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A NOTE ON KLEIN'S OSCILLATION THEOREM 
FOR PERIODIC BOUNDARY CONDITIONS 

BY 

M. FAIERMAN 

Recently Howe [4] has considered the oscillation theory for the two-parameter 
eigenvalue problem 

/ l a ) (Pi(Xi)yiï+(^M^i)+^B1(x1)+q1(x1))y1 = 0, 
a1^x1<lbl9 ' = d/dxx, 

/ l b ) (p2(^2)3 ;2) ,+(^2(^2)+^2(x2)+^a(x2))y2 = 0, 
a2 < x2 < b2, ' = d/dx2, 

subjected to the boundary conditions 

(2a) yx(aj = yi(bJ, y&aj = y&bj, 

(2b) y2(a2) = y2(b2), y'2(a2) = y'2(b2), 

where for / = 1 , 2 , — oo<a 4 <è i <oo, pi9 pi9 Ai9 B{, and qt are real-valued, con­
tinuous functions in [ai9 6J, pt is positive in [^, 6 J , and pi(ai)=pi(bi). Further­
more, it is also assumed that {A^B2—A2B^)^ for all values of xx and x2 in their 
respective intervals. 

It is our opinion that some of the arguments used by Howe are incomplete 
and require further modification. In particular, we refer to the proofs of his 
lemma 1 and theorem 4, and also to his assumption concerning the existence of a 
continuously turning tangent for a curve which may possess singular points (see 
his theorem 1). Hence it has been felt worthwhile to present here a new proof 
of the oscillation theorem for the system (1,2). Moreover, by subjecting the 
differential equations (1) to the further boundary conditions 

(3a) )M>i) = }>i(&i), yii.au = yiih), 

(3b) y2(a2) = -y2(fc2), y2(a2) = ~y2(b2), 

and 

(4a) y1(a1) = -^(fci) , y[{a^) = -y&b,), 

(4b) y2(a2) = -y2(fc2), y&a2) = - J ^ ) , 

the same arguments can be employed to prove the oscillation theorem for each of 
the systems (1, 2), (1, 3), and (1, 4). 

Before proceeding further, we first wish to make the following definitions 
concerning the system (1,2). Analogous definitions also hold for each of the 
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systems (1, 3) and (1,4). By an eigenvalue of the system (1, 2) we shall mean a 
pair of numbers, ( A * , / J * ) , such that for A=A* and JU=JU*, (la) (resp. (lb)) has 
a non-trivial solution satisfying (2a) (resp. (2b)). If 7i(*i, A*, /**) (resp. 
J2(*2> *̂> P*)) denotes such a solution, then the product, U L i J i f e ^*» /**)» 
will be called an eigenfunction of the system (1,2) corresponding to (A*,/z*). 
Let I2 denote the Cartesian product of the intervals tfi<*i<&i, a2<x2<b2\ 
and denote by L2

A the Hilbert space of those Lebesgue measurable functions which 
are square-integrable in I2 with respect to the weight function A=|^41^2—A2BX\ 
(we note that here the inner product is always taken with respect to the weight A). 
Then the eigenfunctions corresponding to an eigenvalue of the system (1,2) 
generate a subspace in L2

A, which we shall refer to as the corresponding eigenspace. 
By the multiplicity of an eigenvalue, we shall mean the dimension of the corre­
sponding eigenspace in L2

A. Also, in the sequel, when we speak of linearly inde­
pendent eigenfunctions, we shall mean linearly independent as elements of L2

A. 
Similarly, we shall say that two eigenfunctions are orthogonal in L2

A if their inner 
product is zero. 

THEOREM 1. The eigenvalues of the system (1, 2) form a count ably infinite subset 
of E2 (Euclidean 2-space) having no finite cluster points. Each eigenvalue has mul­
tiplicity one, two, or four, that is to say, to each eigenvalue there corresponds one, 
two, or four linearly independent eigenfunctions. Eigenfunctions corresponding 
to distinct eigenvalues are orthogonal in LA. Let ml9 m2 be any non-negative integers 
which are either zero or even. For mx and m2 both greater than zero there exists 
precisely four eigenvalues of the system (1,2) (multiple eigenvalues being repeated) 
such that ifY[i=iyiij(x^,j=\,. .. ,4, denote the corresponding (linearly indepen­
dent) eigenfunctions, then yf

iti(x^ has exactly m{ zerosinfa, bi),i=l, 2 ,y= l , . . . , 4. 
If either m1=0 andm2>0 or m{>0 andm2=0, then there exists precisely two eigen­
values of (1,2) (multiple eigenvalues being repeated) with the corresponding (linearly 
independent) eigenfunctions satisfying the above oscillation properties. Ifm1=m2=09 

then there exists exactly one (simple) eigenvalue of (1,2) with the corresponding 
eigenfunction having the above oscillation properties. Finally, considering all such 
possible tuples (ml9 m2), the corresponding eigenvalues, each repeated as many 
times as its multiplicity indicates, constitute the totality of the eigenvalues of the 
system (1,2). 

