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Direct numerical simulations are performed to investigate a stratified shear layer at high
Reynolds number (Re) in a study where the Richardson number (Ri) is varied among
cases. Unlike previous work on a two-layer configuration in which the shear layer resides
between two layers with constant density, an unbounded fluid with uniform stratification
is considered here. The evolution of the shear layer includes a primary Kelvin–Helmholtz
shear instability followed by a wide range of secondary shear and convective instabilities,
similar to the two-layer configuration. During transition to turbulence, the shear layers
at low Ri exhibit a period of thickness contraction (not observed at lower Re) when the
momentum and buoyancy fluxes are counter-gradient. The behaviour in the turbulent
regime is significantly different from the case with a two-layer density profile. The
transition layers, which are zones with elevated shear and stratification that form at the
shear-layer edges, are stronger and also able to support a significant internal wave flux.
After the shear layer becomes turbulent, mixing in the transition layers is shown to be more
efficient than that which develops in the centre of the shear layer. Overall, the cumulative
mixing efficiency (EC) is larger than the often assumed value of 1/6. Also, EC is found
to be smaller than that in the two-layer configuration at moderate Ri. It is relatively less
sensitive to background stratification, exhibiting little variation for 0.08 � Ri � 0.2. The
dependence of mixing efficiency on buoyancy Reynolds number during the turbulence
phase is qualitatively similar to homogeneous sheared turbulence.

Key words: stratified flows, stratified turbulence

1. Introduction

Turbulent mixing in the environment is a combination of both shear-driven and
buoyancy-driven processes. In flows with a stable density gradient, buoyancy tends to
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inhibit shear instabilities and shear-driven turbulence. Quantifying the rate of mixing has
important implications in large-scale ocean and atmospheric models. Field observations
and general circulation models rely heavily on the parametrization of mixing efficiency
(E) to quantify or prescribe the effect of turbulence, where E is understood to be the
ratio of the gain in the background potential energy over the sum of the gain plus the
dissipation rate of turbulent kinetic energy. For example, some ocean observations use E to
estimate turbulent diffusivity (Kρ) and thereby vertical heat flux, while ocean models use
E for subgrid turbulence closure (Jayne 2009; Whalen et al. 2015; Gregg et al. 2018). An
accurate description of E is key in data interpretation and model prediction and the present
study aims to improve our existing understanding of the mixing processes in stratified shear
flows in nature and engineering.

One popular model is that suggested in Osborn (1980) in which the turbulent diffusivity
is simply parameterized as Kρ = Γ κReb, where κ is the molecular diffusivity, Γ =
E/(1 − E) is the flux coefficient (similar to the flux Richardson number) and Reb = ε/νN2

is the buoyancy Reynolds number defined using the turbulent dissipation rate (ε) and the
squared buoyancy frequency (N2). Here, Osborn’s formula is interpreted in the context of
irreversible mixing (Ivey & Imberger 1991; Venayagamoorthy & Koseff 2016). Osborn
(1980) suggested an upper-bound value of 0.2 for Γ . The validity of Osborn’s model
and, more specifically, the question of whether Γ has a fixed value, have received much
attention. It has been shown that the flux coefficient Γ varies with Prandtl number
(Pr), buoyancy Reynolds number, turbulent Froude number (Fr = ε/NK where K denotes
turbulent kinetic energy) and Richardson number (Ri) (Strang & Fernando 2001; Shih et al.
2005; Mater & Venayagamoorthy 2014; Salehipour & Peltier 2015; Maffioli, Brethouwer
& Lindborg 2016; Venayagamoorthy & Koseff 2016).

For homogeneous stratified shear turbulence in which shear and stratification are
uniform over a turbulent region, Shih et al. (2005) proposed three regimes of mixing:
a diffusive regime in which Kρ = κ for Reb < 7, an intermediate regime in which
Kρ = 0.2νReb for 7 < Reb < 102 (similar to Osborn’s model) and an energetic regime
where Kρ = 2νRe1/2

b for Reb > 102. In contrast, Portwood, de Bruyn Kops & Caulfield
(2019) argued that the flux coefficient Γ does not vary over a wide range of Reb and
the regimes seen in Shih et al. (2005) are possibly due to transient effects. Salehipour
et al. (2016) and Mashayek et al. (2017b) proposed two regimes for turbulence in a mixing
layer with a two-layer density profile: a buoyancy-dominated regime in which Kρ ∝ Re3/2

b

for Reb < Re∗
b and a shear-dominated regime where Kρ ∝ Re1/2

b for Reb > Re∗
b, where

Re∗
b ≈ 100–300 is the buoyancy Reynolds number at which the mixing efficiency is at its

maximum. Stratification in the natural environment is ubiquitous. It is presently unknown
how mixing physics in such an environment, where the mixing layer is exposed to a
uniform stratification outside the sheared zone, differs from the canonical problems of
homogeneous stratified shear flow and two constant-density layers.

In the past two decades there has been a sustained effort to more accurately quantify
mixing using three-dimensional, turbulence-resolving direct numerical simulations
(DNS). Smyth & Moum (2000) and Caulfield & Peltier (2000) performed some of the first
DNS of three-dimensional turbulence in a stratified shear layer to address the importance
of shear-driven mixing. Since then, due to the benefits of increased computational power,
DNS have been able to examine the rate of mixing at higher Reynolds numbers, most
notably in the recent work by Mashayek & Peltier (2013), Salehipour, Peltier & Mashayek
(2015), Salehipour & Peltier (2015) and Kaminski, Caulfield & Taylor (2017). Some
significant results regarding Γ from these simulations are: (1) Γ has a significantly
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higher value than 0.2, (2) Γ peaks at an intermediate value of stratification where
secondary shear instabilities are the richest, and (3) the value of Γ varies significantly
with Reynolds number, Prandtl number, Richardson number and even the amount of
pre-existing turbulence in the shear layer (Brucker & Sarkar 2007; Kaminski & Smyth
2019).

Nearly all DNS of stratified layers at high Reynolds numbers use a hyperbolic tangent
profile for both velocity and density in order to represent a shear layer that develops
between two layers having different but constant density. In the oceans and atmosphere,
it is typical that the stratification extends beyond the region of shear such that a spatially
extensive stratification is a more appropriate representation of the density gradient than
the spatially compact stratification of the two-layer profile. We are therefore motivated to
simulate the evolution of a shear layer in fluid with space-filling uniform stratification.

There are intrinsic differences between these two configurations. First, the profiles
of shear and stratification evolve similarly during the evolution of shear instabilities in
the two-layer configuration since both have similar initial hyperbolic tangent profiles.
However, stratification can evolve differently from shear in a uniformly stratified fluid. For
the same value of Ri at the centre of the shear layer, the density difference across the layer
is larger in the case with uniform stratification. In other words, the average value of the
stratification is larger, leading to differences in the evolution of turbulence. Furthermore,
ambient stratification, when sufficiently strong, can support propagating internal waves
that transport momentum and energy into the far field. For example, in the problem of
a moderately stratified shear layer adjacent to a pycnocline where the pycnocline N was
varied in a DNS study, Pham, Sarkar & Brucker (2009) show that far-field internal waves
are supported for a sufficiently large value of pycnocline N. At low Re = 1280 the internal
wave flux is shown to be as large as 17 % of the turbulent production generated in the
shear layer. The wave flux reduces as Re increases to 5000 (Pham & Sarkar 2010). Recent
DNS of shear layers with uniform stratification in Watanabe et al. (2018) at Re = 6000
reveal interesting turbulent dynamics at the turbulent/non-turbulent interface (TNTI). The
authors also found that at low Ri, although internal waves do not propagate far from the
shear layer, the wave flux measured at the TNTI can be comparable to the dissipation
generated inside the shear layer. The DNS of Fritts et al. (2014) at a Reynolds number
up to 10 000 indicate the development of secondary instabilities during the transition to
turbulence, some of which are similar to those observed in the DNS with a two-layer
density profile in Mashayek & Peltier (2013). However, it is unclear whether the secondary
instabilities in Fritts et al. (2014) would enhance mixing efficiency. The effect of ambient
stratification (external to the sheared zone) on the mixing rate is yet to be studied at high
Reynolds number.

The present study seeks to investigate stratified turbulence and mixing at high Reynolds
number in a shear layer with spatially compact shear using a density profile of space-filling,
constant stratification. In addition to studying the route to turbulence and diagnostics of
mixing, the present results are compared with the mixing parameterizations proposed by
Shih et al. (2005), Salehipour et al. (2016), Mashayek et al. (2017b) and Osborn (1980). We
address the following questions. (1) How does the evolution of the turbulent shear layer
with uniform stratification differ from the two-layer configuration at high Re?. (2) Does
the effect of uniform stratification enhance or reduce the mixing efficiency with respect to
that which has been observed in prior studies of homogeneous stratified shear turbulence
or mixing layer simulations with a two-layer density profile?

Besides the mixing efficiency in stratified shear flows, the present study also focuses on
the dynamics of the transition layer (TL) which develops at the edges of the shear layer
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Figure 1. Sketch of the stratified shear layer with constant stratification.

during transition to fully three-dimensional turbulence. Previous simulations have shown
TL with enhanced shear and stratification in the shear layer with uniform stratification
(Pham et al. 2009; Watanabe et al. 2018). Simulations of the two-layer configuration
also show formation of a TL although the enhancement of shear and stratification is
significantly weaker (Mashayek & Peltier 2013). How the uniform stratification of the
ambient can impact the development of the TL as well as the turbulence and mixing
therein remains to be answered. Furthermore, the implications of the TL to mixing
parameterizations requires thorough investigation.

This work is organized as follows. In § 2 the initialization and numerical formulation
of the stratified shear layer is introduced. Section 3 provides a discussion of the evolution
of the shear layer with specific emphasis on instabilities and subsequent turbulence. The
structure of the TL, its turbulence and the wave flux across it are examined in § 4. A
discussion of the mixing efficiency and its parameterization follows in § 5. The findings
are discussed in § 6 and conclusions are drawn.

