HOMEOMORPHISM AND ISOMORPHISM OF ABELIAN GROUPS

STEPHEN SCHEINBERG

An abelian topological group can be considered simply as an abelian group or as a topological space. The question considered in this article is whether the topological group structure is determined by these weaker structures. Denote homeomorphism, isomorphism, and homeomorphic isomorphism by \approx, \cong, and $=$, respectively. The principal results are these.

Theorem 1. If G_{1} and G_{2} are locally compact and connected, then $G_{1} \approx G_{2}$ implies $G_{1}=G_{2}$.

Theorem 2. (a) There are compact connected G_{1} and G_{2} with $G_{1} \cong G_{2}$ and $G_{1} \notin G_{2}$.
(b) There are connected G_{1} and G_{2} with $G_{1} \approx G_{2}, G_{1} \cong G_{2}$, and $G_{1} \neq G_{2}$.
(c) There are compact G_{1} and G_{2} with $G_{1} \approx G_{2}, G_{1} \cong G_{2}$, and $G_{1} \neq G_{2}$.

1. Proof of Theorem 1. The structure theorem for locally compact abelian groups (Chapter 2 of [5]) gives $G_{i}=\mathbf{R}^{n_{i}} \times K_{i}$, where n_{i} are non-negative integers and K_{i} are compact connected abelian groups. It is known that $H^{1}\left(G_{i}\right) \cong H^{1}\left(K_{i}\right) \cong \hat{K}_{i}$, where \hat{K}_{i} is the Pontryagin dual group of K_{i} and the cohomology is Čech cohomology. The isomorphism $H^{1}\left(G_{i}\right) \cong H^{1}\left(K_{i}\right)$ is clear, since K_{i} is a deformation retract of G_{i}. The isomorphism $H^{1}\left(K_{i}\right) \cong \hat{K}_{i}$ is obtained in this manner (see [1, Chapters VIII-X]). \hat{K}_{i} is discrete and torsion free, since K_{i} is compact and connected. Write \hat{K}_{i} as a direct limit of its finitely generated subgroups, each of which is isomorphic to \mathbf{Z}^{n}, for some n. Then $K_{i}=\left(\hat{K}_{i}\right)^{\wedge}=$ the inverse limit of various tori $T^{n}\left(=\widehat{\mathbf{Z}^{n}}=(\hat{Z})^{n}\right)$. Since Čech cohomology is continuous on inverse limits and since $H^{1}(T)$ is naturally isomorphic to \mathbf{Z}, it follows that $H^{1}\left(K_{i}\right) \cong \hat{K}_{i}$. Therefore, $G_{1} \approx G_{2}$ implies $\hat{K}_{1} \cong \hat{K}_{2}$, which implies $K_{1}=K_{2}$. The proof will be completed by a proof that $n_{1}=n_{2}$, which is an immediate consequence of the next proposition.

Proposition. If K is a non-empty compact space and $P=\mathbf{R}^{n} \times K$, then the integer n is a topological invariant of P.

Proof. R. J. Milgram kindly provided me with a proof (oral) that n is the smallest dimension for which the homology of $\bar{P}=P \cup(\infty)$ is non-vanishing. The proof below is based on showing this to be true for singular homology, but by a different method.

There is a projection π of \bar{P} onto $S^{n}=\mathbf{R}^{n} \cup(\infty): \pi(\infty)=\infty, \pi(x, k)=x$.

Received June 21, 1973.

Fix $k \in K$ and define $i: S^{n} \rightarrow \bar{P}$ by $i(\infty)=\infty, i(x)=(x, k)$ for $x \in \mathbf{R}^{n}$. Since πi is the identity on $S^{n}, \pi_{*} i_{*}$ is the identity on $H_{n}\left(S^{n}\right)=\mathbf{Z}$; in particular, $H_{n}(\bar{P}) \neq 0$.

To show that $H_{m}(\bar{P})=0$ for $m<n$, it is sufficient to consider $n \geqq 1$ and to show that every $f: S^{m} \rightarrow \bar{P}, m<n$, is homotopic to the constant map ∞. Define $C=f^{-1}(\infty) \subseteq S^{m}$ and $g=\pi f$. There is a continuous $h: S^{m}-C \rightarrow K$ such that $f(x)=(g(x), h(x))$ for $x \notin C$. It is sufficient to show that $g \simeq \infty$ relative to C, that is, that there is a continuous $G(x, t)$ for which $G(x, 0)=$ $g(x), G(x, 1)=\infty$, and $G(x, t)=\infty$ when $g(x)=\infty$. For then a homotopy $f \simeq \infty$ is given by $F(x, t)=(G(x, t), h(x))$ for $x \notin C$ and $F(x, t)=\infty$ for $x \in C$. Reducing the problem further, it is enough to find a homotopy of g, relative to C, to a map $g^{\prime}: S^{m} \rightarrow S^{n}$ whose range omits a point of \mathbf{R}^{n}, since ∞ is a deformation retract of $S^{n}-x$, for any $x \in \mathbf{R}^{n}$.

