∞
k = A(x,∇Tk(u)) a.e. in Ω, for every k > 0 (5.9)

and proving that u obtained in this procedure is a very weak solution. Recall that
A is continuous with respect to the last variable, we have the convergence (5.2) and
what remains to prove is fine behaviour of {∇us}s. In order to show that {∇us}s is
a Cauchy sequence in measure we set ε > 0 and m,n ∈ N arbitrary (large). Given
any t, τ, r > 0, one has that

|{|∇ul −∇um| > t}| � |{|∇ul| > τ}| + |{|∇um| > τ}| + |{|ul| > τ}|
+ |{|um| > τ}| + |{|ul − um| > r}| + E, (5.10)

where

E = |{|ul − um| � r, |ul| � τ, |um| � τ, |∇ul| � τ, |∇um| � τ, |∇ul −∇um| > t}|.
(5.11)

Note that (4.4) and arguments of the proof of [32, lemma 4.12] enable to justify
uniform integrability of {g(|∇uk|)}k for some continuous and increasing function g.
Therefore, we can choose for any ε > 0 a number τε large enough so that for τ > τε
we obtain

|{|∇ul| > τ}| < ε, |{|∇um| > τ}| < ε, |{|ul| > τ}| < ε, and |{|um| > τ}| < ε.
(5.12)

From now on we restrict ourselves to τ > τε. On the other hand, since {ul} is a
Cauchy sequence in measure,

|{|ul − um| > r}| < ε, if l,m, r are sufficiently large. (5.13)

What remains to prove is that there exists δτ,ε > 0, such that for every δ < δτ,ε, we
get

|E| < ε. (5.14)

Let us define a set

S = {(ξ, η) ∈ R
n × R

n : |ξ| � τ, |η| � τ, |ξ − η| � t} ,
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which is compact. Consider the function ψ : Ω → [0,∞) given by

ψ(x) = inf
(ξ,η)∈S

[(A(x, ξ) −A(x, η)) · (ξ − η)] .

Monotonicity assumption (A3) and the continuity of the function ξ �→ A(·, ξ) a.e.
in S ensure that ψ � 0 in Ω. Furthermore, (A4) implies that |{A(x, 0) = 0}| = 0.
Moreover,∫

S

ψ(x) dx �
∫

S

(A(x,∇ul) −A(x,∇um)) · (∇ul −∇um) dx (5.15)

�
∫
{|ul−um|�r}

(A(x,∇ul) −A(x,∇um)) · (∇ul −∇um) dx

=
∫

Ω

(A(x,∇ul) −A(x,∇um)) · (∇Tr(ul − um)) dx

=
∫

Ω

Tr(ul − um) dμs(x) � 2r‖μ‖Mb(Ω),

where the last but one equality follows on making use of the test function Tr(ul −
um) and in the corresponding equation with l replaced by m, and subtracting the
resultant equations. Estimate (5.15) and the properties of the function ψ ensure
that, if s is chosen sufficiently small, then (5.14) holds. From inequalities (5.10),
(5.12), (5.14) and (5.13), we infer that {∇us}s is a Cauchy sequence in measure.

To conclude that the function u obtained in (5.3) and (5.2) is a desired approx-
imable solution, we observe that it belongs to the class T 1,ϕ(·)

0 (Ω), and that
∇us → ∇u a.e. inΩ (up to subsequences), where ∇u is understood in the sense
of (1.4). Since {∇us} is a Cauchy sequence in measure, there exist a subsequence
(still indexed by s) and a measurable function W : Ω → R

n such that ∇us →W
a.e. in Ω. To motivate that ∇u = W and

χ{|u|<k}W ∈ (Lϕ(·)(Ω))n for every k > 0 (5.16)

it suffices to recall (5.3). Indeed, then for each fixed k > 0, there exists a subsequence
of {us}, still indexed by s, such that

lim
s→∞∇Tk(us) = lim

s→∞χ{|us|<k}∇us = χ{|u|<k}W a.e. in Ω, (5.17)

and lims→∞ ∇Tk(us) = ∇Tk(u) weakly in (Lϕ(·)(Ω))n. Therefore, ∇Tk(u) =
χ{|u|<k}W a.e. in Ω, whence (5.16) follows. Then, due to (A1) also (5.9) holds,
that is we have (5.4) and (5.5). Due to remark 2.5 we get uniform integrability of
{A(x,∇Tku)}k, so Lebesgue’s monotone convergence theorem justifies (5.7), where
the limit is in (L1(Ω))n by lemma 2.10. By (4.3) and Vitali’s convergence theorem
we infer (5.6). �

