
BULL. AUSTRAL. MATH. SOC. 2 6 D 1 5 , 2 6 D 1 0 , 0 5 X 0 6

VOL. 74 (2006) [471-478]

BOUNDS FOR THE NORMALISED JENSEN FUNCTIONAL

SEVER S. DRAGOMIR

New inequalities for the general case of convex functions defined on linear spaces
which improve the famous Jensen's inequality are established. Particular instances in
the case of normed spaces and for complex and real n-tuples are given. Refinements of
Shannon's inequality and the positivity of Kullback-Leibler divergence are obtained.

1. INTRODUCTION

Jensen's inequality for convex function is one of the best known and extensively used
inequalities in various fields of Modern Mathematics. It is a source of many classical
inequalities including the generalised triangle inequality, the arithmetic mean-geometric
mean-harmonic mean inequality, the positivity of relative entropy in Information Theory,
Schannon's inequality, Ky Fan's inequality, Levinson's inequality and other results. For
classical and contemporary developments related to the Jensen inequality, see [3, 6, 7]
where further references are provided.

To be more specific, we recall that, if X is a linear space and C C X a convex
subset in X, then for any convex function / : C -» M and any Zi € C,rt ^ 0 for

k

i & {I.... ,k},k ^ 2 with £ rt — &k > 0 one has the weighted Jensen's inequality:

If / : / : C -4 R is strictly convex and rt > 0 for i e { 1 , . . . , A;} then the equality case
hods in (J) if and only if zx — • • • = zn.

The main aim of the present note is to provide an elementary refinement of this
classical inequality and point out a few applications in relation with some fundamental
inequalities in various fields of Mathematics.
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2. BOUNDS FOR THE NORMALISED JENSEN FUNCTIONAL

By Vn we denote the set of all nonnegative n-tuples (p i , . . . ,pn) with the property
n

that YIP' — 1- Consider the normalised Jensen functional

t = l

where / : C —> R is a convex function on the convex set C, x = (x\,... ,xn) € C" and
peVn.

The following result holds.

THEOREM 1 . If p, q e P n , ft > 0 /or each i 6 { 1 , . . . , n} then

(2.1) max {^ }.?„(/, x,q) ^ ^(/.x.p) ^ ^ { " J Jn(/,x,q) (^ 0).

PROOF: We give here a direct proof based on the Jensen inequality for appropriate

choices of the elements in (J). The reader is invited to try to find other proofs, eventually

simpler than this one.

Denote m := min^i^nlpj/gi} and observe that 0 ^ m ^ 1.

If we apply Jensen's inequality (J) for k = n + 1,

n = TO, rj+1 = (-£ - m j g j i ^ 0, j 6 { l , . . . , n }

for which
n+l

then we have

(2.2) mf

Since

and

( ) ] (
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hence by (2.2) we get the second inequality in (2.1).

Now, let M := max{Wgi} and observe that M ^ 1.

If we apply Jensen's inequality (J) for k = n + 1,

Zj = Xj, zn+l = ^PiXi, j e { 1 , . . . , n } ,
»=i

{l

for which
714-1

then we have

i = l

Since

:=1
n

-2^<lif(xi)- Jj

and

hence by (2.3) we deduce the first part of (2.1) and the proof is complete. D

If we consider for the uniform distribution u = (1/n,. . . , 1/n) the unweighted Jensen
functional

t=i ^ t=i

then we can state the following particular case of interest as well:

COROLLARY 1. lfp€Vn, then

(2.4) n max {p,} Jn( / ,x) ^ Jn( / ,x , p) ^ n min {p,} J n ( / , x) (^ 0).
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3. APPLICATIONS IN NORMED SPACES

Let [X, || • ||) be a real or complex normed linear space. It is well known that the
function fp : X -¥ R, /p(x) = IW|P,P > 1 is convex on X. Applying the results obtained
above one may easily state the following inequalities:

(3.1) max< —

j=\

PI n

and

(3.2) max {Pi}

for all p ^ 1.

If in (3.2) we choose p^ := l / | |x j | | , where Xj G X \ { 0 } , J 6 { 1 , . . . , n}, then we get

n iip-i n

>=1 II^IMI J j=l

(3.3)

We remark that, forp = 1 one may get out of the previous results the following inequalities
that are intimately related with the generalised triangle inequality in normed spaces:

(3.4) H
ti w n i n ii n

m m < —

(3-5) [
EI
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and

(3.6)

\

We note that the inequality (3.6) has been obtained in a different way by Kato, Saito
and Tamura in [4] where an analysis of the equality case for strictly convex spaces has
been performed as well.