2. Formulation

2.1. Stratified shear layer
The problem of a temporally evolving stratified shear layer with uniform stratification is
considered. A sketch of the shear layer with relevant initialization parameters is shown in
figure 1. The flow is constructed with a streamwise velocity field given by

〈u∗〉(z∗, t = 0) = −�U∗

2
tanh

(
2z∗

δ∗
ω,0

)
, (2.1)

where �U∗ denotes the velocity difference across the shear layer and δ∗
ω,0 =

�U∗/(d〈u∗〉/dz∗)max is the initial vorticity thickness. Note that a superscript ∗ denotes
a dimensional quantity while the 〈·〉 operator indicates horizontal averaging.

Motivated by atmospheric and ocean observations in which stratification extends beyond
regions of shear (Fritts 1982; Smyth, Moum & Caldwell 2001), this work utilizes a
spatially extensive stratification. The density profile is initialized by a time-invariant
uniformly stratified background density profile (ρ∗

b ). The background buoyancy frequency
of the ambient fluid (N∗

0
2) has a constant value given by N∗

0
2 = −(g∗/ρ∗

0 ) dρ∗
b/dz∗, where

g∗ is gravity and ρ∗
0 is a reference density.
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Ri Lx Ly Lz Lz,sl Nx Ny Nz Δ(×10−3) Δ/ηmin k0 δTL

0.04 12.96 6.48 32.32 −3 � z � 3 2304 1152 1408 5.62 2.2 0.97 0.84
0.08 11.86 5.93 32.18 −2 � z � 2 2048 1024 1024 5.79 2.0 1.06 0.81
0.12 11.12 5.56 32.18 −2 � z � 2 1920 960 1024 5.79 1.9 1.13 0.69
0.16 10.13 5.07 32.5 −2 � z � 2 1792 896 1024 5.65 1.9 1.24 0.59
0.2 9.52 4.76 32.5 −2 � z � 2 1536 768 1024 6.18 1.8 1.32 0.38

Table 1. Parameters used to construct the computational domain: domain length (Lx, Ly, Lz), region with
uniform grid spacing in the vertical direction (Lz,sl), number of grid points (Nx, Ny, Nz), grid spacing in the
shear layer (Δ), grid spacing normalized by the smallest Kolmogorov length scale and peak wavenumber k0 of
the energy spectrum used to generate the initial velocity perturbations. The thickness of the upper TL (δTL) at
late time is given in the last column.

The governing equations for this problem are the three-dimensional Navier–Stokes
equations for an unsteady, incompressible flow with the Boussinesq approximation. A
Cartesian frame of reference is used to represent the streamwise, spanwise and vertical
coordinates such that spatial orientation and velocities are given by xi = (x, y, z) and
ui = (u, v, w), respectively. The density equation is solved for the non-dimensional density
deviation (ρ̃) from the uniform background. Similarly, the pressure (p), which denotes
the deviation from the pressure which is in hydrostatic balance with the background
density (ρ∗

b ), is solved for. The governing equations are non-dimensionalized using
the following reference quantities: velocity difference (�U∗), initial vorticity thickness
(δ∗

ω,0) and a reference value for density deviation (�ρ∗ = δ∗
ω,0 dρ∗

b/dz∗). The resulting
non-dimensional equations are given by

∂uj

∂xj
= 0, (2.2a)

∂ui

∂t
+ ∂(ujui)

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
− Riρ̃gi, (2.2b)

∂ρ̃

∂t
+ ∂(ujρ̃)

∂xj
= 1

Re Pr
∂2ρ̃

∂xj∂xj
− w. (2.2c)

Non-dimensional parameters, namely the initial Reynolds number (Re), initial gradient
Richardson number at the centre of the shear layer (Ri) and Prandtl number (Pr) are as
follows:

Re = �U∗δ∗
ω,0

ν∗ , Ri = N∗2
0 δ∗2

ω,0

�U∗2 , Pr = ν∗

κ∗ . (2.3a–c)

Here, ν∗ and κ∗ are the kinematic viscosity and thermal diffusivity, respectively.

2.2. Numerical methods and simulation set-up
Five DNS cases are simulated as listed in table 1. All cases have Re = 24 000 and Pr =
1 while the strength of stratification is varied such that Ri = [0.04, 0.08, 0.12, 0.16, 0.2]
encompasses a wide range of background stability from weakly stratified at Ri = 0.04 to
strongly stratified at Ri = 0.2.

The numerical methods employed to solve the governing equations are similar to
DNS of our previous work (Brucker & Sarkar 2007; Pham & Sarkar 2010; VanDine,
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Chongsiripinyo & Sarkar 2018). The Williamson low-storage, third-order Runge–Kutta
method is employed for time advancement while the discretization of spatial derivatives
is achieved using a second-order, central finite difference scheme. The Poisson equation
for pressure is solved using a parallel multigrid solver. The streamwise and spanwise
directions have periodic boundary conditions. In the vertical direction, vertical velocity
has a homogeneous Dirichlet boundary condition while homogeneous Neumann boundary
conditions are enforced for horizontal velocity components, density deviation and
pressure. In a sponge region near the vertical boundaries in the regions z > 10 and
z < 10 (sufficiently far from the shear layer), a Rayleigh damping function gradually
relaxes the density and velocities to their corresponding boundary values in order to damp
propagating fluctuations and prevent reflections of features such as internal waves which
have propagated far from the shear layer.

For this work, an isotropic grid is used in the central region of the shear layer with
a grid spacing of �x = �y = �z = Δ as indicated in table 1. The streamwise and
spanwise grids have uniform spacing while mild stretching is used in the vertical outside
the shear layer. Throughout the entire grid, the grid spacing is less than 2.2η, where
η = (ν3/ε)1/4 (ε denotes turbulent kinetic energy dissipation rate) is the Kolmogorov
length scale, thus indicating appropriate resolution for capturing small-scale fluctuations.
The number of grid points in the streamwise, spanwise and vertical directions are
given by (Nx, Ny, Nz) and the domain extent is given by (Lx, Ly, Lz) as denoted in
table 1. The computational domain is large enough to accommodate two wavelengths
of the most unstable Kelvin–Helmholtz (K–H) mode in the streamwise direction and
one wavelength in the spanwise direction. The sufficiently large spanwise domain is
required in order to accurately capture the transition from two-dimensional K–H shear
instability to three-dimensional turbulence and also to ensure good convergence of
statistics. The spanwise domain size is about two times and the number of grid points
is about four times larger than in the cases of Mashayek, Caulfield & Peltier (2013)
with the equivalent Re. Due to the different characteristic length and velocity scales used
in the non-dimensionalization of the governing equations, the Reynolds number of 24 000
in the present study is equivalent to Re = 6000 in Mashayek & Peltier (2013). We choose
this value of Re since their results suggest the influence of secondary instabilities on the
rate of mixing is most profound when Re is at or larger than this value.

The flow is initialized using velocity perturbations for which the broadband spectrum is
given by E(k) ∝ k4 exp[−2(k/k0)

2], where the peak value of E(k) is found at k0 (values
given in table 1) corresponding to the fastest growing mode of the K–H instability. The root
mean square (r.m.s.) of each velocity component has a peak of 0.1 % �U at the centre of
the shear layer. The following shape function, F(z) = exp[−(z/δω,0)

2], is used to confine
the fluctuations to inside the shear layer.

2.3. Linear stability analysis of K–H shear instability
In order to construct the computational grid, linear stability analysis (LSA) is performed to
search for the fastest growing normal mode of the K–H shear instability. Stability theory of
a stratified shear layer with a two-layer hyperbolic density profile suggests a condition of
Ri < 0.25 for the shear instability to develop. The growth rate (σ ) of the fastest growing
mode (FGM) is significantly reduced as Ri increases toward 0.25 in an analysis (Hazel
1972) which assumes that the fluid is inviscid and that the shear layer is located inside an
infinite domain.
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Here, the LSA is performed, taking into account the effect of viscosity, diffusivity and a
finite domain, to examine the FGM when the shear layer is uniformly stratified. The theory
and numerical implementation of the LSA is given in Smyth, Moum & Nash (2011). In the
LSA, the Reynolds number, Prandtl number and domain size (Lz) have the same values as
in the DNS. The grid spacing is �z = 0.025. Free-slip and fixed buoyancy conditions are
used at the top and bottom boundaries. The LSA of the two-layer profile is also performed
for comparison.

Figure 2(a,b) contrasts the mean profiles of the squared buoyancy frequency (N2),
squared rate of shear (S2) and gradient Richardson number (Rig) in the two-layer shear
layer to those in the linearly stratified shear layer. The same level of stratification at the
centre of the shear layer, N2 = 0.12, is used. Away from the centre, N2 decreases to zero
in the two-layer case while it remains constant in the other case. As a result, Rig in the
two-layer case is smaller than that in the case with linear stratification throughout the
shear layer except at the centre where Rig = 0.12 in both cases. With the same amount of
mean kinetic energy, e.g. the same velocity profile, the potential energy barrier inside the
shear layer is significantly higher in the case with linear stratification, thereby reducing the
growth rate of the K–H shear instability.

Results of the LSA are shown in figure 2(c,d). In the two-layer case, the growth rate
(σ ) is similar to that of Hazel (1972) in the region with low k and Ri. However, as k and
Ri increase, the growth rate becomes slightly smaller than the value from Hazel (1972)
due to the effect of viscosity, diffusivity and a finite domain. The location of FGMs
(marked by a white line) in kδω,0 − Ri space indicates a significant difference between
the two configurations. While the wavenumber of the K–H modes varies little with Ri in
the two-layer case, the K–H modes show a larger value of k and thus a shorter wavelength
as Ri increases in the case with uniform stratification. Figure 2(e, f ) contrasts the growth
rate between the two cases for the five values of Ri used in the DNS to be discussed. At the
same Ri, the growth rate of the K–H mode is higher in the two-layer case which suggests
the K–H shear instability in the case with uniform stratification is weaker.