6. Renormalized solutions

Our aim now is to analyse the measures generated by truncations of approximable
solutions.
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Proposition 6.1. If u is an approximable solution under assumptions of proposi-
tion 5.1 and Aϕ(·) is given by (2.8), then for every k > 0 we have λk := Aϕ(·)(Tku) ∈
Mb(Ω) ∩ (W 1,ϕ(·)

0 (Ω))′ and∫
{|u|<k}

A(x,∇u) · ∇φdx =
∫

Ω

φdλk for every φ ∈W
1,ϕ(·)
0 (Ω) ∩ L∞(Ω). (6.1)

Then for k → ∞ we have

Aϕ(·)(Tku) ⇀ Aϕ(·)(u) weakly- ∗ in the space of measures. (6.2)

Moreover, for every k > 0 it holds |Aϕ(·)(Tku)|({|u| > k}) = 0 and for every φ ∈
C0(Ω) we have

lim
δ→0+

1
δ

∫
{k−δ�u�k}

A(x,∇u) · ∇uφ dx =
∫
φdν+

k , (6.3)

lim
δ→0+

1
δ

∫
{−k�u�−k+δ}

A(x,∇u) · ∇uφ dx =
∫
φdν−k (6.4)

with ν+
k = Aϕ(·)(Tku) {u = k} and ν−k = Aϕ(·)(Tku) {u = −k}.

Proof. We prove first weak-∗ convergence of measures generated by truncations of
solutions and then their further properties.

Step 1. λk ∈ Mb(Ω) and Aϕ(·)(Tku) ⇀ Aϕ(·)(u) weakly-∗ in the space of
measures.

For k > δ > 0 we define a Lipschitz functions hδ, σ
+
δ , σ

−
δ : R → R satisfying⎧⎪⎨⎪⎩

hδ(r) = 1 if |r| � k − δ,

|h′δ(r)| = 1
δ if k − δ � |r| � k,

hδ(r) = 0 if |r| � k.

⎧⎪⎨⎪⎩
σ+

δ (r) = 0 if r � k − δ,

(σ+
δ )′(r) = 1

δ if k − δ � r � k,

σ+
δ (r) = 1 if r � k,

and σ−
δ (r) = σ+

δ (−r). We note that if {us} is an approximate sequence from
definition 1.6 solving (4.1) with μs being bounded and smooth function, φ ∈ C∞

0 (Ω),
then hδ(us)φ, σ+

δ (us), σ−
δ (us) ∈W

1,ϕ(·)
0 (Ω) ∩ L∞(Ω) are admissible test functions in

(1.6). By testing (4.1) by hδ(us)φ we get∫
Ω

hδ(us)A(x,∇us) · ∇φdx =
∫

Ω

φμshδ(us) dx−
∫

Ω

h′δ(us)A(x,∇us) · ∇us φdx

=
∫

Ω

φdλs
δ +

∫
Ω

φdγs,+
δ −

∫
Ω

φdγs,−
δ ,

where

λs
δ = μshδ(us),

νs,+
δ = 1

δ1{k−δ�us�k}A(x,∇us) · ∇us, (6.5)

νs,−
δ = 1

δ1{−k�us�−k+δ}A(x,∇us) · ∇us. (6.6)
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Observe that

λs
δ, ν

s,+
δ , νs,−

δ ∈ L1(Ω).

Indeed,

‖λs
δ‖L1(Ω) �

∫
Ω

|μs| |hδ(us)|dx �
∫

Ω

|μs|dx � 2‖μ‖Mb(Ω).

To estimate ‖νs,+
δ ‖L1(Ω) and ‖νs,−

δ ‖L1(Ω), we test (4.1) against σ+
δ (us) (respectively

σ−
δ (us)) and obtain

‖νs,+
δ ‖L1(Ω) � 1

δ

∫
{k−δ�us�k}

A(x,∇us) · ∇us dx

=
∫

Ω

μsσ+
δ (us) dx � 2‖μ‖Mb(Ω), (6.7)

‖νs,−
δ ‖L1(Ω) � 1

δ

∫
{−k�us�−k+δ}

A(x,∇us) · ∇us dx

=
∫

Ω

μsσ−
δ (us) dx � 2‖μ‖Mb(Ω). (6.8)

In the end we have that∥∥∥−div
(
hδ(us)A(x,∇us)

)∥∥∥
L1(Ω)

� 6‖μ‖Mb(Ω).