Triangulate S^{m} and define L to be the subcomplex consisting of all simplices σ which meet C, together with all faces of such σ. Let M be the subcomplex of all simplices which do not meet C, together with all their faces. Then $S^{m}=$ $|L| \cup|M|$ and C is contained in the interior of $|L|$. We can assume the triangulation is so fine that $x \in|L| \Rightarrow|g(x)|>2$, where $|\infty|=\infty$. Since $g(|M|)$ is compact in \mathbf{R}^{n}, we can subdivide M sufficiently so that if σ is any simplex of the subdivision $N, g(|\sigma|)$ has diameter less than 1.

Define $g^{\prime}: S^{m} \rightarrow R^{n} \cup(\infty)$ as follows. Let $g^{\prime}(x)=g(x)$ for every $x \in|L|$ and every vertex x of N. For any other x choose a simplex σ of N containing x; let ρ be the largest face of σ contained in $|L|$ and τ be the complementary face. By appropriately numbering the vertices of σ, we can write

$$
\sigma=\left\langle v_{0}, \ldots, v_{p}\right\rangle, \quad \tau=\left\langle v_{0}, \ldots, v_{q}\right\rangle, \quad \rho=\left\langle v_{q+1}, \ldots, v_{p}\right\rangle .
$$

Let $\left(\lambda_{0}, \ldots, \lambda_{p}\right)$ be the barycentric coordinates of x. If ρ is empty, put $g^{\prime}(x)=\lambda_{0} g\left(v_{0}\right)+\ldots+\lambda_{p} g\left(v_{p}\right)$. Otherwise, let $\lambda=\lambda_{0}+\ldots+\lambda_{q}<1$ and let y be the point of ρ with coordinates $\left(\lambda_{q+1} /(1-\lambda), \ldots, \lambda_{p} /(1-\lambda)\right)$. Define

$$
g^{\prime}(x)=\frac{\lambda_{0}}{\lambda} g\left(v_{0}\right)+\ldots+\frac{\lambda_{q}}{\lambda} g\left(v_{q}\right)+(1-\lambda) g(y)
$$

It is easy to see that g^{\prime} is continuous. A homotopy $g \simeq g^{\prime}$, relative to C, is given by $H(x, t)=\infty$ for $x \in C, H(x, t)=\operatorname{tg}^{\prime}(x)+(1-t) g(x)$ for $x \notin C$.

If $x \in|L|,\left|g^{\prime}(x)\right|=|g(x)|>2$. If σ is a simplex of N, then $g^{\prime}(\sigma)$ has diameter less than 1 , being contained in the convex hull of $g(|\sigma|)$. If $|\sigma|$ meets $|L|$, this means $\left|g^{\prime}(x)\right|>1$ for all $x \in|\sigma|$. On the rest of S^{m}, which is the rest of N, g^{\prime} is piecewise linear; so its range is contained in a finite number of m-dimensional subspaces of \mathbf{R}^{n}. Therefore, $g^{\prime}\left(S^{m}\right)$ omits a point of \mathbf{R}^{n} of norm less than 1.
2. Proof of Theorem 2. Let \mathbf{Q} be the rational numbers with the discrete topology. $\hat{\mathbf{Q}}$, the dual of \mathbf{Q}, is compact, connected, and torsion free, since \mathbf{Q} is
discrete, torsion free, and has no subgroup of finite index. Since \mathbf{Q} is the direct limit of groups isomorphic to $\mathbf{Z}, \hat{\mathbf{Q}}$ is the inverse limit of groups isomorphic to the circle T. Since T is divisible, $\hat{\mathbf{Q}}$ is divisible. Thus, $\hat{\mathbf{Q}}$ is a torsion-free divisible group containing $c\left(=2^{\text {º }}\right)$ elements. Hence, $\hat{\mathbf{Q}}$ is isomorphic to the c-dimensional vector space over \mathbf{Q}. It immediately follows that $\hat{\mathbf{Q}} \cong \hat{\mathbf{Q}} \oplus \hat{\mathbf{Q}}$. By Theorem $1 \hat{\mathbf{Q}} \neq \hat{\mathbf{Q}} \oplus \hat{\mathbf{Q}}$ since the dual groups \mathbf{Q} and $\mathbf{Q} \oplus \mathbf{Q}$ are not isomorphic. This proves $2(\mathrm{a})$.

For $2(\mathrm{~b})$ consider $G_{1}=L^{1}(0,1)$ and $G_{2}=L^{2}(0,1)$. If G_{1} were equal to G_{2} as topological groups, then they would be equal as rational vector spaces, since they are torsion free. Continuity would then yield $G_{1}=G_{2}$ as real topological vector spaces, which is obviously false. However, $G_{1} \cong G_{2}$ as real vector spaces, hence as groups. And $G_{1} \approx G_{2}$ by a theorem of Mazur [4].

