ON A GENERALISATION OF MONOTONIC SEQUENCES

by E. T. COPSON
(Received 17th October 1969)

1. Introduction

A bounded monotonic sequence is convergent. Dr J. M. Whittaker recently suggested to me a generalisation of this result, that, if a bounded sequence $\left\{a_{n}\right\}$ of real numbers satisfies the inequality

$$
\begin{equation*}
a_{n+2} \leqq \frac{1}{2}\left(a_{n+1}+a_{n}\right), \tag{1}
\end{equation*}
$$

then it is convergent. This I was able to prove by considering the corresponding difference equation

$$
A_{n+2}=\frac{1}{2}\left(A_{n+1}+A_{n}\right) .
$$

Dr J. B. Tatchell gave me a different proof depending on the fact that (1) is equivalent to saying that the sequence $\left\{a_{n+1}+\frac{1}{2} a_{n}\right\}$ is bounded and decreasing. His argument also applied in the case of the difference inequality

$$
a_{n+2} \leqq(1-k) a_{n+1}+k a_{n}
$$

where k and $1-k$ are strictly positive. This suggested that there should be a more general result in which the mean of a_{n} and a_{n+1} is replaced by a mean of r consecutive members of the sequence. In this paper I prove the following

Theorem. If $\left\{a_{n}\right\}$ is a bounded sequence which satisfies the inequality

$$
\begin{equation*}
a_{n+r} \leqq \sum_{s=1}^{r} k_{s} a_{n+r-s} \tag{2}
\end{equation*}
$$

where the coefficients k_{s} are strictly positive and $k_{1}+k_{2}+\ldots+k_{r}=1$, then $\left\{a_{n}\right\}$ is a convergent sequence. But if $\left\{a_{n}\right\}$ is unbounded, it diverges to $-\infty$.

The conclusion does not necessarily follow if some of the coefficients k_{s} are zero. For example, if $\left\{a_{n}\right\}$ is bounded and

$$
a_{n+4} \leqq \frac{1}{2}\left(a_{n+2}+a_{n}\right),
$$

then the sequences $\left\{a_{2 n}\right\}$ and $\left\{a_{2 n+1}\right\}$ are convergent, but $\left\{a_{n}\right\}$ is not necessarily convergent.

2. A proof of the theorem

My proof depends on the properties of the associated difference equation. But I first give an interesting proof due to Professor R. A. Rankin.

Let us write

$$
A_{n}=\max \left(a_{n-1}, a_{n-2}, \ldots, a_{n-r}\right)
$$

Then, by (2),

$$
\begin{equation*}
a_{n} \leqq A_{n} \tag{3}
\end{equation*}
$$

and so $A_{n+1} \leqq A_{n}$. Therefore, either A_{n} tends to a finite limit A or A_{n} diverges to $-\infty$.

If $A_{n} \rightarrow-\infty$, then $a_{n} \rightarrow-\infty$ by (3). We show that, if A is finite, $a_{n} \rightarrow A$. For any positive value of ε, there exists a positive integer N such that

$$
A \leqq A_{n} \leqq A+\varepsilon
$$

whenever $n \geqq N$. If $1 \leqq s \leqq r$, we have

$$
\begin{aligned}
a_{m+s} & \leqq k_{s} a_{m}+\sum_{t \neq s} k_{t} a_{m+s-t} \leqq k_{s} a_{m}+\sum_{t \neq s} k_{t} A_{m+s} \\
& =\left(1-k_{s}\right) A_{m+s}+k_{s} a_{m} \leqq\left(1-k_{s}\right)(A+\varepsilon)+k_{s} a_{m}
\end{aligned}
$$

For each $m \geqq N$, we can find an integer $s(1 \leqq s \leqq r)$ such that

$$
a_{m+s}=A_{m+r+1} .
$$

Hence

$$
A \leqq A_{m+r+1}=a_{m+s} \leqq\left(1-k_{s}\right)(A+\varepsilon)+k_{s} a_{m}=a_{m}+\left(1-k_{s}\right)\left(A+\varepsilon-a_{m}\right)
$$