2.4. Statistical analysis
The velocity, density and pressure fields are decomposed using Reynolds decomposition
into mean (horizontal average) and fluctuating components denoted by 〈〉 and ′,
respectively. In later discussions, the turbulent kinetic energy (TKE) budget will be used
to examine the routes to turbulence and is given by

DK
Dt

= P − ε + B − ∂T3

∂z
, (2.4)

with TKE (K), production (P), dissipation (ε), buoyancy flux (B) and the transport term
(T3) specified as

K = 1
2

(
〈u′〉2 + 〈v′〉2 + 〈w′〉2

)
,

P = −〈u′w′〉∂〈u〉
∂z

, ε = 2
Re

〈s′
ijs

′
ij〉, s′

ij = 1
2

(
∂u′

i
∂xj

+
∂u′

j

∂xi

)
,

B = −Ri〈ρ′w′〉, T3 = 1
2
〈w′u′

iu
′
i〉 + 1

ρ0
〈w′p′〉 − 2

Re
〈u′

is
′
3i〉.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)
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Figure 2. Effect of stratification on flow instability using LSA. Plots (a,c,e) correspond to the two-layer density
profile and (b,d, f ) to the linear density profile with uniform N2. (a,b) Initial profiles of S2, N2 and Rig. (c,d)
Contours of growth rate (σ ) as a function of Ri and wavenumber (k). (e, f ) Plots showing σ (k) in the five
simulated Ri cases. Dashed magenta lines in (c,d) mark the stability boundary, Ri = k(1/2 − k/4) (Hazel 1972)
and Ri = k2(1/4 − k2/16) (Drazin 1958), respectively. Solid white lines in (c,d) indicate the location of the
FGMs of the K–H instability.

In order to calculate mixing efficiency, numerous studies have used a method which
quantifies available and background potential energy by sorting the density field (Winters
et al. 1995). This method produces a bulk value of the mixing efficiency which is
representative of the entire shear layer. Instead, we use the dissipation of the density field
as a surrogate to the change in background potential energy such that the mixing efficiency
(E) is given by

E = ερ

ε + ερ

, ερ = 1
Re Pr

g2

ρ2
0N2

0

〈
∂ρ′

∂xi

∂ρ′

∂xi

〉
, (2.6a,b)
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where ερ is the dissipation rate of turbulent available potential energy (TAPE =
g2 〈ρ′2〉 /2ρ2

0N2
0 ). Scotti & White (2014) have demonstrated that this method of computing

the mixing efficiency produces accurate results for turbulence in a continuously stratified
fluid. Furthermore, this method is able to provide the spatial variability of the mixing
efficiency throughout the shear layer as opposed to a single bulk value.

3. Flow evolution

3.1. Routes to turbulence: K–H shear instability and secondary instabilities
In a shear layer with inflectional shear it is understood that there is a strong primary
instability in the form of a K–H shear instability. This instability manifests as a series of
vortices which roll up over time (termed billows) and are connected by vorticity filaments
(termed braids). As the K–H billows evolve, secondary instabilities develop throughout the
shear layer (Mashayek & Peltier 2012a,b; Thorpe 2012; Arratia, Caulfield & Chomaz 2013;
Salehipour et al. 2015). In the following discussion we use the visualization of density and
vorticity fields to illustrate that, as in the shear layer between two layers of constant density,
the continuously stratified shear layer exhibits rich dynamics of secondary instabilities.
In the present study we do not perform LSA for each type of instability since they are
already discussed in depth in previous studies. Instead, we focus on the effect of the
continuous stratification and the resulting mixing driven by the secondary instabilities.
Our identification of secondary instabilities is based on visual inspection and comparison
with previous work in the two-layer problem. It is also noted that pairing of K–H billows is
not found at the high Re of the present study. At sufficiently high Re, secondary instabilities
break down the billows before their co-rotation and pairing as was found by Pham & Sarkar
(2010) when Re was increased to 5000 relative to their earlier work at Re = 1280.

The Ri = 0.04 case is used to outline the general development of the stratified
shear layer, and differences between the various Ri cases are discussed thereafter.
Figure 3 shows cross-sectional snapshots of the density (ρ) and spanwise vorticity (ω2 =
∂u/∂z − ∂w/∂x). Specific snapshots in time are shown where the time (t) represents the
non-dimensional time, S∗

0t∗, where S∗
0 is the initial centreline shear. The primary shear

instability is evident in figure 3(a) in the form of two K–H billows. As the billows grow
vertically, they extract kinetic energy from the shear layer. Once they reach the maximum
vertical extent, the K–H billows spread in the streamwise direction and deform into
elliptical shape similar to the observation by Arratia (2011). A spanwise variability also
develops early to further disrupt the flow as indicated in the spanwise snapshots of ρ and
ω in figure 3(a). The billow continues to develop horizontal motions and r.m.s. spanwise
velocity fluctuations (not shown) increase in this case. Note that there is no broadband
turbulence as yet in the development. As small-scale fluctuations are allowed to develop
due to low viscosity (high Re), the billows begin to break down by secondary instabilities.
A counter-rotating vortex pair denoting secondary convective instability (SCI) is seen at
(x, z) ≈ (7, 0) in the streamwise snapshot of ω2 in figure 3(b). Multiple occurrences of SCI
develop in the eyelids of the two billows. The spanwise snapshot of ω2 suggests the SCI
is highly three dimensional unlike the two-dimensional K–H billows with little spanwise
variability seen at the earlier time. Strong vortices which develop in the centre of the billow
cores at (x, z) ≈ (3, 0) and (8,0) also contribute towards transition to turbulence. In the
DNS with uniform stratification at Re = 10 000 and Ri = 0.05, Fritts et al. (2014) observed
that secondary instabilities arise initially in the eyelid and the resulting turbulence spreads
inward into the core. Here, we observe growth of SCI in the eyelids and strong vortices
in the billow cores at the same time. Eventually, the breaking billows become localized
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Figure 3. Cross-sectional snapshots of the density (ρ) and spanwise vorticity (ω2) fields for the Ri = 0.04 case
at (a) t = 59, (b) t = 83 and (c) t = 86. From left to right, the columns show a streamwise cross-section of ρ at
y = Ly/2, spanwise cross-section of ρ along the dotted line shown in the first column, streamwise cross-section
of ω2 at y = Ly/2 and a spanwise cross-section of ω2 along the dotted line shown in the third column. In this
plot and henceforth, x, y and z are noted to be the streamwise, spanwise and vertical coordinates, respectively,
made non-dimensional using δω,0.

patches of turbulence with the majority of overturning occurring at the core of each billow
as shown in figure 3(c).

The flow evolves differently at moderate stratification (0.08 � Ri � 0.16) with the K–H
billows exhibiting smaller vertical growth followed by faster spreading in the streamwise
direction and deformation into elliptical billows as illustrated in figure 4. Unlike the Ri =
0.04 case in which the SCI initiates the transition to three-dimensional turbulence, the
streamwise snapshots of ρ and ω2 in figure 4(a) indicates the secondary shear instability
(SSI) also contributes to the transition. The negative-ω2 vortices which grow along the
braids in the regions 1 < x < 2 and 9.5 < x < 10.5 are indicative of SSI. As Ri increases,
SSI overtakes SCI as the dominant mechanism that breaks down the K–H billows when
contrasting figures 4(a) through 4(c). In Ri = 0.08–0.16 cases, vortices that grow at the
top of the left billow are suggestive of secondary core deformation instability (SCDI).
Mashayek & Peltier (2012b) found SCDI is associated with an observable inflation of
the core. They also suggested that the growth rate of SCDI decreases with increasing Ri.
The vortices that break down the left billow in figure 4(a–c) are also less energetic as Ri
increases.

Beside SCI, SSI and SCDI, we also observe the development of localized core vortex
instability (LCVI). When the core vortex bands grow and achieve a sufficiently large
magnitude of ω2, LCVIs form at the tips of the vorticity bands. The LCVI vortices and
the bands from which they develop have spanwise vorticity with sign opposite to the
background shear-layer vorticity (Mashayek & Peltier 2012b). The appearance of LCVI
is particularly apparent at high Re because the K–H billows roll-up faster and there is less
time for the vorticity bands in the core to diffuse. The streamwise snapshot of ω2 shows
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Figure 4. Cross-sectional snapshots of the density (ρ) and spanwise vorticity (ω2) fields for the four cases
with Ri � 0.08. The column order is similar to figure 3: streamwise and spanwise cross-sections of ρ followed
by streamwise and spanwise cross-sections of ω2. Note that the panels have differing aspect ratios and cover
different ranges of x and z coordinates.

positive (red) vortices at (x, z) ≈ (6, 0) and (7, 0) in figure 4(a). The two vortices develop
from the tips of the negative (green) vortex bands in the eyelid indicating the growth of a
LCVI.

At the high stratification of the Ri = 0.2 case, the transition to turbulence is induced
by SCDI and SCI. The multiple coherent vortices which develop in the lower half of the
billow at (x, z) ≈ (6, −0.5) in the streamwise snapshots of figure 4(d) are indicative of
SCDI. The vertical strips of positive density at y = 2 and negative density at y = 4.2 in
the spanwise snaphot are indicative of SCI. The strips resemble mushroom-like structures,
a typical morphology of convective instabilities. We note the use of a large aspect ratio
in figure 4(d) which distorts the mushroom-like structures into the vertical strips. While
the mushroom-like structures in the Ri = 0.04 case develop on the thin eyelid region of
the K–H billows, the structures in this case with Ri = 0.2 are significantly larger and they
penetrate across the entire vertical extent of the billow. The DNS of Fritts et al. (2014) at
the same Ri but with Re = 10 000 shows the prevalence of secondary instabilities in the
billow cores. The absence of SCDI in their study is possibly due to a low Reynolds number
effect.
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Figure 5. Temporal evolution of (a) momentum thickness (Iu) and (b) shear-layer thickness (Lsl) defined by
the outer edges of the TL.