Due to remark 2.5 and (A2) we get uniform integrability of {A(x,∇(Tk(us)))}k, so
Lebesgue’s monotone convergence theorem justifies we can let δ → 0 getting

|hδ(us)A(x,∇us)| → |A(x,∇(Tk(us)))| strongly in L1(Ω).

Therefore Aϕ(·)(Tkus) ∈ Mb(Ω) and ‖Aϕ(·)(Tkus)‖Mb(Ω) � 6‖μ‖Mb(Ω), where the
bound is uniform with respect to s and k. Consequently, the use of proposi-
tion 5.1 enables to infer that also that Aϕ(·)(Tku) ∈ Mb(Ω), ‖Aϕ(·)(Tku)‖Mb(Ω) �
6‖μ‖Mb(Ω), and – finally – (6.2). By remark 2.4 we can extend the family of
admissible test functions to get (6.1) and conclusion that Aϕ(·)(Tku) ∈ Mb(Ω) ∩
(W 1,ϕ(·)

0 (Ω))′.
Step 2. Existence of a diffuse measure ϑ ∈ Mϕ(·)

b (Ω), such that

ϑ {|u| < k} = Aϕ(·)(Tlu) {|u| < k} for every k > 0 and every l � k.

Lemma 2.10 ensures that φ ∈W
1,ϕ(·)
0 (Ω) ∩ L∞(Ω) belongs to L1(Ω, ϑ) with any

ϑ ∈ Mϕ(·)
b (Ω).

Note that λl {|u| < k} = λk {|u| < k} for every l � k > 0. Since the set {|u| <
k} is Cϕ(·)-quasi-open, lemmas 2.8 and 2.9 ensure that there exists an increasing
sequence {wj} of nonnegative functions in W

1,ϕ(·)
0 (Ω) which converges to 1{|u|<k}

Cϕ(·)-quasi-everywhere in Ω. Then wj = 0 a.e. in {|u| � k}. If ψ ∈ C∞
0 , then
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φ = wjψ ∈W
1,ϕ(·)
0 (Ω) ∩ L∞(Ω) is an admissible test function in (6.1), so for every

l � k we get∫
Ω

wjψ dλk =
∫
{|u|�k}

A(x,∇u) · ∇(wjψ) dx

=
∫
{|u|�l}

A(x,∇u) · ∇(wjψ) dx =
∫

Ω

wjψ dλl.

Passing to the limit with j → ∞ we get∫
{|u|<k}

ψ dλk =
∫
{|u|<k}

ψ dλl for every ψ ∈ C∞
0 ,

so of course λl {|u| < k} = λk {|u| < k}. Consequently, there exists a unique (up
to sets ofW 1,ϕ(·)-capacity zero) Borel measure ϑ, such that ϑ {|u| = +∞} = 0 and
ϑ {|u| < k} = λl {|u| < k} for every k > 0 and every l � k. As λk vanishes on
every set of zero capacity Cϕ(·), so does ϑ. By (6.2) the measures |λk| are uniformly
bounded with respect to k, so {|ϑ|({|u| < k})}k is bounded. In turn, |ϑ|(Ω) <∞
and – finally – we infer that ϑ ∈ Mϕ(·)

b (Ω).
Step 3. Aϕ(·)(Tku) {|u| > k} = 0.
Lemma 2.7 gives that u is Cϕ(·)-quasi-continuous, thus the set {|u| > k} is Cϕ(·)-

quasi-open. Fix arbitrary open V ⊂ Ω. By lemma 2.9, there exists an increasing
sequence {ŵj} of nonnegative functions inW 1,ϕ(·)

0 (Ω) which converges to 1V ∩{|u|<k}
Cϕ(·)-quasi-everywhere in Ω. Then ŵj = 0 a.e. in {|u| � k} and we can test (6.1)
against wj ∈W

1,ϕ(·)
0 (Ω) ∩ L∞(Ω). We obtain∫

Ω

wj dλk =
∫
{|u|�k}

A(x,∇u) · ∇(wj) dx = 0.

Letting j → ∞ we get that (λk {|u| > k})(V ) = 0. Since V was arbitrary open
set, we have what was claimed.

