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HOMEOMORPHISM AND ISOMORPHISM OF 
ABELIAN GROUPS 

STEPHEN SCHEINBERG 

An abelian topological group can be considered simply as an abelian group 
or as a topological space. T h e question considered in this article is whether 
the topological group s t ructure is determined by these weaker s t ructures . 
Denote homeomorphism, isomorphism, and homeomorphic isomorphism by 
œ , = , and = , respectively. T h e principal results are these. 

T H E O R E M 1. If Gi and G2 are locally compact and connected, then G\ œ G 2 
implies G\ = G2. 

T H E O R E M 2. (a) There are compact connected G\ and G2 with G\ = G[
2 and 

Gi 9^ Gi. 

(b) There are connected G\ and G2 with Gi tt G2j Gi = G2, and Gi 7^ G2. 
(c) There are compact Gi and G2 with G\ tt G2, Gi = G2, and G\ 9^ G2. 

1. P roof of T h e o r e m 1. The s t ructure theorem for locally compact abelian 
groups (Chapter 2 of [5]) gives Gt = RWi X Ku where nt are non-negative 
integers and Kt are compact connected abelian groups. I t is known t h a t 
Hl(Gi) ~ Hl(Ki) ^ K{, where K{ is the Pontryagin dual group of Kt and 
the cohomology is Cech cohomology. The isomorphism Hl(Gi) =Hl{Ki) is 
clear, since Kt is a deformation re t ract of Gt. The isomorphism Hl(Kt) ~ Kt 

is obtained in this manner (see [1, Chapters V I I I - X ] ) . Kt is discrete and tor­
sion free, since Kt is compact and connected. Wri te Kt as a direct limit of 
its finitely generated subgroups, each of which is isomorphic to Zn , for some n. 
T h e n Kt = {Kty = the inverse limit of various tori Tn(=Zn = (Z)n). Since 
Cech cohomology is continuous on inverse limits and since Hl(T) is natural ly 
isomorphic to Z, it follows tha t Hl(Ki) =Kt. Therefore, G± tt G2 implies 
Ki ~ K2, which implies Ki = K2. The proof will be completed by a proof 
t ha t n\ = n2, which is an immediate consequence of the next proposition. 

PROPOSITION. If K is a non-empty compact space and P = Kn X K, then 
the integer n is a topological invariant of P. 

Proof. R. J . Milgram kindly provided me with a proof (oral) t h a t n is the 
smallest dimension for which the homology of P = P U (00 ) is non-vanishing. 
T h e proof below is based on showing this to be true for singular homology, 
bu t by a different method. 

There is a projection T of P onto Sn = Rn U (co ) : ?r(00 ) = 00 , TT(X, k) = x. 
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Fix k G K and define i : Sn -* P by i(oo) = oo, i(x) = (x, k) for x G R \ 
Since 7ri is the ident i ty on 5 r ' , irj* is the ident i ty on Hn(S

n) = Z ; in part icular , 

T o show t h a t Hm(P) = 0 for m < n, it is sufficient to consider n ^ 1 and 
to show t h a t every / : Sm —» P , m < w, is homotopic to the cons tant m a p oo . 
Define C = f _ 1 (oo ) Ç S r a and g = 7r/. There is a continuous h : Sm — C -^ K 
such t h a t / ( x ) = (g(x), fe(#)) for x G C I t is sufficient to show t h a t g o^ oo 
relative to C, t h a t is, t h a t there is a continuous G(x, 2) for which G(x, 0) = 
g(x) , G(x, 1) = oo, and G(x, t) = co when g(x) = co. For then a homotopy 
/ ~ oo is given by F(x, t) = (G(x, / ) , &(#)) for x d C and P(x, /) = oo for 
x G C. Reducing the problem further, it is enough to find a homotopy of g, 
relative to C, to a m a p gf : 5 m —» 5* whose range omits a point of Rw, since oo 
is a deformation re t rac t of Sn — x, for any x ^ R " . 

Tr iangula te 5W and define L to be the subcomplex consisting of all simplices a 
which meet C, together with all faces of such a. Let M be the subcomplex of 
all simplices which do not meet C, together with all their faces. T h e n Sm = 
| L | U | M | and C is contained in the interior of \L\. We can assume the t r iangu­
lation is so fine t h a t x G \L\ => \g(x)\ > 2, where [oo | = co. Since g(|M"|) is 
compact in Rw, we can subdivide M sufficiently so t h a t if a is any simplex of 
the subdivision N, g(\a\) has diameter less t han 1. 

