HOMEOMORPHISM AND ISOMORPHISM OF ABELIAN GROUPS

STEPHEN SCHEINBERG

An abelian topological group can be considered simply as an abelian group or as a topological space. The question considered in this article is whether the topological group structure is determined by these weaker structures. Denote homeomorphism, isomorphism, and homeomorphic isomorphism by \approx , \cong , and =, respectively. The principal results are these.

THEOREM 1. If G_1 and G_2 are locally compact and connected, then $G_1 \approx G_2$ implies $G_1 = G_2$.

THEOREM 2. (a) There are compact connected G_1 and G_2 with $G_1 \cong G_2$ and $G_1 \neq G_2$.

(b) There are connected G_1 and G_2 with $G_1 \approx G_2$, $G_1 \cong G_2$, and $G_1 \neq G_2$.

(c) There are compact G_1 and G_2 with $G_1 \approx G_2$, $G_1 \cong G_2$, and $G_1 \neq G_2$.

1. Proof of Theorem 1. The structure theorem for locally compact abelian groups (Chapter 2 of [5]) gives $G_i = \mathbb{R}^{n_i} \times K_i$, where n_i are non-negative integers and K_i are compact connected abelian groups. It is known that $H^1(G_i) \cong H^1(K_i) \cong \hat{K}_i$, where \hat{K}_i is the Pontryagin dual group of K_i and the cohomology is Čech cohomology. The isomorphism $H^1(G_i) \cong H^1(K_i) \cong \hat{K}_i$ is obtained in this manner (see [1, Chapters VIII–X]). \hat{K}_i is discrete and torsion free, since K_i is compact and connected. Write \hat{K}_i as a direct limit of its finitely generated subgroups, each of which is isomorphic to \mathbb{Z}^n , for some n. Then $K_i = (\hat{K}_i)^{\wedge}$ = the inverse limit of various tori $T^n (= \widehat{\mathbb{Z}}^n = (\hat{\mathbb{Z}})^n)$. Since Čech cohomology is continuous on inverse limits and since $H^1(T)$ is naturally isomorphic to \mathbb{Z} , it follows that $H^1(K_i) \cong \hat{K}_i$. Therefore, $G_1 \approx G_2$ implies $\hat{K}_1 \cong \hat{K}_2$, which implies $K_1 = K_2$. The proof will be completed by a proof that $n_1 = n_2$, which is an immediate consequence of the next proposition.

PROPOSITION. If K is a non-empty compact space and $P = \mathbb{R}^n \times K$, then the integer n is a topological invariant of P.

Proof. R. J. Milgram kindly provided me with a proof (oral) that n is the smallest dimension for which the homology of $\overline{P} = P \cup (\infty)$ is non-vanishing. The proof below is based on showing this to be true for singular homology, but by a different method.

There is a projection π of \bar{P} onto $S^n = \mathbf{R}^n \cup (\infty) : \pi(\infty) = \infty, \pi(x, k) = x$.

Received June 21, 1973.

Fix $k \in K$ and define $i: S^n \to \overline{P}$ by $i(\infty) = \infty$, i(x) = (x, k) for $x \in \mathbb{R}^n$. Since πi is the identity on S^n , $\pi_* i_*$ is the identity on $H_n(S^n) = \mathbb{Z}$; in particular, $H_n(\overline{P}) \neq 0$.

To show that $H_m(\bar{P}) = 0$ for m < n, it is sufficient to consider $n \ge 1$ and to show that every $f: S^m \to \bar{P}, m < n$, is homotopic to the constant map ∞ . Define $C = f^{-1}(\infty) \subseteq S^m$ and $g = \pi f$. There is a continuous $h: S^m - C \to K$ such that f(x) = (g(x), h(x)) for $x \notin C$. It is sufficient to show that $g \simeq \infty$ relative to C, that is, that there is a continuous G(x, t) for which G(x, 0) = $g(x), G(x, 1) = \infty$, and $G(x, t) = \infty$ when $g(x) = \infty$. For then a homotopy $f \simeq \infty$ is given by F(x, t) = (G(x, t), h(x)) for $x \notin C$ and $F(x, t) = \infty$ for $x \in C$. Reducing the problem further, it is enough to find a homotopy of g, relative to C, to a map $g': S^m \to S^n$ whose range omits a point of \mathbb{R}^n , since ∞ is a deformation retract of $S^n - x$, for any $x \in \mathbb{R}^n$.