Step 4. Limits. Since we have (6.7) and (6.8), we get (6.3) and (6.4) for any
φ ∈ C0(Ω), with some nonnegative ν+

k , ν
−
k ∈ Mb(Ω). They have the form given in

the claim, because Aϕ(·)(Tku) ∈ Mb(Ω) ∩ (W 1,ϕ(·)
0 (Ω))′ has properties proven in

steps 3 and 4. �

Proposition 6.2 (Existence of renormalized solutions). Let Ω be bounded open
domain in R

n, A : Ω × R
n → R

n satisfy (A1)–(A4), ϕ ∈ Φc(Ω) satisfy (aInc)p,
(aDec)q, (A0) and (A1), and μ ∈ Mb(Ω). Then there exists at least one renor-
malized solution to (1.1) (definition 1.7).

Proof. By proposition 5.1 there exists an approximable solution u ∈ T 1,ϕ(·)
0 (Ω) to

(1.1). We shall show that actually it is also a renormalized solution. Due to propo-
sition 6.1, measure μ can be seen as the weak-∗ limit of {λk}, which are expressed

https://doi.org/10.1017/prm.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.6


Measure data elliptic problems with generalized Orlicz growth 613

as

λk = Aϕ(·)(Tku) = ϑ {|u| < k} + ν+
k − ν−k

with ϑ ∈ Mϕ(·)
b (Ω), ν+

k , ν
−
k ∈ (Mb(Ω) \Mϕ(·)

b (Ω)) ∪ {0} being such that ν+
k = ν+

k

{u = k} and ν−k = ν−k {u = −k}. Given h ∈W 1,∞(R) having h′ with compact
support, φ ∈ C∞

0 (Ω), and arbitrary k > 0, function h(Tk+1(u))φ ∈W
1,ϕ(·)
0 (Ω) ∩

L∞(Ω), so we can test equation (6.1) to get∫
{|u|�k}

A(x,∇u) · ∇
(
h(Tk+1(u))φ

)
dx =

∫
{|u|�k+1}

h(u)φdλk (6.9)

=
∫
{|u|<k}

h(u)φdϑ+ h(k)
∫

Ω

φdν+
k − h(−k)

∫
Ω

φdν−k . (6.10)

We need to justify letting k → ∞. We start with the left-hand side of (6.9) by
having a look on

A(x,∇u) · ∇
(
h(u)φ

)
= A(x,∇u) · ∇u (h′(u)φ) + A(x,∇u) · ∇φh(u).

If we prove that both terms on the right-hand side in the last display are inte-
grable, Lebesgue’s monotone convergence theorem will give the desired conclusion.
Recall that u ∈ T 1,ϕ(·)

0 (Ω) and satisfy (4.2), so by proposition 4.2 and lemma 2.10,
A(·,∇u) ∈ (L1(Ω))n. Moreover, h′ is bounded and supph′ ⊂ [−M,M ] for some
M > 0, so

A(·,∇u) · ∇uh′(u) = A(·,∇TMu) · ∇(TMu)h′(u)

is integrable by (4.2). For the second term we see that

‖A(x,∇u) · ∇φh(u)‖L1(Ω) � ‖A(x,∇u)‖L1(Ω) ‖∇φ‖L∞(Ω) ‖h‖L∞(Ω),

so it suffices to use the same arguments as before. Therefore, (6.9) becomes the
left-hand side of (1.8) in the limit. By remark 1.3 the following decomposition

μ = μϕ(·) + μ+
sing − μ−

sing, μϕ(·) ∈ Mϕ(·)
b (Ω), 0 � μ+

sing,

μ−
sing ∈

(
Mb(Ω) \Mϕ(·)

b (Ω)
)
∪ {0}

is unique up to sets of W 1,ϕ(·)-capacity zero. By (6.2) it holds that ϑ {|u| < k}⇀
Aϕ(·)(u). Note that it is also (6.2) to justify testing against W 1,ϕ(·)

0 (Ω) ∩ L∞(Ω)-
function. To conclude we use Lebesgue’s dominated convergence theorem in (6.10).
To motivate the convergence of the first term we note that we can split the first term
to positive and negative part, whose majorants are integrable due to lemma 2.10.
For the remaining two terms it suffices to recall that h is bounded and constant
in infinities. By (6.3) one has ν+

k ⇀ μ+
sing with suppμ+

sing ⊂ ∩k>0{u > k}, and by
(6.4) also ν−k ⇀ μ−

sing with suppμ−
sing ⊂ ∩k>0{u < −k}. �
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7. Uniqueness in problems with diffuse measure data

The previous results worked for a general measure data problems. Here, we restrict
to a class of diffuse measure data to provide uniqueness.