There are multiple modes that have similar vorticity manifestation such as the stagnation
point instability (SPI) and secondary vortex band instability (SVBI). In fact, Mashayek
& Peltier (2013) found that SVBI is a combination of both SPI and LCVI. Therefore, it
is difficult to differentiate LCVI from SVBI without performing the stability analysis.
Furthermore, the growth of secondary instabilities is highly sensitive to the initial
broadband velocity fluctuations (Dong et al. 2019). We have simulated the Ri = 0.16 case
with two different choices for the initial velocity perturbations: one where the energy
spectrum peaks at k0 = 1.13 and another with a peak at k0 = 1.24. The horizontal domain
length is chosen to accommodate two wavelengths of the most energetic mode in the initial
velocity perturbations. While the evolution of the shear layer is statistically similar between
the two cases, we find SPI to develop in only the former simulation with k0 = 1.13 and
not the latter. The SPI manifests as a single vortex which develops at the stagnation point in
the braid. Overall, with regard to the secondary instabilities, the transition to turbulence in
the shear layer with uniform stratification is as dynamically rich as that observed in the case
with a two-layer density profile. Readers should be aware that there are other secondary
instabilities that have not been observed in either Mashayek & Peltier (2013) or the present
study such as knot and tube instabilities (Thorpe 2012).

3.2. Effect of stratification on the growth of shear-layer thickness
The visualization of the evolving shear layer suggests that the thickness of the shear layer
varies significantly with the stratification. Here, we quantify the thickness of the shear
layer through two quantities: (1) the momentum thickness (Iu) and (2) the layer bounded
by the outer edges of the TLs denoted by Lsl. The first quantity provides an integral length
scale which is used to compute non-dimensional numbers such as the bulk Richardson
number, an important parameter typically used in the parameterization of shear-driven
turbulence (Smyth & Moum 2000; Mashayek, Caulfield & Peltier 2017a). In contrast, the
second quantity includes the mixing region at the edges of the shear layer. In the present
study we identify the TL as a region with enhanced stratification (i.e. N2/N2

0 > 1) formed
at the edge of the shear layer due to vertical turbulent transport from the core of the shear
layer to its edge. Figure 5 indicates a significant difference between the two quantities with
Lsl up to 60 % larger than Iu in the Ri = 0.16 case at late time. In this section we focus the
discussion on Iu and defer consideration of Lsl to the next section.
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The momentum thickness, which is defined as

Iu =
∫ 10

−10

[
1 − 4 〈u〉2

]
dz (3.1)

has the imprint of distinct flow regimes. At early time (approximately 30 < t < 60 in
the Ri = 0.04 and Ri = 0.08 cases, and 50 < t < 90 in the Ri = 0.12 case), the shear
layer thickens rapidly due to the enlargement of the K–H billows. In all cases, except
for the Ri � 0.16 cases, there is a period where the shear layer briefly shrinks or stops
growing before resuming its growth (approximately 60 < t < 80 in the Ri = 0.04 and
Ri = 0.08 cases, and 100 < t < 110 in the Ri = 0.12 case). At Ri = 0.12, the layer does
not contract significantly as in the Ri = 0.04 and Ri = 0.08 cases but its growth pauses.
The contraction of the shear layer persists longer at smaller Ri and is not seen at all in
the Ri � 0.16 cases indicating a key link of stratification to this flow feature. The period
of contraction occurs during the transition from flow dominated by two-dimensional K–H
rollers to fully three-dimensional turbulence. After its contraction or pause, Iu resumes
growing before it asymptotes to a constant value at late time. At this time, buoyancy effects
become sufficiently strong to cause turbulence decay and the shear layer can no longer
thicken. Overall, the rate of growth decreases with increasing Ri. The ultimate thickness
of the shear layer is also much smaller at higher Ri, e.g. barely 1.3 times its initial value in
the Ri = 0.2 case.

The contraction of the shear layer is linked to the energetics of turbulence. The
momentum thickness, defined by (3.1), involves the mean kinetic energy (MKE) defined
as K̄ = (〈u〉2)/2. Therefore, the change in momentum thickness is given by

dIu

dt
=
∫ 10

−10
−8

∂K̄
∂t

dz. (3.2)

From the Navier–Stokes equation, the evolution of MKE is governed by

DK̄
Dt

= −P − ε̄ − ∂T̄3

∂z
, (3.3)

with viscous dissipation (ε̄) and the transport term (T̄3) specified as

ε̄ = 1
Re

(
∂ 〈u〉
∂z

)2

and T̄3 = 〈u〉〈u′w′〉 − 1
Re

〈u〉∂ 〈u〉
∂z

. (3.4a,b)

The turbulent production (P), which is defined previously in (2.4), acts as a transfer term
between the MKE and TKE budgets. Equations (3.2) and (3.3) are combined to yield

dIu

dt
=
∫ 10

−10
−8

∂K̄
∂t

dz ≈
∫ 10

−10
8P dz, (3.5)

where the small contribution of the viscous dissipation of MKE inside the shear layer as
well as the small transport term at z = ±10 have been neglected. During the contraction of
the shear layer when dIu/dt < 0, MKE increases due to negative production as per (3.5).

Figure 6 illustrates the relationship between the MKE and P during the contraction
period. As the K–H billows develop, they transport heavy fluid upward and light fluid
downward which stirs the density gradient. Consequently, density increases in the upper
half of the shear layer while it decreases in the lower half, as shown in figure 6(a). As
the shear layer contracts, the denser fluid in the upper half of the shear layer is displaced
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Figure 6. Evolution of the (a) density deviation from the initial profile, (b) MKE deviation from the initial
profile, (c) momentum flux (−〈u′w′〉) and (d) buoyancy flux (B) for the Ri = 0.04 case. Dashed lines denote
the boundaries of the shear layer defined as z = ±Iu/2. Vertical dotted white lines mark the contraction period
of the momentum thickness.

downward, releasing the available potential energy that was previously gained. During
this period, the MKE shown in figure 6(b) increases notably at the edges of the shear
layer (z = ±1). At the time when the shear layer begins to contract marked by the first
vertical dotted white line in figure 6(c), the momentum flux (−〈u′w′〉) changes sign from
negative to positive values signifying a counter-gradient momentum transport (CGMT).
The CGMT occurs when the momentum flux does not follow the mean velocity gradient
(Hussain 1986; Moser & Rogers 1993). Prior to the contraction, both the momentum flux
and the mean velocity gradient have negative values, so the transport is down-gradient
and the shear production is positive. In contrast, while the mean velocity gradient remains
negative during the contraction, the momentum flux is counter-gradient and, thus, the
negative production. After the contraction, the momentum transport reverts back to
down-gradient and the production has positive values. Gerz & Schumann (1996) suggested
that the energy of CGMT motions is provided by conversion of available potential energy
to kinetic energy in homogenous stratified shear flows. Takamure et al. (2018) also found
CGMT and negative production to occur in coherent vortices which develop during the
transition from laminar to turbulent regimes in an unstratified mixing layer. It should be
noted that contraction and CGMT were not observed in the DNS of a uniformly stratified
shear layer at Re = 5000 and Ri = 0.05 (Pham & Sarkar 2010). It is interesting that the
higher Re = 24 000 in the present study would enhance the CGMT.
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Figure 7. Cross-sectional snapshots of density (ρ) and buoyancy flux −Riρ ′w′ fields as well as the profiles
of horizontally averaged buoyancy flux (B) in the Ri = 0.04 case at two times: (a–c) before the contraction at
t = 66 and (d– f ) during the contraction at t = 78. The x–z planes are extracted at y = Ly/2. Dashed lines show
the isopycnal contour of ρ = 0.

Komori & Nagata (1996) showed that CGMT in stratified flows is often accompanied
by counter-gradient buoyancy flux (CGBF). We also observe CGBF during the contraction
period as shown in figure 6(d). Prior to the contraction, the buoyancy flux (B) is negative
throughout the shear layer with a peak value locating at the centre of the shear layer.
Once the shear layer contracts, the buoyancy flux switches sign from negative to positive
values. The positive B concentrates near the edges of the shear layer with the centre
of the layer having smaller positive values. The positive B supports the growth of SCI
during the transition to turbulence. To better understand the roles of CGBF on the
transition, figure 7 compares streamwise snapshots of the density and buoyancy flux before
and during the contraction. As previously discussed, the primary K–H instability grows
vertically until the potential energy barrier becomes too large, at which point, the billow
contracts vertically and expands laterally in the streamwise direction. The deformation
of the billows occurs coherently without inciting broadband turbulence. The change in
vertical extent is clear between figures 7(a) and 7(d). Before the contraction at time
t = 66, the instantaneous field of the buoyancy flux in figure 7(b) shows regions of both
positive and negative values due to the stirring by the K–H billows. When averaged over
the horizontal (x–y) plane, the net buoyancy flux (B) has negative values as shown in
figure 7(c). As the K–H billows deform during the contraction at time t = 78, the spatial
distribution of the buoyancy flux changes significantly. The regions with positive values
in the billows extend wider than that with negative values. As a result, the horizontal
averaged values become positive as shown in figure 7( f ). A wider area of positive
buoyancy flux implies a higher tendency for SCI to grow. For example, the patch of positive
buoyancy flux at (x, z) ≈ (8, 0.5) in figure 7(e) induces the growth of the counter-rotating
vortex pair at (x, z) ≈ (7, 0) shown previously in figure 3(b). It is important to note that
strong stratification inhibits CGMT and CGBF since the contraction does not occur in
the Ri � 0.12 cases. This is consistent with the finding of Mashayek & Peltier (2013)
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who suggested the role of SCI becomes less important than SSI during the transition to
turbulence at large Ri.