Triangulate S^m and define L to be the subcomplex consisting of all simplices σ which meet C, together with all faces of such σ . Let M be the subcomplex of all simplices which do not meet C, together with all their faces. Then $S^m =$ $|L|\cup|M|$ and C is contained in the interior of |L|. We can assume the triangulation is so fine that $x \in |L| \Rightarrow |g(x)| > 2$, where $|\infty| = \infty$. Since g(|M|) is compact in \mathbb{R}^n , we can subdivide M sufficiently so that if σ is any simplex of the subdivision N, $g(|\sigma|)$ has diameter less than 1.

Define $g': S^m \to R^n \cup (\infty)$ as follows. Let g'(x) = g(x) for every $x \in |L|$ and every vertex x of N. For any other x choose a simplex σ of N containing x; let ρ be the largest face of σ contained in |L| and τ be the complementary face. By appropriately numbering the vertices of σ , we can write

$$\sigma \ = \ \langle v_0, \ldots, v_p
angle, \qquad au \ = \ \langle v_0, \ldots, v_q
angle, \qquad
ho \ = \ \langle v_{q+1}, \ldots, v_p
angle.$$

Let $(\lambda_0, \ldots, \lambda_p)$ be the barycentric coordinates of x. If ρ is empty, put $g'(x) = \lambda_0 g(v_0) + \ldots + \lambda_p g(v_p)$. Otherwise, let $\lambda = \lambda_0 + \ldots + \lambda_q < 1$ and let y be the point of ρ with coordinates $(\lambda_{q+1}/(1-\lambda), \ldots, \lambda_p/(1-\lambda))$. Define

$$g'(x) = \frac{\lambda_0}{\lambda} g(v_0) + \ldots + \frac{\lambda_q}{\lambda} g(v_q) + (1-\lambda)g(y).$$

It is easy to see that g' is continuous. A homotopy $g \simeq g'$, relative to C, is given by $H(x, t) = \infty$ for $x \in C$, H(x, t) = tg'(x) + (1 - t)g(x) for $x \notin C$.

If $x \in |L|$, |g'(x)| = |g(x)| > 2. If σ is a simplex of N, then $g'(\sigma)$ has diameter less than 1, being contained in the convex hull of $g(|\sigma|)$. If $|\sigma|$ meets |L|, this means |g'(x)| > 1 for all $x \in |\sigma|$. On the rest of S^m , which is the rest of N, g' is piecewise linear; so its range is contained in a finite number of m-dimensional subspaces of \mathbb{R}^n . Therefore, $g'(S^m)$ omits a point of \mathbb{R}^n of norm less than 1.

2. Proof of Theorem 2. Let Q be the rational numbers with the discrete topology. \hat{Q} , the dual of Q, is compact, connected, and torsion free, since Q is

1516

discrete, torsion free, and has no subgroup of finite index. Since \mathbf{Q} is the direct limit of groups isomorphic to \mathbf{Z} , $\hat{\mathbf{Q}}$ is the inverse limit of groups isomorphic to the circle T. Since T is divisible, $\hat{\mathbf{Q}}$ is divisible. Thus, $\hat{\mathbf{Q}}$ is a torsion-free divisible group containing $c(=2^{\aleph_0})$ elements. Hence, $\hat{\mathbf{Q}}$ is isomorphic to the c-dimensional vector space over \mathbf{Q} . It immediately follows that $\hat{\mathbf{Q}} \cong \hat{\mathbf{Q}} \oplus \hat{\mathbf{Q}}$. By Theorem 1 $\hat{\mathbf{Q}} \neq \hat{\mathbf{Q}} \oplus \hat{\mathbf{Q}}$ since the dual groups \mathbf{Q} and $\mathbf{Q} \oplus \mathbf{Q}$ are not isomorphic. This proves 2(a).

For 2(b) consider $G_1 = L^1(0, 1)$ and $G_2 = L^2(0, 1)$. If G_1 were equal to G_2 as topological groups, then they would be equal as rational vector spaces, since they are torsion free. Continuity would then yield $G_1 = G_2$ as real topological vector spaces, which is obviously false. However, $G_1 \cong G_2$ as real vector spaces, hence as groups. And $G_1 \approx G_2$ by a theorem of Mazur [4].