Define g' : Sm —* Rn W (oo ) as follows. Let gf (x) = g(x) for every x G \L\ 
and every vertex x of N. For any other x choose a simplex a of N containing x ; 
let p be the largest face of a contained in \L\ and r be the complementary face. 
By appropriately numbering the vertices of a, we can write 

a = (VQ, . . . , vp), T = (vo, . . . , vQ), p = (vq+lj . . . , vp). 

Let (Xo, . . . , \ ) be the barycentr ic coordinates of x. If p is empty , p u t 
gr (x) = Xog(^o) + . . . + \g(vP). Otherwise, let X = X0 + . . . + Xa < 1 and 
let y be the point of p with coordinates (X f f+i/(l — X), . . . , Xp/(1 — X)). 
Define 

g'(x) = ^g(Vo) + . . . + ^ g K ) + (1 - \)g(y). 

I t is easy to see t h a t g' is continuous. A homotopy g c^ g', relative to C, is 
given by H(x, t) = oo for x G C, i f (x, 0 = /g'(x) + (1 — t)g(x) for x G C. 

If x G |L| , Ig'OxOI = |g(x)l > 2. If a is a simplex of TV, then g'(a) has 
diameter less than 1, being contained in the convex hull of g(|<r|). If |<r| meets 
\L\, this means |g ' (x) | > 1 for all x G \<r\. On the rest of Sm, which is the rest 
of N, g' is piecewise linear; so its range is contained in a finite number of 
m-dimensional subspaces of Rw. Therefore, gf (Sm) omits a point of Rn of norm 
less than 1. 

2. Proof of T h e o r e m 2. Let 0 be the rat ional numbers with the discrete 
topology. 0» the dual of Q, is compact , connected, and torsion free, since 0 is 
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discrete, torsion free, and has no subgroup of finite index. Since 0 is the direct 
limit of groups isomorphic to Z, Q is the inverse limit of groups isomorphic to 
the circle T. Since T is divisible, Q is divisible. Thus , Q is a torsion-free divi­
sible group containing c( = 2Ko) elements. Hence, Q is isomorphic to the 
c-dimensional vector space over Q. I t immediately follows tha t 0 = 0 © 0 -
By Theorem 1 Q ^ Q © 0 since the dual groups 0 and 0 © 0 are not 
isomorphic. This proves 2 (a ) . 

For 2(b) consider Gi = L^O, 1) and G2 = L2(0, 1). If G\ were equal to G2 

as topological groups, then they would be equal as rational vector spaces, 
since they are torsion free. Continui ty would then yield G\ = G2 as real 
topological vector spaces, which is obviously false. However, G\ ~ G2 as real 
vector spaces, hence as groups. And G\ œ G2 by a theorem of Mazur [4]. 

For 2(c) it will be convenient to have a summary of the basic theory of 
p-adic groups. Details can be found in [3], especially § 16. A subgroup H of G 
is pure if and only if for every n > 0 every element of H which can be divided 
by n in G can already be divided by n in H. A subset is pure if and only if 
the subgroup generated by it is pure. A subset 5 of G is independent if and only 
if for every T Ç S the subgroups generated by T and by S — T have only 0 
in common. 

Fix a prime number p. The p-adic topology on G is obtained by letting 
{pnG : n ^ 0} be the system of basic neighborhoods of 0. This topology is 
metrizable in the following manner. Define 

h{x) = sup{n : x can be divided by pn in G}, 

called the height of x in G; pnG is the set of all elements of height a t least n. 
T h e distance function d(x, y) = [1 + h(x — y)^1 induces the ^>-adic top­
ology. From now on assume G has no elements of infinite height; then d is a 
genuine metric. In fact, d is non-Archimedean: d(x, y) S max{d(x, y), d(y, z)} ; 
so gn is Cauchy if and only if d(gn, gn+i) —> 0. If H is pure in G, then pnH = 
H C\ pnG; so the inclusion H Ç G is a homeomorphic isomorphism. 