3.3. Effect of stratification on TKE budget and mixing efficiency
The evolution of depth-integrated terms in the TKE budget (figure 8) provides a
comparison of turbulence energetics among the cases. The time for development of
turbulence is substantially larger for the larger Ri, which is qualitatively consistent with
the decrease of maximal growth rate with increasing Ri, shown previously in figure 2.
The turbulent production P exhibits multiple peaks as time progresses, e.g. two distinct
peaks in the cases with Ri � 0.12. When the stratification is weak as in the Ri = 0.04 and
Ri = 0.08 cases, the integrated production (figure 8a) has significant negative values and
the buoyancy flux (figure 8b) has significant positive values due to the CGMT and CGBF
during the time interval of shear-layer contraction discussed in the previous section. It is
after the contraction period that the shear layer becomes fully turbulent and the integrated
ε in figure 8(c) increases sharply. The largest peak value of integrated ε occurs in the Ri =
0.04 case, while the peak values are comparable in the three cases with 0.08 � Ri � 0.16.
The peak value decreases significantly in the Ri = 0.2 case. Unlike the dissipation rate,
the dissipation rate of the potential energy (ερ) in figure 8(d) develops earlier and during
the contraction period. Noting that ε is insignificant during the contraction period, the
flux coefficient has a high value (up to 0.7) during this period due to fine-scale coherent
density structures inside the K–H billows. As previously shown, during the deformation of
the K–H billows, density filaments/wisps inside the billows become significantly thinner.
The filaments sharpen the density gradient in the shear layer down to the diffusive scale
where it is dissipated by molecular diffusion. Interestingly, turbulence does not have a role
in the mixing during this period despite the high Reynolds number. Furthermore, the peak
values of ερ are comparable among the Ri � 0.16 cases unlike ε.

The cumulative (time- and space-integrated) TKE budget terms (P, B, and ε) and the
dissipation rate (ερ) of the TAPE are shown in table 2. There is a large decrease of
cumulative P, by approximately a factor of eight, with increasing Ri. The other quantities
also decrease, but not proportionally, for instance, P/ε increases from the weakly stratified
value of 1.5 to about 1.7 in the more stratified cases indicating that stratified shear-driven
turbulence (under conditions which support its formation) is somewhat more dissipative
than its neutral counterpart. The ratio of −B/ε, known as the flux Richardson number
(Rif ), peaks in the Ri = 0.12 case similar to the flux coefficient (Γ C). There is significant
difference between reversible and irreversible mixing since Rif is substantially larger than
Γ C. The difference, which is approximately 27 % in the Ri = 0.04 case, decreases with
increasing Ri.

We move to the mixing efficiency and examine its variation among the simulated cases.
Figure 9(a) shows the cumulative mixing efficiency (EC), obtained by integrating ερ and
ε over the time duration of the simulations. The maximum value of EC is approximately
equal to 0.33 and occurs in the Ri = 0.12 case. The Ri = 0.08, 0.16 and 0.2 cases have
slightly smaller values. The smallest value of 0.23 occurs in the case with weakest
stratification Ri = 0.04. Relative to the results of Mashayek et al. (2013) (denoted in
figure 9 as MCP13) for the two-layer case, the peak value of EC in the present study
is smaller. A key result of Mashayek et al. (2013) is that there exists a narrow range of
Ri for which the mixing efficiency is optimal. They report optimal mixing to occur at
Ri = 0.16. Unlike their study, we do not find a narrow range of optimal efficiency. The
mixing efficiency is similar for a wide range of Ri between 0.08 to 0.2. Furthermore, the
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Figure 8. Evolution of the depth-integrated TKE budget and the potential energy dissipation: (a) production
(P), (b) buoyancy flux (B), (c) TKE dissipation (ε) and (d) dissipation of the potential energy, (ερ ). Integration
is performed over the region bounded by z = ±10.

Ri P B ε ερ P/ε −B/ε Γ C EC

0.04 0.2298 −0.0611 0.1505 0.0444 1.5 0.41 0.3 0.23
0.08 0.1757 −0.061 0.1025 0.0458 1.7 0.6 0.45 0.31
0.12 0.1383 −0.0496 0.0781 0.0382 1.8 0.64 0.49 0.33
0.16 0.0968 −0.0321 0.0541 0.0254 1.8 0.6 0.47 0.32
0.20 0.0278 −0.0082 0.0168 0.0066 1.7 0.5 0.39 0.28

Table 2. Integrated TKE budget terms and TPE dissipation rate. The integration is taken over the region
bounded by z = ±10 and over the simulation time period. All terms are normalized by �U2δω,0.

values of EC are significantly larger in the two-layer problem, by almost 50 % at Ri = 0.16.
There are a few reasons for the smaller mixing efficiency in the present study. First,
the K–H billows in the present study with stratification external to the sheared zone do
not grow as large as with the two-layer density profile. Second, the use of the larger
spanwise domain here allows secondary spanwise instabilities to break down the K–H
billows so that the billows cannot grow as large. It is noted that the larger spanwise
domain allows the seeding of broadband velocity fluctuations at the initial time to include
longer-wavelength spanwise perturbations which also influence the breakdown (e.g. see
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Figure 9. Effect of stratification on mixing efficiency after depth integration: (a) EC computed by integrating
ερ and ε over the time duration of the simulations and (b) EC

3d computed by starting integration from the time of
fully developed turbulence indicated by the peak integrated dissipation rate. The depth integration is performed
over the region bounded by the computational domain excluding the sponge layers z = ±10 (black), thickness
of the shear layer Lsl (blue) and momentum thickness ±Iu/2 (magenta). Mixing efficiency in the two-layer
simulations (red) of Mashayek et al. (2013) (denoted MCP13) is shown for comparison. Dashed lines indicate
the upper-bound value for the mixing efficiency suggested by Osborn (1980).

the spanwise snapshots in figure 3a). The study of Kaminski & Smyth (2019) indicates
that strong turbulence in the shear layer at initial time can reduce the growth of K–H
billows. Smaller K–H billows result in less available potential energy which is important
for the subsequent turbulent mixing.

The mixing efficiency in the stage of three-dimensional turbulence (EC
3d) is found by

starting the integration from the time of peak integrated dissipation rate in figure 8(c).
The maximum value of EC

3d of 0.29 occurs in the Ri = 0.12 and 0.16 cases and is slightly
smaller than the value seen in the two-layer problem. In the simulations with Ri ≥ 0.08,
when integrated across the shear layer and over time, the net dissipation rate decreases
faster as Ri increases than the net scalar dissipation rate. The low mixing efficiency seen
in the Ri = 0.04 case is due to the uniquely high TKE dissipation rate. It is noted that
the cumulative mixing efficiency (EC) and that due to fully developed turbulence (EC

3d)
are not dramatically different as reported in Mashayek et al. (2013). In other words,
the mixing efficiency induced by the rich dynamics of the secondary shear instabilities
during the transition to turbulence is only as significant as the subsequent fully developed
turbulence. Nonetheless, both measures of the mixing efficiency are significantly larger
than the upper-bound value of 1/6 proposed by Osborn (1980). While the mixing efficiency
EC is similar between the Ri = 0.08 and 0.2 cases, the integrated dissipation and scalar
dissipation rates listed in table 2 are approximately seven times smaller in the case with
stronger stratification. A large value of EC does not imply large net mixing by K–H billows
or turbulence.

4. The transition layer

As illustrated in the previous section, shear instabilities and the resulting turbulence
transport a significant amount of momentum and energy toward the edges of the shear
layer. These turbulent fluxes induce the formation of a TL in which the local stratification
N2(z) and shear S(z) peak. Figure 9 suggests turbulent mixing in the TL can influence
the overall mixing efficiency across the entire shear layer. When the dissipation and
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scalar dissipation rates are integrated over the shear-layer momentum thickness, i.e. ±Iu/2,
both EC and EC

3d have smaller values than when they are integrated over the shear-layer
thickness defined by the TL (Lsl). Including the TL physics into the computation of mixing
efficiency can increase EC

3d by 17 % in the Ri = 0.04 case. Furthermore, internal waves
are generated inside the TL and it is unclear how the wave excitation affects the mixing
efficiency (Watanabe et al. 2018). Therefore, it is important to understand how turbulence
and wave physics in the TL influence the mixing efficiency and its parameterization.

While the mixing efficiency is significant (EC = 0.28) in the Ri = 0.2 case, the net
dissipation and scalar dissipation rate are considerably smaller than in the other cases as
listed in table 2. Because of the lack of vigorous mixing in the Ri = 0.2 case and, for
brevity, we exclude this case from the following discussion of the TL.