For 2(c) it will be convenient to have a summary of the basic theory of p-adic groups. Details can be found in [3], especially § 16. A subgroup H of G is *pure* if and only if for every n > 0 every element of H which can be divided by n in G can already be divided by n in H. A subset is pure if and only if the subgroup generated by it is pure. A subset S of G is *independent* if and only if for every $T \subseteq S$ the subgroups generated by T and by S - T have only 0 in common.

Fix a prime number p. The *p*-adic topology on G is obtained by letting $\{p^n G : n \ge 0\}$ be the system of basic neighborhoods of 0. This topology is metrizable in the following manner. Define

 $h(x) = \sup\{n : x \text{ can be divided by } p^n \text{ in } G\},\$

called the *height* of x in G; $p^n G$ is the set of all elements of height at least n. The distance function $d(x, y) = [1 + h(x - y)]^{-1}$ induces the p-adic topology. From now on assume G has no elements of infinite height; then d is a genuine metric. In fact, d is non-Archimedean: $d(x, y) \leq \max\{d(x, y), d(y, z)\}$; so g_n is Cauchy if and only if $d(g_n, g_{n+1}) \to 0$. If H is pure in G, then $p^n H =$ $H \cap p^n G$; so the inclusion $H \subseteq G$ is a homeomorphic isomorphism.

Let G^* be the abstract completion of G as a metric group. G^* has no elements of infinite height, and G is pure in G^* . Thus, the *p*-adic metric on G^* coincides with the natural extension of the metric on G, and the inclusion $G \subseteq G^*$ is an isometric isomorphism. More generally, if G is a pure subgroup of a complete group C, then the inclusion $G \subseteq C$ extends to a (unique) homeomorphic isomorphism of G^* onto \overline{G} , the closure of G in C. Since d is non-Archimedean, every series $\sum_{0}^{\infty} p^j x_j$ converges in C. The closure of G consists of all sums $\sum_{0}^{\infty} p^j g_j, g_j \in G$.

The *p*-adic integers \mathbb{Z}_p is obtained as the completion of \mathbb{Z} and is a ring since \mathbb{Z} is a ring. \mathbb{Z}_p is homeomorphic to Cantor's middle-third set (see $[2, \S 2-15]$), and $\hat{\mathbb{Z}}_p$ is $\mathbb{Z}(p^{\infty})$, the subgroup of the circle consisting of all the (p^n) th roots of unity, for all *n*. It is often convenient to express \mathbb{Z}_p as the set of all formal sums $\sum_{0}^{\infty} a_j p^j$, $0 \leq a_j < p$, with addition and multiplication as for the integers (finite sums) in base *p*. A *p*-adically complete group is natural \mathbb{Z}_p -module, via

 $(\sum a_j p^j) x = \sum a_j (p^j x)$. Note that $-1 = (p - 1)(1 - p)^{-1} = (p - 1)(1 + p + p^2 + ...).$

Let G be complete and S be a maximal pure independent subset; that is, no subset of G properly containing S is both pure and independent. Then the subgroup H generated by S is dense in G; so $G \cong H^*$. Furthermore, if we partition S as $S_1 \cup S_2$ and let G_i be the closed subgroup of G generated by S_i , then $G = G_1 \oplus G_2$, an internal direct sum. That is, disjoint pure subgroups have disjoint closures.

LEMMA. Let $G = \prod_{i=1}^{n} G_{j}$, where each G_{j} is either \mathbb{Z}_{p} or $\mathbb{Z}(p^{n})$, the cyclic group of order p^{n} , for some n; assume that the order of G_{j} tends to ∞ as $j \to \infty$. Define $e_{n} \in G$ by $e_{n}(j) = 1$ for j = n and 0 for $j \neq n$. Then $S_{0} = \{e_{n} : n \geq 1\}$ is pure and independent. Let S be a maximal pure independent set containing S_{0} ; let H and K be the subgroups generated by S_{0} and $S - S_{0}$, respectively. Then

- (1) \overline{H} , the p-adic closure of H, contains the torsion subgroup of G;
- (2) $K \cong \sum_{c} \oplus \mathbb{Z}$, the (weak) direct sum of c copies of \mathbb{Z} ;
- (3) $G = \overline{H} \oplus \overline{K}$, an internal direct sum;
- (4) $\bar{K} \cong K^* \cong \mathbb{Z}_p^{\aleph_0}$.

