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HOMEOMORPHISM AND ISOMORPHISM OF
ABELIAN GROUPS

STEPHEN SCHEINBERG

An abelian topological group can be considered simply as an abelian group
or as a topological space. The question considered in this article is whether
the topological group structure is determined by these weaker structures.
Denote homeomorphism, isomorphism, and homeomorphic isomorphism by
&, =2, and =, respectively. The principal results are these.

TaeorREM 1. If Gy and G are locally compact and connected, then G = G2
implies Gi = Go.

THEOREM 2. (a) There are compact connected Gy and G, with G1 =2 G, and
Gi # Go.

(b) There are connected Gy and Gy with G1 = Ga, G1 = G, and G1 # Go.

(c) There are compact Gy and Gy with G1 = Gy G1 = G, and Gy # Go.

1. Proof of Theorem 1. The structure theorem for locally compact abelian
groups (Chapter 2 of [5]) gives G; = R" X K, where n; are non-negative
integers and K; are compact connected abelian groups. It is known that
H'(G,) =~ H'(K,;) = K,, where K, is the Pontryagin dual group of K; and
the cohomology is Cech cohomology. The isomorphism H(G;) = H'(K,) is
clear, since K, is a deformation retract of G;. The isomorphism H'(K;) = K,
is obtained in this manner (see [1, Chapters VIII-X]). K, is discrete and tor-
sion free, since K; is compact and connected. Write K; as a direct limit of
its finitely generated subgroups, each of which is isomorphic to Z*, for some #.
Then K; = (K,)” = the inverse limit of various tori T”(=2\” = (Z)"). Since
Cech cohomology is continuous on inverse limits and since H(7") is naturally
isomorphic to Z, it follows that H'(K;) = K,. Therefore, G; &~ G, implies
K, = K,, which implies K; = K,. The proof will be completed by a proof
that #1 = #s, which is an immediate consequence of the next proposition.

ProrpositionN. If K is a non-empty compact space and P = R* X K, then
the integer n is a topological invariant of P.

Proof. R. J. Milgram kindly provided me with a proof (oral) that # is the
smallest dimension for which the homology of P = P \U (o) is non-vanishing.
The proof below is based on showing this to be true for singular homology,
but by a different method.

There is a projection = of P onto.S* = R* U (0) : #(0) = 0, w(x, k) = x.
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Fix ¢ € K and define ¢ :S"— P by i(0) = o0, i(x) = (x, k) for x € R".
Since 77 is the identity on S", i, is the identity on H,(S") = Z; in particular,
H,(P) # 0.

To show that H,,(P) = 0 for m < n, it is sufficient to consider » = 1 and
to show that every f : S — P, m < n, is homotopic to the constant map 0.
Define C = f~%(c0) € S and g = =f. There is a continuous 2 : S — C - K
such that f(x) = (g(x), k(x)) for x ¢ C. It is sufficient to show that g ~ o0
relative to C, that is, that there is a continuous G(x, t) for which G(x, 0) =
g(x), G(x,1) = w0, and G(x,¢) = c0 when g(x) = . For then a homotopy
f=~o0 is given by F(x,t) = (G(x,t), h(x)) for x ¢ C and F(x,t) = oo for
x € C. Reducing the problem further, it is enough to find a homotopy of g,
relative to C, to a map g’ : S" — S” whose range omits a point of R*, since o
is a deformation retract of S* — x, for any x € R™.

Triangulate S™ and define L to be the subcomplex consisting of all simplices ¢
which meet C, together with all faces of such ¢. Let M be the subcomplex of
all simplices which do not meet C, together with all their faces. Then S™ =
|L|\U|M]| and C is contained in the interior of |L|. We can assume the triangu-
lation is so fine that x € |L| = |g(x)| > 2, where |c0o| = . Since g(|M]) is
compact in R”*, we can subdivide M sufficiently so that if ¢ is any simplex of
the subdivision N, g(|o|) has diameter less than 1.