THEOREM 2. If in theorem 1 we now let ml9 m2 be any non-negative integers such 
that mx is either zero or even and m2 is odd, then, with obvious modifications, the 
results of theorem 1 are valid for the system (1,3). 

THEOREM 3. If in theorem 1 we now let ml9 m2 be any positive odd integers, then9 

with obvious modifications, the results of theorem 1 are valid for the system (1, 4). 

We shall limit ourselves to the proof of theorem 1. Moreover, since it is quite 
straightforward to verify that eigenvalues of the system (1, 2) necessarily belong 
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to E29 we refer to [4, theorem 2] for such a proof. Similarly, by slightly modifying 
the arguments given in the reference just cited, it is easy to show that eigenfunctions 
corresponding to distinct eigenvalues are orthogonal in L\. Also, by arguing as 
in [1, theorem 9.4.1, p. 151], it is clear that by introducing an orthogonal trans­
formation in the parameters X and //, if necessary, we can from now on assume 
that Bl9 B29 and (AXB2—A2B^) are all positive for all values of x± and x2 in their 
respective intervals. 

Proof of theorem 1. We shall from now on assume that X is real and for fixed 
X denote by v{(X)9 z>0, the eigenvalues of (la) with boundary conditions y1(a1)= 
Ji(&i)=0; here the eigenfunction corresponding to vt{X) has exactly / zeros in 
(al9 b±) and hence i+2 zeros in [aj)^\. Similarly, we denote by Pi(X), z>0, the 
eigenvalues of (la) with boundary conditions 7i(«i)=ji(61)=0 and where the 
eigenfunction corresponding to pt(X) has exactly / zeros in (al9 bx) and hence / 
zeros in [al9 b±]. 

Now let us consider the eigenvalue problem (la, 2a). From [2, pp. 213-218] we 
know that for fixed X the eigenvalues of (la) with (2a), ft^X), / ^ 0 , form a sequence 
such that 

-*> < Po(X) £ fi0(X) < v0(X) < fi^X) < v±(X) < [i2(X) < v2(X) < • • • 

• • • < v*iW < Pu+iW ^ vZM(X) < (*2i+2(X) < v2i+2(X) <-•-. 

At jjiQ(X) there is a unique eigenfunction having no zeros in [al9 bx]. If ju2i+1(X) < 
fJL2i+2{X) for some i^O, then there is a unique eigenfunction at ju>2i+1(X) having 
exactly 2i+2 zeros in [al9 bx) and a unique eigenfunction at /%+2(A) having exactly 
2/+2 zeros in [al9 bx). If, however, fJL2i+1{X)=[i2i+2(X)9 then there are two linearly 
independent eigenfunctions at fjt2i+1(X) each having exactly 2z+2 zeros in [al9 b±). 
Moreover, from [2, pp. 219-220] and [3, subsection 2.1], we know that />,(A), 
v{(X) and ^(X), / > 0 , are all continuous in — oo<A<oo. 

Analogous results hold for (lb) with boundary conditions y2(a2)=y2(b2)=z§9 

j2(tf2)==y2(o2)==0, and (2b), respectively. We denote the corresponding eigen­
values by {p*(mZo, W(X)}Zo, and {/if(X)}l 0, respectively. 

It now follows that the above eigenvalues, as functions of X9 determine continu­
ous curves in the (X, //)-plane. For / > 0 denote by Ct (resp. Cf) the curve in the 
(X, /*)-plane determined by v{(X) (resp. vf(X))9 and by St (resp. Sf) the curve 
determined by ^{X) (resp. juf(X)). It is clear that the eigenvalues of the system 
(1, 2) are precisely the points of intersection, if any, of the curves S{ with the 
curves Sf. Moreover, if df (resp. df) is the distance of Q (resp. Cf) to the origin 
of the (X, /j)-plane, then we may argue as in [5, section 2] to prove that d{ (resp. df) 
tends to infinity with /. This shows that any bounded subset of the (X, //)-plane 
can intersect only a finite number of the S{ (resp. Sf). Hence it follows that the 
proof of theorem 1 will be completed once we have shown that St intersects Sf 
in precisely one point for i=ml9 i=mx—1 if m1>0,y=m2 , andy=m2— 1 if m2>0. 
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Moreover, we shall also show that at the point of intersection, the curves Si9 Sf 
cannot touch (in a sense which will be made precise in the sequel). 