For $2(\mathrm{c})$ it will be convenient to have a summary of the basic theory of p-adic groups. Details can be found in [3], especially § 16. A subgroup H of G is pure if and only if for every $n>0$ every element of H which can be divided by n in G can already be divided by n in H. A subset is pure if and only if the subgroup generated by it is pure. A subset S of G is independent if and only if for every $T \subseteq S$ the subgroups generated by T and by $S-T$ have only 0 in common.

Fix a prime number p. The p-adic topology on G is obtained by letting $\left\{p^{n} G: n \geqq 0\right\}$ be the system of basic neighborhoods of 0 . This topology is metrizable in the following manner. Define

$$
h(x)=\sup \left\{n: x \text { can be divided by } p^{n} \text { in } G\right\},
$$

called the height of x in $G ; p^{n} G$ is the set of all elements of height at least n. The distance function $d(x, y)=[1+h(x-y)]^{-1}$ induces the p-adic topology. From now on assume G has no elements of infinite height; then d is a genuine metric. In fact, d is non-Archimedean: $d(x, y) \leqq \max \{d(x, y), d(y, z)\}$; so g_{n} is Cauchy if and only if $d\left(g_{n}, g_{n+1}\right) \rightarrow 0$. If H is pure in G, then $p^{n} H=$ $H \cap p^{n} G$; so the inclusion $H \subseteq G$ is a homeomorphic isomorphism.

Let G^{*} be the abstract completion of G as a metric group. G^{*} has no elements of infinite height, and G is pure in G^{*}. Thus, the p-adic metric on G^{*} coincides with the natural extension of the metric on G, and the inclusion $G \subseteq G^{*}$ is an isometric isomorphism. More generally, if G is a pure subgroup of a complete group C, then the inclusion $G \subseteq C$ extends to a (unique) homeomorphic isomorphism of G^{*} onto \bar{G}, the closure of G in C. Since d is non-Archimedean, every series $\sum_{0}^{\infty} p^{j} x_{j}$ converges in C. The closure of G consists of all sums $\sum_{0}^{\infty} p^{j} g_{j}, g_{j} \in G$.

The p-adic integers \mathbf{Z}_{p} is obtained as the completion of \mathbf{Z} and is a ring since \mathbf{Z} is a ring. \mathbf{Z}_{p} is homeomorphic to Cantor's middle-third set (see [2, § 2-15]), and $\hat{\mathbf{Z}}_{p}$ is $\mathbf{Z}\left(p^{\infty}\right)$, the subgroup of the circle consisting of all the $\left(p^{n}\right)$ th roots of unity, for all n. It is of ten convenient to express \mathbf{Z}_{p} as the set of all formal sums $\sum_{0}^{\infty} a_{j} p^{j}, 0 \leqq a_{j}<p$, with addition and multiplication as for the integers (finite sums) in base p. A p-adically complete group is natural \mathbf{Z}_{p}-module, via
$\left(\sum a_{j} p^{j}\right) x=\sum a_{j}\left(p^{j} x\right)$. Note that

$$
-1=(p-1)(1-p)^{-1}=(p-1)\left(1+p+p^{2}+\ldots\right)
$$

Let G be complete and S be a maximal pure independent subset; that is, no subset of G properly containing S is both pure and independent. Then the subgroup H generated by S is dense in G; so $G \cong H^{*}$. Furthermore, if we partition S as $S_{1} \cup S_{2}$ and let G_{i} be the closed subgroup of G generated by S_{i}, then $G=G_{1} \oplus G_{2}$, an internal direct sum. That is, disjoint pure subgroups have disjoint closures.

Lemma. Let $G=\Pi_{1}^{\infty} G_{j}$, where each G_{j} is either \mathbf{Z}_{p} or $\mathbf{Z}\left(p^{n}\right)$, the cyclic group of order p^{n}, for some n; assume that the order of G_{j} tends to ∞ as $j \rightarrow \infty$. Define $e_{n} \in G$ by $e_{n}(j)=1$ for $j=n$ and 0 for $j \neq n$. Then $S_{0}=\left\{e_{n}: n \geqq 1\right\}$ is pure and independent. Let S be a maximal pure independent set containing S_{0}; let H and K be the subgroups generated by S_{0} and $S-S_{0}$, respectively. Then
(1) \bar{H}, the p-adic closure of H, contains the torsion subgroup of G;
(2) $K \cong \sum_{c} \oplus \mathbf{Z}$, the (weak) direct sum of c copies of \mathbf{Z};
(3) $G=\bar{H} \oplus \bar{K}$, an internal direct sum;
(4) $\bar{K} \cong K^{*} \cong Z_{p}{ }^{{ }^{0}}$.