Proof. S_0 is clearly pure and independent. Since G is complete, we know by the general theory that $H^* \cong \overline{H}$, $K^* \cong \overline{K}$, and $\overline{H} \oplus \overline{K} = G$. G_n is the closed subgroup generated by e_n ; therefore,

$$\bar{H} = \sum \oplus G_j = \left\{ g = \sum_{0}^{\infty} p^n g_n, g_n \in \sum \oplus G_j \right\}.$$

It is easy to see that this last group is

 $\{g: h(g(j)) \to \infty \text{ as } j \to \infty\}.$

If mg = 0, then g(j) = 0 when $G_j = \mathbb{Z}_p$ and mg(j) is divisible p^n when $G_j = \mathbb{Z}(p^n)$. Since $n \to \infty$ as $j \to \infty$, $g \in \overline{H}$.

Since \overline{K} is independent of \overline{H} , \overline{K} is torsion free. Therefore, $K \cong \sum \oplus \mathbb{Z}$, with the number of copies of \mathbb{Z} being the cardinal of $S - S_0$. Since S is infinite, H + K has the same cardinal as S. Since H + K is dense in G, (H + K)/pGis dense in G/pG, which is discrete. Therefore (H + K)/pG = G/pG. Now it is easy to see that $G/pG \cong \mathbb{Z}(p)^{\aleph_0} \cong \sum_c \oplus \mathbb{Z}(p)$, the latter isomorphism being a $\mathbb{Z}(p)$ -vector space isomorphism. Therefore there are c elements in H + K, hence in S, hence in $S - S_0$.

We already know $\overline{K} \cong K^*$, so we must finally see that $K^* \cong \mathbb{Z}_p^{\aleph_0}$. Apply the foregoing discussion to the case where every $G_j = \mathbb{Z}_p$. Then

$$H \cong \sum_{\mathbf{X}_0} \oplus \mathbf{Z} \text{ and } K \cong \sum_{c} \oplus \mathbf{Z};$$

thus, $K \cong K + H$. So $K^* \cong (K + H)^* \cong \overline{(K + H)} = \overline{K} + \overline{H} = G = \mathbb{Z}_p^{\aleph_0}$.

1518

ABELIAN GROUPS

The proof of Theorem 2c can now be completed. Let $G_1 = \prod_1^{\infty} \mathbb{Z}(p^n)$ with the product topology and $G_2 = G_1 \oplus \mathbb{Z}_p$. G_1 and G_2 are each homeomorphic to Cantor's middle-third set (see [2, § 2–15]). By the lemma $G_1 \cong \overline{H} \oplus \mathbb{Z}_p^{\aleph_0}$; so

$$G_2 = G_1 \oplus \mathbb{Z}_p \cong \overline{H} \oplus \mathbb{Z}_p^{\aleph_0} \oplus \mathbb{Z}_p \cong \overline{H} \oplus \mathbb{Z}_p^{\aleph_0} \cong G_1.$$

However, $\hat{G}_1 = \sum \oplus \mathbf{Z}(p^n)$ and $\hat{G}_2 = \hat{G}_1 \oplus \mathbf{Z}(p^\infty)$. $\mathbf{Z}(p^\infty)$ is a divisible subgroup of \hat{G}_2 , and \hat{G}_1 has no divisible elements other than 0. Hence $\hat{G}_1 \neq \hat{G}_2$; so $G_1 \neq G_2$.

References

- 1. S. Eilenberg and N. Steenrod, Foundations of algebraic topology (Princeton Univ. Press Princeton, 1952).
- 2. J. G. Hocking and G. S. Young, Topology (Addison-Wesley, Reading, Mass., 1961).
- 3. I. Kaplansky, Infinite abelian groups (U. of Michigan Press, Ann Arbor, 1954).
- S. Mazur, Une remarque sur l'homéomorphie des champs fonctionnels, Studia Math. 1 (1929), 83-85.
- 5. W. Rudin, Fourier analysis on groups (Wiley (Interscience), New York, 1962).
- 6. S. Scheinberg, Homeomorphic isomorphic abelian groups, Notices Amer. Math. Soc. II (1964), 464.

University of California, Irvine, Irvine, California