REMARK 1. Let C be the field of complex numbers. If z = Re z + i Im z, then by
| • |p : C ->• [0, oo), p G [l,oo] we define the p—modulus of 2 as

I max{| Rez|, | Imz|} if p = 00,

| 1/p if p6[l,oo),

where |a|, a € R is the usual modulus of the real number a.
For p = 2, we recapture the usual modulus of a complex number, that is,

|z|2 = y/\RezY+\h^zf = |z|, 2 6 C.

It is well known that (C, | • |p), p 6 [1,00] is a Banach space over the real number field R.
It is obvious that all above inequalities hold for | • |p, the nonnegative n-tuples p, q

and the complex numbers z\,... ,zn. The details are omitted.

4. THE GEOMETRIC MEAN-ARITHMETIC MEAN INEQUALITY

Although the inequality between the arithmetic and geometric means

a+ b 1—
- y - ^ Vab, a,b^0;

was probably known in antiquity, the general result for weighted means seems to have
first appeared in print in the nineteenth century, in the notes of Cauchy's course given
at the Ecole Royale in 1821, page 315.

If p 6 P n , a > 0 and

i=l t= l

then

(4.1)
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If all pi > 0, then the equality case holds in (4.1) if and only if a is constant, that is, all
the components are equal to a constant k € R.

For classical and recent results related to the GA-inequality, see [1, Chapter II].

Applying the inequality (2.1) for the choices / : (0, oo) —>• K, f(x) = — In a; one can
state the following inequality

"fo/«} An{p,a)
" G ( )

If, for the uniform distribution u = (1/n,. . . , 1/n j , we consider

An(a) = An(u, a), GB(a) = GB(u, a),

then we have

(4-3) ^ ( V ^ G ( ) ^ l G ( ) ;
Since there is the obvious relation between the arithmetic mean and the harmonic mean

where I /a := (1/ai , . . . , l/an) and ai are all positive, one can derive a similar inequality
between the harmonic and geometric means. The details are omitted.

5. INEQUALITIES FOR SHANNON'S ENTROPY

Let AT be a random variable with the range R = { i t , . . . ,xn} and the probability

distr ibution pi,... ,pn fa > 0, i = l,...,n). Define the Shannon entropy by

H(X) := -

The following theorem is well known in the literature and concerns the maximum
possible value of H(X) in terms of the size of R [5, p. 27].

THEOREM 2 . Let X be defined as above. Then

(5.1) 0 ^ H{X) < Inn.

Furthermore, H(X) = 0 if and only ifpi — 1 for some i and H(X) = Inn if and only if
Pi = 1/n for all i 6 { 1 , . . . , n).

This fundamental result may be improved as follows:
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PROPOSITION 1 . Let X be defined as above. If pi > 0 for each i G { 1 , . . . ,n},
then

PROOF: It follows from Corollary 1 for the choices /(£) = — \nt, Xi = \/pi and
appropriate elementary calculations. The details are omitted. 0

6. INEQUALITIES FOR THE RELATIVE ENTROPY

The relative entropy is a measure of the distance between two distributions. In
statistics, it arises as an expected logarithm of the likelihood ratio. The relative entropy
Z?(p||q) is a measure of the inefficiency of assuming that the distribution is q when
the true distribution is p. For example, if we knew the true distribution of the random
variable, then we could construct a code with average description length H(p). If, instead,
we used the code for a distribution q, we would need H(p) + Z)(p||q) bits on the average
to describe the random variable [2, p. 18].

DEFINITION 1: The relative entropy or Kullback-Leibler distance between two
probability distributions p and q is defined by

In the above definition, we use the convention (based on continuity arguments) that

0 ln(0/g) = 0 and p ln(p/0) = oo.

It is well-known that relative entropy is always non-negative and is zero if and only if

p = q. However, it is not a true distance between distributions since it is not symmetric

and does not satisfy the triangle inequality.

The following theorem is of fundamental importance [2, p. 26].

THEOREM 3 . (Information Inequality) Let p , q, be two probability distribu-

tions. Then

(6.1) £>(p||q) ^ 0

with equality if and only if

(6.2) Pi = qi forallxe{l,...,n}.

This fundamental result may be improved as follows.
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PROPOSITION 2 . Let p ,q , be two probability distributions. Define the x2 di-
vergence of p , q by the quantity

If Pi, qi>0 for all x € { 1 , . . . , n), then

- ln(X
2(p,q) + l)]

^m { | } [fl(q||p) - ln(X
2(p, q) + l)] (> 0).

PROOF: The proof follows by Theorem 1 on choosing f(t) = - lni, Xi = qi/pt and
performing appropriate elementary calculations. The details are omitted. D
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