Proof. S_{0} is clearly pure and independent. Since G is complete, we know by the general theory that $H^{*} \cong \bar{H}, K^{*} \cong \bar{K}$, and $\bar{H} \oplus \bar{K}=G . G_{n}$ is the closed subgroup generated by e_{n}; therefore,

$$
\bar{H}=\overline{\sum \oplus G_{j}}=\left\{g=\sum_{0}^{\infty} p^{n} g_{n}, g_{n} \in \sum \oplus G_{j}\right\} .
$$

It is easy to see that this last group is

$$
\{g: h(g(j)) \rightarrow \infty \text { as } j \rightarrow \infty\}
$$

If $m g=0$, then $g(j)=0$ when $G_{j}=\mathbb{Z}_{p}$ and $m g(j)$ is divisible p^{n} when $G_{j}=\mathbf{Z}\left(p^{n}\right)$. Since $n \rightarrow \infty$ as $j \rightarrow \infty, g \in \bar{H}$.

Since \bar{K} is independent of \bar{H}, \bar{K} is torsion free. Therefore, $K \cong \sum \oplus \mathbf{Z}$, with the number of copies of \mathbf{Z} being the cardinal of $S-S_{0}$. Since S is infinite, $H+K$ has the same cardinal as S. Since $H+K$ is dense in $G,(H+K) / p G$ is dense in $G / p G$, which is discrete. Therefore $(H+K) / p G=G / p G$. Now it is easy to see that $G / p G \cong \mathbf{Z}(p)^{\boldsymbol{N}_{0}} \cong \sum_{c} \oplus \mathbf{Z}(p)$, the latter isomorphism being a $\mathbf{Z}(p)$-vector space isomorphism. Therefore there are c elements in $H+K$, hence in S, hence in $S-S_{0}$.

We already know $\bar{K} \cong K^{*}$, so we must finally see that $K^{*} \cong \mathbf{Z}_{p}{ }^{{ }^{{ }_{0}}}$. Apply the foregoing discussion to the case where every $G_{j}=\mathbf{Z}_{p}$. Then

$$
\begin{aligned}
& \quad H \cong \sum_{\mathbf{N}_{0}} \oplus \mathbf{Z} \text { and } K \cong \sum_{c} \oplus \mathbf{Z} \\
& \text { thus, } K \cong K+H . \text { So } K^{*} \cong(K+H)^{*} \cong\left(\overline{(K+H)}=\bar{K}+\bar{H}=G=\mathbf{Z}_{p}{ }^{\aleph_{0}} .\right.
\end{aligned}
$$

The proof of Theorem 2c can now be completed. Let $G_{1}=\Pi_{1}^{\infty} \mathbf{Z}\left(p^{n}\right)$ with the product topology and $G_{2}=G_{1} \oplus \mathbf{Z}_{p}$. G_{1} and G_{2} are each homeomorphic to Cantor's middle-third set (see [2, § 2-15]). By the lemma $G_{1} \cong \bar{H} \oplus \mathbf{Z}_{p}{ }^{{ }^{\mathbf{0}}} \mathbf{}$; so

$$
G_{2}=G_{1} \oplus \mathbf{Z}_{p} \cong \bar{H} \oplus \mathbf{Z}_{p}{ }^{\aleph_{0}} \oplus \mathbf{Z}_{p} \cong \bar{H} \oplus \mathbf{Z}_{p}{ }^{K_{0}} \cong G_{1} .
$$

However, $\hat{G}_{1}=\sum \oplus \mathbf{Z}\left(p^{n}\right)$ and $\hat{G}_{2}=\hat{G}_{1} \oplus \mathbf{Z}\left(p^{\infty}\right) . \mathbf{Z}\left(p^{\infty}\right)$ is a divisible subgroup of \hat{G}_{2}, and \hat{G}_{1} has no divisible elements other than 0 . Hence $\hat{G}_{1} \neq \hat{G}_{2}$; so $G_{1} \neq G_{2}$.

References

1. S. Eilenberg and N. Steenrod, Foundations of algebraic topology (Princeton Univ. Press Princeton, 1952).
2. J. G. Hocking and G. S. Young, Topology (Addison-Wesley, Reading, Mass., 1961).
3. I. Kaplansky, Infinite abelian groups (U. of Michigan Press, Ann Arbor, 1954).
4. S. Mazur, Une remarque sur l'homéomorphie des champs fonctionnels, Studia Math. 1 (1929), 83-85.
5. W. Rudin, Fourier analysis on groups (Wiley (Interscience), New York, 1962).
6. S. Scheinberg, Homeomorphic isomorphic abelian groups, Notices Amer. Math. Soc. II (1964), 464.

University of California, Irvine,
Irvine, California