Let G* be the abst ract completion of G as a metric group. G* has no elements 
of infinite height, and G is pure in G*. Thus , the £-adic metric on G* coincides 
with the natural extension of the metric on G, and the inclusion G Ç^ G* is an 
isometric isomorphism. More generally, if G is a pure subgroup of a complete 
group G, then the inclusion G Ç C extends to a (unique) homeomorphic 
isomorphism of G* onto G, the closure of G in G. Since ^ is non-Archimedean, 
every series Xo" pjXj converges in C. The closure of G consists of all sums 

T h e p-adic integers Zp is obtained as the completion of Z and is a ring since 
Z is a ring. Zp is homeomorphic to Cantor ' s middle-third set (see [2, § 2-15]) , 
and Zp is Z(pœ), the subgroup of the circle consisting of all the (pn)th roots of 
uni ty , for all n. I t is often convenient to express Zv as the set of all formal sums 
Y^o CLjpj, 0 ^ a,j < p, with addition and multiplication as for the integers 
(finite sums) in base p. A ^-adically complete group is natural Zp-module, via 
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Œ djpj)x = Y, ^j(pjx). Note that 

- 1 = (p- 1)(1 -p)-' = (p- 1)(1 +p + p* + . . . ) • 

Let G be complete and 5 be a maximal pure independent subset; that is, 
no subset of G properly containing 5 is both pure and independent. Then the 
subgroup H generated by 5 is dense in G ; so G = H*. Furthermore, if we 
partition 5 as 5i W 5*2 and let Gt be the closed subgroup of G generated by Sit 

then G = G\ © Gi, an internal direct sum. That is, disjoint pure subgroups 
have disjoint closures. 

LEMMA. Let G = ITf G3-, where each Gj is either Zv or Z(pn)y the cyclic group 
of order pn, for some n; assume that the order of G,} tends to GO as j —> co . Define 
en € G by en(J) = 1 for j = n and 0 for j •=£ n. Then So = \en : n §; 1} is pure 
and independent. Let S be a maximal pure independent set containing So; let H 
and K be the subgroups generated by So and S — So, respectively. Then 

(1) H, the p-adic closure of H, contains the torsion subgroup of G; 
(2) K ~J2c © Z, the (weak) direct sum of c copies of Z; 
(3) G = H © K, an internal direct sum; 
(4) K<^K* ^ Z / o . 

Proof. So is clearly pure and independent. Since G is complete, we know by 
the general theory that i7* ^ H, K* ^ K, and H © K = G. Gn is the closed 
subgroup generated by en; therefore, 

H = E © Gj = |g = Ç />"&, g„ € E ® G,}. 

It is easy to see that this last group is 

k : Mg(j)) ~ > 0 ° a s j - ^ o o } . 

If rag = 0, then g(j) = 0 when Gj = Zv and mg{j) is divisible £n when 
Gj = Z(pn). Since w —> oo as j —* GO , g £ i î . 

Since i£ is independent of H, K is torsion free. Therefore, K ~ J2 © Z, 
with the number of copies of Z being the cardinal of S — So. Since S is infinite, 
H -{- K has the same cardinal as 5. Since H + K is dense in G, (i? + K)/pG 
is dense in G/pG, which is discrete. Therefore (H + K)/pG = G/pG. Now it 
is easy to see that G/pG ^ Z(£)K o ^ £ c © Z(p), the latter isomorphism 
being a Z(p)-vector space isomorphism. Therefore there are c elements in 
H + K, hence in 5, hence in 5 — So. 

We already know Z ^ P , so we must finally see that K* ^ Zp
Ko. Apply 

the foregoing discussion to the case where every Gj = Zp. Then 

H^ E © Z and K^ ] £ © Z; 
No c 

thus, X ^ X + H. So X* ^ (X + H)* ^ (X + i ï ) = K + H = G = ZP*K 
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The proof of Theorem 2c can now be completed. Let G\ = ITf Z(pn) with 
the product topology and G2 = Gi 0 ZP. Gi and G2 are each homeomorphic 
to Cantor's middle-third set (see [2, § 2-15]). By the lemma Gi ^ H © Zp

Ko; 
so 

G2 = Gi 0 Z„ ^ 5 0 Z / ° 0 ZP^H ® Z** ^ Gi. 

However, & = £ 0 Z(£") and G2 = Gi 0 Z(pœ). Z(pœ) is a divisible 
subgroup of G2, and Gi has no divisible elements other than 0. Hence G\ 5̂  G2; 
so Gi ^ G2 . 
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