Proposition 7.1 (Uniqueness of approximable solutions). Let all assumptions of
proposition 5.1 be satisfied. Assume that f,G are obtained as limits of approximate
sequences {f i

s} in C∞(Ω), i = 1, 2, satisfying

f i
s → f in L1(Ω) and ‖f i

s‖L1(E) ↗ ‖f‖L1(E) for measurable E ⊂ Ω (7.1)

and {Gi
s} in C∞(Ω), i = 1, 2, such that

Gi
s → G strongly in (Lϕ̃(·)(Ω))n and 
ϕ̃,E(|Gi

s|) � 2
ϕ̃,E(|G|) (7.2)

on measurable E ⊂ Ω. If vi is an approximable solution defined as an a.e. limit of
weak solutions vi

s to the approximate problems

{
−divA(x,∇vi

s) = f i
s − divGi

s in Ω,
vi

s = 0 on ∂Ω,
(7.3)

then v1 = v2 a.e. in Ω.

Proof. We note first that the problem is well posed as μi,s = f i
s − divGi

s ⇀ μϕ(·)
weakly-∗ in the space of measures, i = 1, 2. We fix arbitrary t, l > 0, use φ =
Tt(Tl(v1

s) − Tl(v2
s)) ∈W

1,ϕ(·)
0 (Ω) ∩ L∞(Ω) as a test function in both (1.6) and

subtract the equations to obtain for every s > 0

Ls =
∫
{|Tl(v1

s)−Tl(v2
s)|�t}

(A(x,∇v1
s) −A(x,∇v2

s)) · (∇v1
s −∇v2

s) dx

=
∫

Ω

(f1
s − f2

s )Tt(Tl(v1
s) − Tl(v2

s)) dx

+
∫

Ω

(G1
s −G2

s) · ∇Tt(Tl(v1
s) − Tl(v2

s)) dx = R1
s +R2

s. (7.4)

The right-hand side above tends to 0. Indeed, the convergence of R1
s holds because

|Tt(Tlv
1
s − Tlv

2
s)| � t and for s→ 0 we have f1

s − f2
s → 0 in L1(Ω). As for R2

s it
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suffices to note that

|R2
s| =

∣∣∣∣∣
∫
{|Tl(v1

s)−Tl(v2
s)|�t}

(G1
s −G2

s) · ∇Tlv
1
s dx

−
∫
{|Tl(v1

s)−Tl(v2
s)|�t}

(G1
s −G2

s) · ∇Tl(v2
s) dx

∣∣∣∣∣
�

∣∣∣∣∫
Ω

(G1
s −G2

s) · ∇Tl(v1
s) dx

∣∣∣∣ +
∣∣∣∣∫

Ω

(G1
s −G2

s) · ∇Tl(v2
s) dx

∣∣∣∣
� 2‖G1

s −G2
s‖(Lϕ̃(·)(Ω))n‖∇Tl(v1

s)‖(Lϕ(·)(Ω))n

+ 2‖G1
s −G2

s‖(Lϕ̃(·)(Ω))n‖∇Tl(v2
s)‖(Lϕ(·)(Ω))n

� c‖G1
s −G2

s‖(Lϕ̃(·)(Ω))n ,

where we used that weak convergence of the {∇Tl(vj
s)}s (j = 1, 2) in (Lϕ(·)(Ω))n,

which in particular implies uniform boundedness of {‖∇Tl(vj
s)‖Lϕ(·)(Ω)}s (j = 1, 2)

and recalled that the strong convergence of (G1
s −G2

s) → 0 in (Lϕ̃(·)(Ω))n. The
left-hand side of (7.4) is nonnegative due to the monotonicity of A. Moreover, as
R1

s +R2
s → 0, we get

0 �
∫
{|Tlv1−Tlv2|�t}

(A(x,∇v1) −A(x,∇v2)) · (∇v1 −∇v2) dx

� lim sup
s→0

Ls = lim sup
s→0

(R1
s +R2

s) = 0.

Consequently, ∇v1 = ∇v2 a.e. in {|Tl(v1) − Tl(v2)| � t} for every t, l > 0, and so

∇v1 = ∇v2 a.e. in Ω. (7.5)

Given the boundary value also v1 = v2 a.e. in Ω. �

8. Main proof

Proof of theorem 1.8. Existence of approximable solutions is provided in proposi-
tion 5.1. Proposition 6.2 yields that an approximable solution is a renormalized
solutions. Proposition 6.1 actually localizes the support of singular measures.
Approximable solutions can be achieved from renormalized ones by a choice of
h = Tk. �
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