But $a_{m} \leqq A_{m} \leqq A+\varepsilon$. Therefore if k is the least of the coefficients k_{s},

$$
A \leqq a_{m}+(1-k)\left(A+\varepsilon-a_{m}\right)=k a_{m}+(1-k)(A+\varepsilon)
$$

from which it follows that

$$
a_{n} \geqq A-\frac{1-k}{k} \varepsilon
$$

where $0<k<1$. We have thus proved that, for every positive value of ε, there exists an integer N such that, whenever $m \geqq N$,

$$
A-\frac{1-k}{k} \varepsilon \leqq a_{m} \leqq A+\varepsilon
$$

hence a_{m} tends to A as $m \rightarrow \infty$.

3. Another proof

Lemma. Under the conditions of the theorem, every solution A_{n} of the difference equation

$$
A_{n+r}=\sum_{s=1}^{r} k_{s} A_{n+r-s}
$$

tends to a finite limit as $n \rightarrow \infty$.
If the roots $z_{1}, z_{2}, \ldots, z_{r}$ of the equation

$$
\begin{equation*}
z^{r}=\sum_{s=1}^{r} k_{s} z^{r-s} \tag{4}
\end{equation*}
$$

are distinct, the general solution of the difference equation is

$$
A_{n}=\sum_{s=1}^{r} \alpha_{s} z_{s}^{n} .
$$

If the roots are not distinct, the solution has to be modified. For example, if $z_{1}=z_{2}$, the first two terms have to be replaced by $(\alpha+\beta n) z_{1}^{n}$; if $z_{1}=z_{2}=z_{3}$, the first three terms have to be replaced by $\left(\alpha+\beta n+\gamma n^{2}\right) z_{1}^{n}$; and so on. But this does not affect the truth of the lemma.

By a straightforward application of Rouche's Theorem, we can show that all the roots of (4) lie in $|z| \leqq 1$; and, by elementary trigonometry, the only root on $|z|=1$ is a simple root at $z=1$. The truth of the lemma is then evident.

The sequence $\left\{a_{n}\right\}$ satisfies

$$
a_{n+2} \leqq \sum_{s=1}^{r} k_{s} a_{n+r-s},
$$

where the coefficients k_{s} are strictly positive and have sum unity. If we replace a_{n+r-1} by

$$
\sum_{s=1}^{r} k_{s} a_{n+r-1-s}
$$

in the expression on the right-hand side, we increase the right-hand side, getting

$$
a_{n+r} \leqq \sum_{s=1}^{r-1}\left(k_{1} k_{s}+k_{s+1}\right) a_{n-r-1-s}+k_{1} k_{r} a_{n-1}
$$

Repeating the process, we obtain

$$
\begin{equation*}
a_{n+r} \leqq \sum_{s=1}^{r} A_{s}(l) a_{n-l+r-s} \tag{5}
\end{equation*}
$$

for every integer $l \leqq n$. Here $A_{s}(0)=k_{s}$. The coefficients $A_{s}(l)$ are given by the recurrence relations

$$
\begin{equation*}
A_{s}(l+1)=k_{s} A_{1}(l)+A_{s+1}(l) \tag{6}
\end{equation*}
$$

for $s=1,2, \ldots, r-1$, and

$$
\begin{equation*}
A_{r}(l+1)=k_{r} A_{1}(l) . \tag{7}
\end{equation*}
$$

Evidently

$$
\sum_{s=1}^{r} A_{s}(l+1)=\sum_{s=1}^{r} A_{s}(l)
$$

and so

$$
\begin{equation*}
\sum_{s=1}^{r} A_{s}(l)=\sum_{s=1}^{r} A_{s}(0)=\sum_{s=1}^{r} k_{s}=1 . \tag{8}
\end{equation*}
$$