4.1. Development of the TL
Each of the two edges of the shear layer has a TL. For the purposes of this work, the
boundaries of a TL are defined using the normalized squared buoyancy frequency, N2/N2

0 ,
whose evolution is shown in figure 10. The inner and outer boundaries of the TL are
demarcated by N2/N2

0 = 1 such that the interior of the TL has N2/N2
0 > 1. Since the layer

of enhanced N2 first develops near the centre of the shear layer during the early stage of
growing K–H instability, we use Iu/2 to mark the inner boundary of the TL. Note that
the location of maximum N2/N2

0 (magenta dashed line in figure 10) varies; it is closer to
the inner boundary of the TL at early time and located more centrally between the two
boundaries at late time. There is a sharp increase of N2/N2

0 in the lower half of the TL
before and during the growth stagnation/contraction regime for the Ri ≤ 0.12 cases. In
all cases, as the flow transitions from being dominated by two-dimensional instabilities to
fully three-dimensional turbulence, there is a time period when the peak N2/N2

0 becomes
smaller than before (approximately 80 < t < 110 in the Ri = 0.04 and 0.08 cases, 110 <

t < 150 in the Ri = 0.12 case and 140 < t < 170 in the Ri = 0.16 case). After turbulence
decays at late time, N2/N2

0 increases and concentrates at the centre of the TL. The overall
value of N2/N2

0 decreases with strengthening background stratification (N2
0) among cases

due to the decreased turbulent mixing of momentum in the central shear layer when N2
0 is

increased. At late time, the flow has arranged itself into layers with varying N2/N2
0 . Take

the Ri = 0.16 case of figure 10 in which this is most evident. As seen in the vertical profile
panel to the right of figure 10(d), at late time (t ≈ 250), there is a region at the centre of the
shear layer where N2/N2

0 ≈ 1 above which is a layer with N2/N2
0 < 1. Moving outwards

from this layer, there is a region of moderate N2/N2
0 before reaching the maximum value

in the centre of the TL of N2/N2
0 ≈ 1.6. At the outer edge of the TL, N2/N2

0 is reduced
and values of O(1) are seen outside of the TL. In general, as background stratification
increases, the TL becomes thinner as listed in table 1. The thickness is approximately half
of the difference between the momentum thickness Iu and the shear-layer thickness Lsl
shown previously in figure 5.

The evolution of the normalized squared rate of shear (S2/S2
0, where S = ∂〈u〉/∂z) for all

simulated cases is given in figure 11 where the lines bounding the TL are also shown. The
TL develops as shear is reduced inside the shear layer by the influence of K–H instabilities
extracting kinetic energy from the mean flow at early time. However, at the peripheries
of the shear layer, shear becomes elevated as turbulence induces momentum transport
away from the centre of the shear layer outwards. As such, the strongest S2/S2

0 at late
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Figure 10. Evolution of the normalized squared buoyancy frequency (N2/N2
0 ) shown using t − z contours for

the (a) Ri = 0.04, (b) Ri = 0.08, (c) Ri = 0.12 and (d) Ri = 0.16 cases. The inner (TLi) and outer (TLo) TL
boundaries are each identified using a black dashed line while the location of maximum N2/N2

0 inside the
shear layer (TLm) is shown with a magenta dashed line. Panels are given on the right for each case to illustrate
vertical profiles of N2/N2

0 at t ≈ 250 when the turbulence has subsided. The dotted white lines in all panels
indicate the time of maximum dissipation rate (t3d).

time is located in the TL, close to its inner boundary, with TL shear intensity among
cases increasing with strengthening N0. At early time in all cases, a region of strong shear
directly corresponds to the region of large N2/N2

0 in the TL. The previously discussed
reduction in N2/N2

0 coincides with a brief reduction in shear in the Ri = 0.04 and Ri =
0.08 cases. In the more strongly stratified cases there is less significant reduction in shear.
At late time in the highly stratified cases, S2 has a layered structure similar to N2. The panel
to the right of figure 11(d) shows the centre of the shear layer to have a region of moderate
shear bounded by a layer of weaker shear. Farther from the centre, S2/S2

0 increases to a
peak value of approximately 0.23 before becoming negligible outside the TL.

Figure 12 shows the gradient Richardson number (Rig = N2/S2) which is a measure
of the balance between buoyancy and shear. In all cases, the inner portion of the TL has
lower Rig than the outer half indicating that the inner portion is more influenced by effects
of shear. As the flow evolves, turbulence mixes the density and momentum fields and Rig
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Figure 11. Similar to figure 10 but the contours show the normalized squared rate of shear (S2/S2
0).

increases exceeding the critical value of 0.25 from linear stability theory (Hazel 1972). In
all cases, this behaviour is observed within the TL with Rig beginning small and eventually
becoming much larger than Ric. At late time, the interior of the shear layer is dominated
by Rig > 0.5 in all cases except for the Ri = 0.04 case in which Rig takes values between
Ric = 0.25 and 0.5. In the Ri = 0.12 case intermittent layers of Rig > 0.75 and Rig > 1 are
observed, in contrast to the two-layer simulations of Mashayek & Peltier (2013) who noted
that Rig ≈ 0.5 across the entire shear layer at late time in their comparable simulation.
The higher Rig found here is further evidence of the difference in the distribution of S2

and N2 between the present case of uniformly stratified background and the case with two
constant-density layers.

The development of small-scale fluctuations as the flow becomes fully turbulent leads
to a rapid increase in the dissipation rate (ε in figure 13). The time of peak ε, seen when
the K–H billows breakdown to three-dimensional turbulence, is delayed with increasing
background stratification (N2

0) as follows: t ≈ 100 in the Ri = 0.04 and Ri = 0.08 cases,
t ≈ 126 in the Ri = 0.12 case and t ≈ 145 in the Ri = 0.16 case. Furthermore, as N2

0
increases among cases, ε tends to be elevated in the TL at late time. Dissipation is
strongest at the periphery near the inner boundary of the TL due to the evolving late-time
instabilities.
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Figure 12. Similar to figure 10 but the contours show the gradient Richardson number (Rig).

4.2. Internal wave flux across TLs
Simulations by Watanabe et al. (2018) at Re = 6000 and Ri up to 0.08 suggest the internal
wave flux, 〈p′w′〉, at the TNTI to be strong. They report that the wave energy flux at
the TNTI can be comparable to the dissipation in the shear layer. It is of interest to
compare the role of 〈p′w′〉 at the shear-layer edge as the Reynolds number increases from
6000 to 24 000. Figure 14(a) illustrates the evolution of 〈p′w′〉 in the Ri = 0.08 case in
which its magnitude is largest during the transition from two-dimensional K–H billows
to three-dimensional turbulence. As the billows grow, they create perturbations in the
pressure and velocity fields that extend beyond the boundaries of the shear layer (denoted
by the dashed lines in figure 14a). The perturbations generate evanescent waves whose
amplitude decays exponentially with the distance away from the shear layer. The wave
flux is initially positive in the upper shear layer and negative in the lower shear layer, and
as a result, TKE is transported away from inside the shear layer to the outside during the
growth of the K–H billows. It is noted that, since the waves are evanescent, energy does not
propagate into the far field. As the shear layer grows in size, the energy that was previously
transported outside contributes to the turbulent mixing in the TL. The internal wave flux
in the TL is significantly weaker when the shear layer is turbulent.
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Figure 13. Similar to figure 10 but the contours show the dissipation rate (log10(ε)).

The role of the wave flux is further examined by integrating the TKE budget from the
outer edge of the lower TL to that of the upper TL. The result is shown in figure 14(b)
where 〈p′w′〉I = −〈p′w′〉up + 〈p′w′〉low denotes the net wave energy that crosses the upper
(up) and lower (low) TL interfaces. During the growth of the billows, waves transport
energy outside the shear layer. As the shear layer becomes turbulent, the wave flux changes
sign which deposits energy from the outside into the shear layer. During the period
of turbulence, the peak inflow of the wave energy is approximately 33 % of the peak
integrated dissipation rate, 22 % of the peak integrated production and 70 % of the peak
integrated buoyancy flux. The wave flux seen in the present higher-Re study is smaller than
the value reported by Watanabe et al. (2018).

5. Mixing efficiency and its parameterization

Since mixing efficiency (E) and flux coefficient (Γ ) have important applications in ocean
measurements and modelling, there has been a sustained effort in parametrizing such
problems. It has been shown that the variability of E can be described well by the buoyancy
Reynolds number (Reb = ε/νN2) or the turbulent Froude number (Fr = ε/NK) for
homogenous stratified turbulence driven by uniform shear in an unbounded domain with
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Figure 14. Internal wave flux and its influence on the TKE budget for the Ri = 0.08 case: (a) temporal
evolution of 〈p′w′〉), and (b) a comparison of the net internal wave flux across the upper and lower TLs (the
dashed boundaries shown in (a)) given by 〈p′w′〉I with respect to the other terms in the integrated TKE budget.
Dashed lines in (a) denote the outer edges of the TLs.

uniform N (Shih et al. 2005; Ivey, Winters & Koseff 2008; Garanaik & Venayagamoorthy
2019). The mixing efficiency E is found to also depend on Pr and Ri (Salehipour & Peltier
2015; Salehipour et al. 2015). Salehipour et al. (2016) proposed a mixing parameterization
that is based on Reb and Ri while Mashayek et al. (2017b) suggested a parameterization
that only relies on Reb. In the following discussion we examine the spatial variability of
E in the present configuration of a localized shear layer in a uniformly stratified fluid and
discuss the results in light of the parameterization schemes proposed in the aforementioned
studies. Since Pr = 1 here, only the dependence on Reb, Fr and Ri are to be explored.

We find that the strong TL associated with the present configuration plays an important
role through its mixing during the later-time period of decaying TKE. The significant
turbulent activity in the TL is illustrated in figure 15 for the four cases with Ri � 0.16.
Small-scale shear instabilities can be clearly seen in the vorticity field at times when
the integrated turbulent dissipation across the shear layer is larger than the integrated
production. These later-time shear instabilities grow and persist in the TL at the upper
and lower edges of the shear layer and they contribute significantly to the bulk mixing in
the shear layer. Therefore, it is critical for parameterization schemes to capture their effect.

Figure 16 shows the evolution of the mixing efficiency (E) given by (2.6a,b) with the
boundaries of the TL also depicted. Overall, E is much higher throughout the shear layer
as K–H billows are forming. As they break down into turbulence, strong E is seen at the
outer boundary of the TL while the core of the shear layer becomes relatively quiet with
low E. This large E occurs after the secondary peak in production in the low Ri cases and
is associated with the concentration of TKE in lobed structures. The inner boundary of the
TL has relatively low E. As stratification increases and buoyancy effects suppress vertical
motions, E becomes smaller at early time as can be seen by comparing the Ri = 0.16 and
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Figure 15. Cross-sectional snapshots of the spanwise vorticity (ω2) fields for the (a) Ri = 0.04, (b)
Ri = 0.08, (c) Ri = 0.12 and (d) Ri = 0.16 cases.