Introducing angle into the (A, ^)-plane in the usual way, we shall denote by 
0 the angle which a ray emanating from the origin makes with the positive A-
axis. Let Gx (resp. G2) be the infimum (resp. supremum) of (—A1{x ĵBx{x )̂) in 
0 i< ;* i^ i and let G* (resp. G2) be the infimum (resp. supremum) of (—A%(x2)l 
B2(x2)) in a2<x2<b2. Put ©!= tan"1 Gl9 @2= tan"1 G2, ©?= tan"1 Gf, and 
0*= tan-1 G*, where the principal branch of the inverse tangent is taken. We 
note that ~7r /2<0 1 ^0 2 <0i <^®*<W2. Now choose s so that 

0 < 4e < minft©?-©!), (0?~02)5 (©I+TT/2), (-©2*+7T/2)}. 

From [3, theorem 1] we know that for each />0 there exists a positive number 
depending upon i and e, and which we denote by A1(/, s), such that (A, v^X)) 
lies in the sector 01—5<@<@1+5 for À^À^i, s). Using arguments similar to 
those used in the reference just cited, we can also show that there is a positive 
number A2(/, s) such that (A, v{(X)) lies in the sector ©2+7r—£<0<©2+7r+e 
for A< — A2(f, s). Hence if A(z, s)= max{A1(z, e), A2(j, e)}, then (A, rt(A)) lies in 
the sector ®1—s<®<®1+s for A^A(f, s) and in the sector ®2+7r—£<0<@2+ 
77+e for A<̂  — A(i, fi). A similar result holds for /t>0W- Analogously, for each 
/>0 there is a positive number A*(f, e) such that (A, v?(A)) lies in the sector 0*— 
£<©<©!*+£ for X>.X*(i9e) and in the sector ©£+77—s<©<0*+7r+e for 
^<[ — ̂ *0', «)• A similar result holds for p*(A). 

Returning to theorem 1, assume now that both m1 and w2 are positive. Then 
from the above remarks we see that there is a positive number Af such that both 
(A, vmi(X)) and (A, rmr_2(A)) lie in the sector ©i—e<@<01+fi for À>Àf and in 
the sector @2+7r--s<@<02+7r+s for X<>-tfy while both (A, r*2(A)) and 
(A, y*2_2(A)) lie in the sector ©*—s<Q<Q*+e for A>Af and in the sector 
©2 +7r -e<0<0*+7r+5 for X<-X\ Thus for A>Af, 

(A) ̂  //W1(A)< rmi(A)< <_2(A) 

<^*2_1(A)^iu*2(A)<v*a(A), 
while for A<[— A1", 

r* 2_2(A) < ^* 2_i(A) < /** 2(A) < v* a(A) < *W1__2(A) 

< /*wl-iW ^ /*mi(A) < vWl(A). 

Hence it follows that ^ intersects Sj9 i=m1—1, m1,j=m2—l, m2. 
By arguing as above, analogous results can also be proved for the cases w ^ O 

or m2=0. 
It remains only to show that if 1 and y are any non-negative integers, then S{ 

intersects S* in precisely one point. To this end let us examine the curve S{ in 
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greater detail. Let ^ and ip± be solutions of (la) satisfying <f>x(al9 À, /J,)= 
Pi(<ti)y>i(*i> à, p)=l, i>[(al9 À, ^)=yi(«i, A, ju)=0. If we put 

F(X,/A) = {Hbu K f*)+Pi(bùy>i(bl9 A,/*)-2) 

and consider the curve in E2 whose equation is F(X, ju)=0, then the following state­
ments are easily deduced from the results given in [2, pp. 213-220] and [6, pp. 55-
61]. Every point of S{ is a point of the curve F=0, and conversely, each point of 
F=0 must lie on at least one of the curves Sk9 k=09 1 , . . . . If (Af, ̂ (A1)) is an 
ordinary point of F=0 (and where we note that every point of S{ is an ordinary 
point if /=0), then 

di4J?)ldX = - ( £ A(*i)#(*i> A 1 , ^ ) ) dx\ 

x [j\(xJH(xl9 X\/*&*)) dx^j \ 

where not indicating Af and ^(Af) explicitly, 

flW = Y>Ï(*I)PI(&I)#(&I) 

+ ^1(x^^1(x1)(^1(&1)-p1(è1)^(61))-^i(x1)^1(&1). 