From equations (6) and (7), we find that

$$
A_{1}(l+r)=\sum_{s=1}^{r} k_{s} A_{1}(l+r-s)
$$

which is the difference equation of the lemma. Hence $A_{1}(l)$ tends to a finite E.M.S.-L
limit α_{1} as $l \rightarrow \infty$. Making l tend to infinity in (6) and (7), we find that

$$
\begin{aligned}
& A_{2}(l) \rightarrow \alpha_{2}=\left(1-k_{1}\right) \alpha_{1}, \\
& A_{3}(l) \rightarrow \alpha_{3}=\left(1-k_{1}-k_{2}\right) \alpha_{1}
\end{aligned}
$$

and so on;

$$
A_{s}(l) \rightarrow \alpha_{s}=\alpha_{1} \sum_{t=s}^{r} k_{t}
$$

But, by (8),

$$
\sum_{s=1}^{r} \alpha_{s}=1
$$

from which it follows that

$$
\alpha_{1}=\frac{1}{k_{1}+2 k_{2}+3 k_{3}+\ldots+r k_{r}}
$$

Since the coefficients k_{s} are strictly positive and have sum unity, we see that $0<\alpha_{1}<1$.

In the inequality (5), put $l=n+r-m$. Then

$$
a_{n+r} \leqq \sum_{s=1}^{r} A_{s}(n+r-m) a_{m-s}
$$

Now make $n \rightarrow \infty$. This gives

$$
\begin{align*}
\limsup _{n \rightarrow \infty} a_{n} & =\limsup _{n \rightarrow \infty} a_{n+r} \\
& \leqq \sum_{s=1}^{r} \alpha_{s} a_{m-s} \tag{9}
\end{align*}
$$

Write this as

$$
\lim \sup a_{n}+\sum_{s=2}^{r}\left(-\alpha_{s}\right) a_{m-s} \leqq \alpha_{1} a_{m-1}
$$

Since $\alpha_{1}>0$,

$$
\begin{aligned}
\alpha_{1} \liminf _{m \rightarrow \infty} a_{m} & =\alpha_{1} \liminf _{m \rightarrow \infty} a_{m-1} \\
& \geqq \underset{n \rightarrow \infty}{\lim \sup } a_{n}+\underset{m \rightarrow \infty}{\liminf } \sum_{s=2}^{r}\left(-\alpha_{s}\right) a_{m-s}
\end{aligned}
$$

But each α_{s} is positive. Hence

$$
\alpha_{1} \liminf a_{n \rightarrow \infty} \geqq \underset{n \rightarrow \infty}{\lim \sup } a_{n}-\sum_{s=2}^{r} \alpha_{s} \limsup _{n \rightarrow \infty} a_{n} .
$$

But the sum of all the coefficients α_{s} is unity, and $\alpha_{1}>0$. Hence
or

$$
\alpha_{1} \liminf _{n \rightarrow \infty} a_{n} \geqq \alpha_{1} \limsup _{n \rightarrow \infty} a_{n},
$$

$$
\begin{equation*}
\lim \inf a_{n} \geqq \lim \sup a_{n} \tag{10}
\end{equation*}
$$

If $\left\{a_{n}\right\}$ is a bounded sequence, $\lim \sup a_{n}$ and $\lim \inf a_{n}$ are both finite, and $\lim \inf a_{n} \leqq \lim \sup a_{n}$. Therefore, by (10), $\lim \sup a_{n}$ and $\lim \inf a_{n}$ are equal; the sequence converges.
is finite, by (10) so also is $\lim \inf a_{n}$, which is impossible since the sequence is unbounded. Therefore $\lim \sup a_{n}=-\infty$; the sequence diverges to $-\infty$.

4. Further remarks on the theorem

The condition of the theorem are sufficient, but not necessary; the coefficients k_{s} need not be all positive. For example, if $\left\{a_{n}\right\}$ is a bounded sequence satisfying

$$
a_{n+3} \leqq-\frac{1}{2} a_{n+2}+\frac{3}{4} a_{n+1}+\frac{3}{4} a_{n}
$$

then it is a convergent sequence.
The key to the second proof of the theorem is that, if the coefficients k_{s} are strictly positive and have sum unity, every solution of the difference equation

$$
A_{n+r}=\sum_{s=1}^{r} k_{s} A_{n+r-s}
$$

tends to a finite limit as $n \rightarrow \infty$, because the equation

$$
z^{r}-\sum_{s=1}^{r} k_{s} z^{r-s}=0
$$

has one root $z=1$ on the unit circle and $r-1$ roots in $|z|<1$; or, if we take out the factor $z-1$, all the roots of

$$
\begin{equation*}
z^{r-1}+\sum_{s=1}^{r-1} l_{s} z^{r-s-1}=0 \tag{11}
\end{equation*}
$$

where
lie in $|z|<1$.