Ri = 0.04 cases in figure 16. At late time, the majority of high-efficiency mixing occurs
within or above the TL.

To parametrize mixing efficiency, it is necessary to relate a bulk mixing efficiency
to the bulk values of Reynolds number, Froude number and Richardson number. The
time-dependent bulk values are obtained by integration across the shear layer from
the outer edge of the bottom TL to that of the top TL. This choice of integration
domain (thickness denoted by Lsl) encompasses the spatial region of significant turbulent
dissipation. We also focus the analysis on the temporal period with significant mixing,
namely the regime of fully developed turbulence which commences after the time of the
peak integrated ε, similar to Salehipour et al. (2016) and Mashayek et al. (2017b). In the
discussion to follow, the bulk mixing efficiency (E3d), bulk buoyancy Reynolds number
(Reb), bulk turbulent Froude number (Fr) and bulk Richardson number (Rib) are computed
as follows:

E3d(t) =

∫
Lsl

ερ dz∫
Lsl

ερ + ε dz
, Reb(t) =

∫
Lsl

ε dz∫
Lsl

νN2 dz
,

Fr(t) =

∫
Lsl

ε dz∫
Lsl

NK dz
, Rib = �ρslgLsl

ρ0�U2
sl

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

Here �ρsl and �Usl denote the density and velocity change across the spatial integration
domain.

The dependence of mixing efficiency (E3d) on Reb is shown in figure 17(a). Shih et al.
(2005) suggested three regimes of turbulent mixing: an energetic regime (Reb > 102),
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Figure 16. Similar to figure 10 but the contour shows the mixing efficiency (E).

an intermediate regime (7 � Reb � 102) and a diffusive regime (Reb < 7). These three
regimes are also exhibited in the present study although the values of Reb used to separate
the regimes are slightly different. In the present study, E3d decreases with increasing Reb in
the energetic regime (Reb is as large as 540 in the Ri = 0.04 case). During the intermediate
regime (40 < Reb < 100), E3d remains relatively constant at the value of 0.3 in the cases
with 0.08 ≤ Ri ≤ 0.16. The mixing efficiency decreases monotonically in the diffusive
regime (Reb < 40).

The flux coefficient (Γ3d) is also often used to quantify mixing. From mixing efficiency,
the flux coefficient can be computed as Γ3d = E3d/(1 − E3d). Figure 17(b) shows the
flux coefficient also varies with Reb in three distinctive regimes similar to the mixing
efficiency. The peak value of Γ3d is approximately 0.43 which is more than twice larger
than the upper-bound value of 0.2 suggested by Osborn (1980). Furthermore, Γ3d remains
larger than 0.2 over the entire lifespan of turbulence in the cases with Ri � 0.08. The flux
coefficient Γ3d peaks at a smaller value of 0.32 in the Ri = 0.04 case and decreases to
below 0.2 in the diffusive regime.
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Figure 17. Effect of buoyancy Reynolds number (Reb) on (a) mixing efficiency (E3d), and (b) flux coefficient
(Γ3d) and the effect of (c) turbulent Froude number (Fr) and (d) bulk Richardson number (Rib) on the flux
coefficient during the turbulent phase. The dashed black lines indicate the values of E3d = 1/6 and Γ3d =
0.2 suggested by Osborn (1980). The dashed magenta line in panel (b) indicates the parameterization, Γ3d =
4Re−1/2

b for Reb > 102 in the Ri = 0.04 case. The solid black and red lines in panel (b) denote the upper and
lower bounds, respectively, of the parameterization proposed by Mashayek et al. (2017b).

Shih et al. (2005) indicated that the flux coefficient decreases as Γ3d = 2Re−1/2
b in

the energetic regime. We also find that Γ3d ∝ Re−1/2
b in the Ri = 0.04 case although its

value is substantially larger here leading to a proportionality coefficient of 4 as shown
in figure 17(b). During the intermediate regime, the flux coefficient remains relatively
constant with a value ranging from 0.33 in the Ri = 0.04 case to approximately 0.43
in the other three cases. These values are larger than that of 0.2 reported in Shih et al.
(2005). While Shih et al. (2005) asserted that turbulent mixing in the diffusive regime is
driven mainly by molecular diffusivity and independent of Reb, the turbulent mixing in
the present study is significantly higher than the molecular counterpart and, indeed, varies
with Reb when 7 ≤ Reb ≤ 40. Nonetheless, the mixing convention of Shih et al. (2005) is
kept in the present study for ease of comparison.

The upper and lower bounds for Γ3d suggested by Mashayek et al. (2017b) are also
included in figure 17(b) for comparison. Inherently, the dependency of the flux coefficient
on Reb in the present study agrees better with the suggested parameterization using
homogenous stratified turbulence in Shih et al. (2005) than the one in Mashayek et al.
(2017b). In the latter scheme, Γ3d peaks at a transitional Reb with values ranging
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from 100 to 300. As Reb increases in the shear-dominated regime or decreases in the
buoyancy-dominated regime, Γ3d decreases similarly at the same rate. The Ri ≤ 0.16
cases in the present study indicate Γ3d peaks at Reb ≈ 102 and, furthermore, it does not
decrease similarly as Reb deviates from the transitional value. The Ri ≤ 0.16 cases shows
the presence of an intermediate regime (40 � Reb � 102) in which Γ3d remains relatively
constant at values closer to the upper bound than the lower bound given by Mashayek
et al. (2017b). We note that the parameterization suggested in Mashayek et al. (2017b) is
based on both DNS of a shear layer with a two-layer density profile and observational
data collected at sites where stratification and shear profiles are space-filling unlike their
DNS set-up. It is unclear how the disparity between the DNS and the observational data
influences the suggested parameterization. Nonetheless, the Reb dependence of Γ3d seen
in the present study suggests further evaluation of the parameterization.

Beside Reb, the turbulent Froude number (Fr(t)) can be a well-suited parameter for
mixing parameterization of homogenous stratified turbulence (Ivey & Imberger 1991; Shih
et al. 2000; Howland, Taylor & Caulfield 2020). The metric shows the competition between
turbulent time scale (K/ε) and buoyancy time scale (N−1) so it can be used to describe
the local state of stratified shear turbulence. For weakly stratified turbulence (Fr > 1),
the flux coefficient decreases as Fr−2 while it remains relatively constant for strongly
stratified turbulence (Fr < 1) (Garanaik & Venayagamoorthy 2019). In the present study
we also observe two regimes of Fr as shown in figure 17(c). In the Ri = 0.04 case the two
regimes are delineated by Fr ≈ 0.2, a value somewhat smaller than unity. As Fr increases
or decreases from this value, Γ3d decreases which suggests the optimal rate of mixing
occurs at Fr ≈ 0.2 in this case. The other four cases with Ri � 0.08 show Γ3d also peaks
at Fr less than 0.2 and it decreases as Fr decreases. Our results agree well with Maffioli
et al. (2016) who, in homogenous stationary stratified turbulence DNS, found optimal
mixing at ε/Nu2 = 0.3, which converts to Fr = ε/NK = 0.2 upon taking u2 = 2K/3.

The bulk Richardson number (Rib(t)) is also used as a descriptor of the state of stratified
shear turbulence and a quantity to potentially correlate the flux coefficient. Figure 17(d)
shows the dependency of the flux coefficient on Rib. In all simulated cases, Γ3d decreases
at constant Rib during the later-time intermediate and diffusive regimes. The late-time
constant value of Rib is as large as 1.2 in the Ri = 1.2 case while it is approximately 0.7 in
the Ri = 0.04 case. The dependence on Rib shows a qualitative change among the different
Ri cases and it is not possible to infer a common correlative trend. It is critical to emphasize
that efficient turbulent mixing persists even at values of Rib as large as 1.2, approximately
two times larger than with the two-layer density profile. This is a direct consequence of
strong turbulent activity in the sheared TLs at the edge of the shear layer which expands the
vertical extent of the stratified region with active mixing. Salehipour et al. (2016) proposed
a mixing parameterization in which the maximum mixing efficiency occurs at Rib = 0.4
and turbulent mixing cuts off at Rib = 1. The cases with Ri � 0.08 in the present study
shows that the mixing efficiency and flux coefficient peak as Rib reaches values as large as
1.2. Clearly, the formation of TLs modifies the range of Rib for which turbulent mixing is
important. Therefore, it is important for any Rib-based mixing parameterizations to include
TL dynamics.

A choice for the turbulent diffusivity (Kρ) provides a turbulence closure for the
buoyancy flux since, by definition, Kρ = B/N2. Retaining only the irreversible part
of the buoyancy flux leads to Kρ = ερ/N2 = Γ3d ε/N2. For Pr = 1, it follows that
Kρ = Γ3dκ Reb. Osborn (1980) chose Γ3d = 0.2 leading to a linear dependence of Kρ =
0.2κ Reb on the buoyancy Reynolds number for all values of Reb. To assess the Osborn
parameterization, a bulk value of turbulent diffusivity is computed from the simulation
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Figure 18. Effect of (a) buoyancy Reynolds number (Reb) and (b) combined buoyancy Reynolds number and
bulk Richardson numbers (Reb Rib) on turbulent diffusivity (Kρ ). Variability of turbulent viscosity (Km) and
turbulent Prandtl number (Prt) on Reb are shown in panels (c) and (d), respectively. The dashed black lines in
panels (a,c) indicate the parameterization, Kρ/κ = Km/ν = 0.2Reb, from Osborn (1980) with the assumption
of Pr = Prt = 1. The dashed magenta lines in panels (a,c) indicate the parameterization, Kρ/κ = Km/ν =
2Re1/2

b for Reb > 102, from Shih et al. (2005) with the same assumption of Prt = 1.

data as Kρ(t) = ∫
ερ dz/

∫
N2 dz where the z-integration is over Lsl. Figure 18(a) shows

the turbulent diffusivity to exhibit piecewise dependence on Reb similar to the piecewise
dependence of Γ3d on Reb. Disregarding the decrease of Γ3d in the diffusive regime,
Kρ exhibits a linear dependence on Reb for Reb � 102 similar to Osborn’s model.
However, the model underestimates Kρ which suggest a higher constant value of the flux
coefficient can improve said model. In the energetic regime (Reb > 102), Kρ is found
to be proportional to Re1/2

b similar to the results of Shih et al. (2005) although the
proportionality coefficient is larger in the present study. It should be noted that Salehipour
& Peltier (2015) also found the Reb-dependence for Kρ in shear layers with a two-layer
density profile to be similar to the result in Shih et al. (2005), e.g. see their figure 5.