Since H(xl9 Af, fi^tf)) is of one sign in [tfl5 b±]9 it therefore follows that the slope 
of the tangent at an ordinary point assumes a value lying in the interval [tan Sl9 

tan 02]. 
Before proceeding further let us make the following definition. We shall say 

that a singular point of the curve F=Q is isolated if there is an open disc in E2 with 
this point as centre containing no other singular point of the curve; a singular 
point which is not isolated will be called a non-isolated singular point. 

Assume now that i is a positive even integer and that there are points of S{ 

which are not ordinary points of F=0. Then the singular points of F=0 lying on 
S{ coincide with those lying on S^ and are precisely the points of intersection of 
S{ and iSt-_!. Furthermore, each such singular point is also a point of intersection 
of the curves Q_x and yi9 where, for k^>09 yk denotes the curve {(A, pk(K)) j — 00 < 
X< 00}. Since both v^^A) and />,(A) are analytic in — 00 <A< 00 [3, subsection 2.1], 
it therefore follows that Q_! and y{ either coincide or else have at most a finite 
number of points of intersection lying in any bounded subset of E2. Hence from 
these results, and by arguing with the function g(X)=((f>1(bl919 *V-i(A))—1) for 
the case where Cf_x and yi coincide, we arrive at the following alternative: either 
the singular points of F=0 lying on St (resp. S^) are all isolated or Si9 $i_l9 C{_l9 

and yi all coincide. It is clear that only the latter case can occur if (^41(x1)/J51(x1)) 
is constant in tfi<^i<ôi, that is to say, if 0 1=0 2 . Now let (A1, / / ) (where 
/Jssfaffl)) be a singular point of ^=0 ; we note that this point is necessarily a 
double point since FpL{^9 / / )<0 (here F denote the partial derivative of F with 
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respect to fi). If (Af, ju?) is non-isolated, then S{ and Si_x coincide, and St (resp. 
$i-i) has a continuously turning tangent whose slope at (A1-, fj) is 

(5) - M A1(x1)y)l(x1,k\ fif) dxA l\ B&JiplOc» tf,/J) dxA . 

If (Af, / / ) is an isolated singular point (and for this case we must have 01<@2)> 
then there is an open disc in E2 with (Af, //) as centre which contains no other 
singular point of F=0 and such that in this disc S{ meets Si^.1 in precisely the one 
point (AT, / / ) . Thus it follows that (A1", fj}) is either a node or a cusp and that 
through this point there passes precisely two branches of the curve F = 0 . For the 
case of a node the two branches have distinct tangents at (Af, JU?) whose slopes 
assume values lying in the interval [tan @l5 tan 0 2 ] ; and since /^(A) (resp. / ^ ( A ) ) 
lies on that branch which, corresponding to A, has largest (resp. smallest) ordinate, 
it therefore follows that St (resp. S^) cannot possess a tangent at (Af, / / ) . If 
(A1", ju?) is a cusp, then at this point the two branches of J F = 0 , C^X, and y4 all 
have the same tangent whose slope is given by (5). 

Finally, we conclude from these results that for any non-negative integer /, 
fz{(X) has a continuous or sectionally continuous first derivative in any compact A 
interval, and moreover, at each A the right (resp. left) derivative of /^(A) assumes 
a value lying in the interval [tan 01 ? tan 02] . Hence it follows that for Xx^X2y 

(6) tan 0X £ { ( ^ A ) - ^ i ) ) / a 2 - ^ i ) } ^ tan 0 2 . 

Analogous results hold for the curve Sj if we let (f>2 and ip2 be solutions of (lb) 
satisfying <f>2(a2, X, ^)=p2(a2)tp2(a2, X, //) = 1, <f>'2(a2, X, /j)=y>2(a29 X, / J ) = 0 , and 

put 

F\X,[z) = (cf>2(b2, X,]u)+p2(b2)ip2(b2, A , /*) -2) . 

The analogue of (6) then becomes 

(7) tan 0* < {(ia*(A2)-iM*(A1))/(A2^A1)} < tan 0* 

for Ai^X2. 
From (6) and (7) we conclude that S, intersects S* in precisely one point, and 

this completes the proof of our theorem. Moreover, if (Af, / / ) denotes this point 
of intersection, then we have also shown that any branch of the curve F=0 passing 
through (A1*, / / ) cannot be tangent at this point to any branch of the curve F*=Q 
passing through this point, and where of course in each case there is precisely one 
branch if (A1*, / / ) is either an ordinary point or a non-isolated singular point of 
the curve. In this sense we see that at the point of intersection, S{ and Sf cannot 
touch. 
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