$$
l_{s}=1-k_{1}-k_{2}-\ldots-k_{s}
$$

A polynomial

$$
g(z)=\sum_{0}^{m} c_{r} z^{r} \quad\left(c_{0} \neq 0, c_{m} \neq 0\right)
$$

whose zeros all lie in $|z|<1$ is called a Schur polynomial. Duffin [SIAM Review, 11 (1969), 196-213] has shown that $g(z)$ is a Schur polynomial if and only if $\left|c_{0}\right|<\left|c_{m}\right|$ and

$$
g_{1}(z)=\sum_{0}^{m-1}\left(\bar{c}_{m} c_{r+1}-c_{0} \bar{c}_{m-r-1}\right) z^{r}
$$

where bars denote complex conjugates, is also a Schur polynomial. This algorithm enables one to test whether a given polynomial is a Schur polynomial, but it does not provide a simple set of conditions on the coefficients c_{r}.

If the polynomial on the left-hand side of (11) is a Schur polynomial, the argument of $\S 3$ shows that, as $l \rightarrow+\infty$,

$$
A_{1}(l) \rightarrow \alpha_{1}, \quad A_{s}(l) \rightarrow \alpha_{s}=l_{s-1} \alpha_{1}
$$

where

$$
\alpha_{1}=\frac{1}{1+l_{1}+l_{2}+\ldots+l_{r-1}}
$$

Since $z=1$ is not a root of equation (11),
As in § 3, we obtain

$$
1+l_{1}+l_{2}+\ldots+l_{r-1} \neq 0
$$

$$
\limsup _{n \rightarrow \infty} a_{n} \leqq \sum_{s=1}^{r} \alpha_{s} a_{m-s}
$$

Since the sum of the coefficients α_{s} is unity, the largest, α_{k} say, is positive. Write

$$
\begin{aligned}
\beta_{s} & =\alpha_{s} \text { if } \alpha_{s}>0, \quad \gamma_{s}=0 \quad \text { if } a_{s}>0 \\
& =0 \quad \text { if } \alpha_{s} \leqq 0, \quad \gamma_{s}=-\alpha_{s} \text { if } \alpha_{s} \leqq 0
\end{aligned}
$$

so that $\alpha_{s}=\beta_{s}-\gamma_{s}$. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} a_{n}-\Sigma^{\prime} \beta_{s} a_{m-s}+\Sigma \gamma_{s} a_{m-s} \leqq \alpha_{k} a_{m-k} \tag{12}
\end{equation*}
$$

where the prime indicates that the term with $s=k$ is omitted. If only one α_{s} is positive, the sum Σ^{\prime} does not occur.

From the inequality (12) it follows that
But

$$
\left(1-\Sigma^{\prime} \beta_{s}\right) \lim \sup a_{n}+\Sigma \gamma_{s} \lim \inf a_{n} \leqq \alpha_{k} \lim \inf a_{n}
$$

Hence

$$
\alpha_{k}+\Sigma^{\prime} \beta_{s}-\Sigma \gamma_{s}=1
$$

$$
\left(1-\Sigma^{\prime} \beta_{s}\right)\left(\lim \sup a_{n}-\lim \inf a_{n}\right) \leqq 0
$$

The conclusion will therefore follow as before if $\Sigma^{\prime} \beta_{s}<1$. This condition is satisfied if there is only one positive α_{s} or if the sum of all the positive α_{s} except the greatest is less than unity.

The method of this section will enable one to test whether a bounded sequence $\left\{a_{n}\right\}$ satisfying the equality

$$
a_{n+r} \leqq \sum_{s=1}^{r} k_{s} a_{n+r-s}
$$

where the coefficients k_{s} are not all strictly positive, but have sum unity, is convergent. It does not seem to be possible to give any simple general necessary and sufficient conditions.

42 Buchanan Gardens

St Andrews, Fife