Define g’ : S — R*\U (00) as follows. Let g’'(x) = g(x) for every x € |L]
and every vertex x of V. For any other x choose a simplex ¢ of N containing x;
let p be the largest face of ¢ contained in |L| and 7 be the complementary face.
By appropriately numbering the vertices of o, we can write

o= (o, ...,0), = (D, ...,7,), p = Vg1, ., )
Let (No, ..., \,) be the barycentric coordinates of x. If p is empty, put
g (x) = Ng(o) + ... + Ng(v,). Otherwise, let X =N+ ...+ N\, < 1 and
let ¥ be the point of p with coordinates (N,1/(1 — N), ..., N/(1 — N)).
Define

) =2 g0 ...+ N0 + (L= M.

It is easy to see that g’ is continuous. A homotopy g ~ ¢’, relative to C, is
given by H(x,t) = o for x € C, H(x,t) = 1g'(x) + (1 — t)g(x) for x ¢ C.

If x €|L|, |g/(x)] = lgx)| > 2. If ¢ is a simplex of N, then g’(s) has
diameter less than 1, being contained in the convex hull of g(|o|). If |¢| meets
|L|, this means |g’(x)| > 1 for all x € |o|. On the rest of S™, which is the rest
of N, ¢’ is piecewise linear; so its range is contained in a finite number of
m-dimensional subspaces of R". Therefore, g’ (S”) omits a point of R" of norm
less than 1.

2. ProofA of Theorem 2. Let Q be the rational numbers with the discrete
topology. Q, the dual of Q, is compact, connected, and torsion free, since Q is
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discrete, torsion free, and has no subgroup of finite index. Since Q is the direct
limit of groups isomorphic to Z, Q is the inverse limit of groups isomorphic to
the circle 7. Since T is divisible, Q is divisible. Thus, Q is a torsion-free divi-
sible group containing ¢(=2%9) elements. Hence, Q is 1somorph1c Lo the
¢c-dimensional vector space over Q. It immediately follows that Q Q @ Q
By Theorem 1 Q #= Q ® Q since the dual groups Q and Q ® Q are not
isomorphic. This proves 2(a).

For 2(b) consider G, = L1(0, 1) and G» = L2(0, 1). If G, were equal to G2
as topological groups, then they would be equal as rational vector spaces,
since they are torsion free. Continuity would then yield G, = G. as real
topological vector spaces, which is obviously false. However, Gi = G, as real
vector spaces, hence as groups. And G; = G, by a theorem of Mazur [4].

For 2(c) it will be convenient to have a summary of the basic theory of
p-adic groups. Details can be found in [3], especially § 16. A subgroup H of G
is pure if and only if for every n > 0 every element of H which can be divided
by 7z in G can already be divided by %z in H. A subset is pure if and only if
the subgroup generated by it is pure. A subset .S of G is independent if and only
if for every 1" C S the subgroups generated by 7" and by S — 7" have only 0
in common.

Fix a prime number p. The p-adic topology on G is obtained by letting
{p"G : n = 0} be the system of basic neighborhoods of 0. This topology is
metrizable in the following manner. Define

h(x) = sup{n : x can be divided by p" in G},

called the height of x in G; p"G is the set of all elements of height at least ».
The distance function d(x,y) = [1 4+ k(x — y)]~! induces the p-adic top-
ology. From now on assume G has no elements of infinite height; then d is a
genuine metric. In fact, d is non-Archimedean: d(x, y) < max{d(x, y), d(y, 2)};
so g, is Cauchy if and only if d(g,, g,+1) — 0. If H is pure in G, then p"H =
H M p"G; so the inclusion H C G is a homeomorphic isomorphism.

Let G* be the abstract completion of G as a metric group. G* has no elements
of infinite height, and G is pure in G*. Thus, the p-adic metric on G* coincides
with the natural extension of the metric on G, and the inclusion G C G* is an
isometric isomorphism. More generally, if G is a pure subgroup of a complete
group C, then the inclusion G C C extends to a (unique) homeomorphic
isomorphism of G* onto G, the closure of G in C. Since d is non-Archimedean,
every series » ¢ p’x; converges in C. The closure of G consists of all sums
20 pgs g5 € G

The p-adic integers Z, is obtained as the completion of Z and is a ring since
Zis a ring. Z, is homeomorphic to Cantor’s middle-third set (see [2, § 2-15]),
and L is Z(p*), the subgroup of the circle consisting of all the (p")th roots of
unity, for all . It is often convenient to express Z, as the set of all formal sums

5 a;p?, 0 < a; < p, with addition and multiplication as for the integers
(finite sums) in base p. A p-adically complete group is natural Z,-module, via
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X apHx = Y a;(px). Note that
—“1=p-0DA=p) =0 -DA+p+p*+...).

Let G be complete and S be a maximal pure independent subset; that is,
no subset of G properly containing .S is both pure and independent. Then the
subgroup H generated by S is dense in G; so G =2 H*. Furthermore, if we
partition .S as S; U S; and let G; be the closed subgroup of G generated by .S,
then G = G1 ® G., an internal direct sum. That is, disjoint pure subgroups
have disjoint closures.

LemMMA. Let G = OF G, where each G; is either Z, or Z(p"), the cyclic group
of order p*, for some n; assume that the order of G; tends to 00 as j — co. Define
e, € Gbye,(j) =1 forj=mnand 0 for j % n. Then Sy = {e, : n = 1} is pure
and independent. Let S be a maximal pure independent set containing So; let H
and K be the subgroups generated by Sy and S — Sy, respectively. Then

(1) H, the p-adic closure of H, contains the torsion subgroup of G;

(2) K> ,® Z, the (weak) direct sum of ¢ copies of Z;

(3) G = H ® K, an internal direct sum;

(4) K =~ K* =~ 7R,

Proof. Sy is clearly pure and independent. Since G is complete, we know by
the general theory that H* >~ H, K* ~ K, and H ® K = G. G, is the closed
subgroup generated by e,; therefore,

. o ©
It is easy to see that this last group is
{g:h(g(j)) >0 asj—0}.

If mg =0, then g(j) = 0 when G; = Z, and mg(j) is divisible p* when
G; = ZL(p"). Since n — 0 asj— 0, g € H.

Since K is independent of H, K is torsion free. Therefore, K >~ > @ Z,
with the number of copies of Z being the cardinal of S — S,. Since .S is infinite,
H + K has the same cardinal as S. Since H + K is dense in G, (H + K)/pG
is dense in G/pG, which is discrete. Therefore (H + K)/pG = G/pG. Now it
is easy to see that G/pG =X Z(p)Xo == >, ® Z(p), the latter isomorphism
being a Z(p)-vector space isomorphism. Therefore there are ¢ elements in
H + K, hence in S, hence in S — .S,.

We already know K =~ K*, so we must finally see that K* = ZXo. Apply
the foregoing discussion to the case where every G; = Z,. Then

Hg; ®Z and K=Y, ®Z;
0 c

thus, KK+ H.SoK*~ (K+ H*~(K+H) =K+ H=G = Z, .
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The proof of Theorem 2c¢ can now be completed. Let Gi = IIY Z(p") with
the product topology and G» = G1 @ Z,. G1 and G, are each homeomorphic
to Cantor’s middle-third set (see [2, § 2-15]). By the lemma G; = H @ Z,Xv;
S0

Go=G1@®Z,=ZH®LF @ Z,=2HD LK =G

However, GAlA = > ® Z(p") and Go=Gi®Z(p™). ZH™) is a divisible
subgroup of G», and G; has no divisible elements other than 0. Hence Gi # Gy;
so G1 # Gs.
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