Taking into account the effects of both Reb and Rib, it is found that Kρ can be
parametrized based on the product of Reb and Rib as shown in figure 18(b). The choice of
RebRib ≈ ε/νS2 is equivalent to using S as a characteristic inverse time scale rather than
N in the mixing parameterization. This parameterization scheme is promising because
it prescribes Kρ over the entire range of Reb, unlike the piecewise dependence observed
when only Reb is used. It is noted that the bulk parameters in the present study do not
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extend sufficiently into the energetic regime (only the Ri = 0.04 case includes a large
range of Reb) and additional simulations at a higher Reynolds number are required to test
whether this parameterization works well for the energetic regime.

We now move to the turbulent viscosity (Km) and its parameterization. By definition
of the turbulent viscosity, it follows that Km = P/S2, where P is the turbulent production.
The equilibrium assumption for the TKE equation is used to write P = ε + B and the
part of B responsible for irreversible mixing (ερ) is retained so that the turbulent viscosity
becomes Km = (ε + ερ)/S2. A bulk value of Km(t) is computed here using bulk (integrals
over Lsl) values of ε, ερ and S2. Figure 18(c) shows that Km cannot be described by the
Osborn model in this flow. Results from Shih et al. (2005) for homogeneous shear flow
indicate that Prt = 1 in the intermediate regime and decreases in the energetic regime
(where Rib is also low) to Prt ≈ 0.6. In the present study Prt exceeds 2.5 in all simulated
cases for all mixing regimes. These higher values of Prt are related to the higher Rib
in this problem. For example, Rib increases from its initial value of 0.04 to 0.5 during
30 < t < 60 when the flow transitions to turbulence and into the energetic regime. Thus,
unlike homogenous shear flow, the energetic regime with large Reb is accompanied by a
significant increase of Rib in this flow and, consequently, Prt ∼ Rib/E3d is large even in
the energetic regime. Furthermore, once buoyancy becomes sufficiently strong to bring
Reb down to ≈100, Prt(t) increases with decreasing Reb(t) because E3d commences a
decrease from its peak value.

6. Discussion and conclusions

In the present study DNS of a shear layer with uniform density stratification were
performed to investigate turbulence and mixing at a Reynolds number (Re) of 24 000, a
high value for DNS. The stratification in the chosen problem is extensive or domain filling
in contrast to the well-studied case of continuous stratification between two layers, each
with constant density, where the stratification is spatially compact and limited to the zone
with shear. The background stratification (N0) is varied over a wide range to examine the
effects of buoyancy, Ri = 0.04–0.2, where Ri is the gradient Richardson number at the
shear-layer centre. The simulation results are analysed to highlight the important effects of
the uniform stratification outside the shear layer on the evolution of shear-layer turbulence.
Furthermore, the results on mixing are contrasted with those of homogenous stratified
shear turbulence (e.g. Shih et al. 2005) and of shear-layer turbulence between two layers
of uniform density (a canonical two-layer density profile, e.g. Salehipour et al. 2016;
Mashayek et al. 2017b) as well as the mixing parameterization scheme of Osborn (1980).

Kelvin–Helmholtz shear instabilities develop in all cases. After the K–H instability
develops, a myriad of secondary instabilities are seen to follow. The dynamics of
secondary instabilities are as rich as those that arise in the stratified shear layer with a
two-layer density profile. The secondary instabilities are driven by both enhanced shear
in the eyelids and in the braids between K–H billows as well as by convection due
to the unstable density gradient associated with the roll-up of the billows. Secondary
convective instability is seen in the core as well as the eyelids of the K–H billows. As
the secondary instabilities develop, the shear layer contracts, as indicated by the decrease
of momentum thickness, for a short time in the Ri = 0.04 and Ri = 0.08 cases, a feature
that has not been observed in similar simulations at lower Re (Pham et al. 2009; Pham
& Sarkar 2010; Watanabe et al. 2018). Counter-gradient momentum transport (CGMT)
and counter-gradient buoyancy flux (CGBF) occur during the contraction period leading
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to negative shear production and an increase in the MKE. Strong stratification tends to
inhibit the growth of CGMT and CGBF since they do not occur in the Ri � 0.12 cases.

The shear and stratification in the sheared zone evolve to profiles which are different
from those found in the canonical two-layer problem. Mashayek et al. (2013) and
Salehipour et al. (2016) find that the largest value of the evolving bulk Richardson number
Rib(t) in the problem with a two-layer density profile is 0.5. Here, Rib(t) can reach up to
1.2. Furthermore, multiple layers with differing Rig including Rig > 1 form.

While the rich dynamics of the secondary instabilities in the present case with
domain-filling stratification are similar to those for a two-layer density profile, the mixing
efficiency in the present study is significantly different. Mashayek et al. (2013) who used
a two-layer density profile found a narrow range of Ri with an optimal rate of turbulent
mixing, and the cumulative mixing efficiency (EC based on the mixing over the entire
flow evolution) peaks at a value of 0.45 when Ri = 0.16. For the present case of uniform
stratification, we find EC to be considerably smaller (approximately 0.33) in the cases with
Ri � 0.08. Also, EC remains relatively constant among these cases suggesting a much
wider range of Ri for optimal turbulent mixing.

A TL with elevated local stratification and shear forms at each edge of the shear layer
owing to vertical turbulent fluxes which transport mass and momentum outward from the
central region. The two TLs bound a central zone where the shear and stratification profiles
are quite different from their initial shape. The central zone takes the form of a layer with
some variability of shear and stratification around nominal constants whose value depends
on the background stratification (Ri0). As Ri0 increases, the TL becomes thinner. The
local N2(z) in the TL of the present configuration can be more than twice larger than
N2

0 , in contrast to the two-layer density profile where N2 in the TL does not exceed its
initial peak. Despite having the largest local N2, the TL sees significant turbulence at late
time long after turbulence at the shear-layer centre has subsided and the local value of Rig
becomes larger than the critical value of 0.25. The TL exhibits high Reb = O(102) with
mixing as efficient as at the shear-layer centre.

Background N2
0 supports strong internal wave flux across the TL as previously reported

by Watanabe et al. (2018). However, the magnitude of the wave flux (33 % of the peak
spatially integrated dissipation rate) is smaller at the higher Re of the present DNS. Since
the route to turbulence in the shear layer is different at high Re, so is the wave flux. It is
worth noting that, unlike the far-field internal waves seen in Pham et al. (2009), the waves
in the present study with weaker N0 are evanescent and do not propagate far from the TL.

The dependence of mixing efficiency (E3d) and flux coefficient (Γ3d = E3d/(1 − E3d))
on buoyancy Reynolds number (Reb), turbulent Froude number (Fr) and bulk Richardson
number (Rib) during the turbulent phase is found to be different from that seen in the
shear layer with a two-layer density profile. The dependence is closer to statistically
homogeneous turbulence forced by uniform shear and uniform stratification. A possible
reason is that, during the regime of vigorous turbulence, the present high-Re shear
layer in a uniformly stratified fluid evolves to shear and stratification profiles (e.g. the
late-time profiles in figures 10 and 11) closer to the homogeneous shear problem over a
large portion of the shear layer. For the same value of Ri, the uniformly stratified shear
layer has a larger initial background potential energy. Using a two-layer density profile,
Mashayek et al. (2017b) suggested that Γ3d (Reb) increases as Re1/2

b until a maximum
of approximately 0.5, and subsequently decreases as Re−1/2

b . The flux coefficient in the
present study exhibits three regimes of turbulent mixing similar to the finding of Shih
et al. (2005) for homogeneous sheared turbulence: a diffusive regime at low Reb where Γ3d
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Figure 19. Effect of alternative choices, Iu and Lsl, for the length scale of the turbulent zone. (a) Profiles of
turbulent production (P), dissipation (ε) and dissipation of the potential energy (ερ ) at time t = 152 in the
Ri = 0.12 case. The dotted black lines and dashed blue lines mark the boundaries of the shear layer with ±Iu/2
and Lsl, respectively. (b) Dependence of flux coefficient (Γ3d,Iu ) on buoyancy Reynolds number (Reb,Iu) when
the involved variables are integrated over ±Iu/2 instead of over Lsl. The dashed black lines in panel (b) indicate
the value of Γ3d = 0.2 suggested by Osborn (1980), while the solid black and red lines denote the upper and
lower bounds, respectively, of the Mashayek et al. (2017b) parameterization. The dashed magenta line indicates
the parameterization, Γ3d = 4Re−1/2

b for Reb > 102 in the Ri = 0.04 case also shown in figure 17(b).

monotonically increases, an intermediate regime in which Γ3d remains relatively constant
and an energetic regime where Γ3d ∼ Re−1/2

b . When compared with the results of Shih
et al. (2005), there are some quantitative differences, e.g. the cases with Ri � 0.08 have
higher values of Γ3d. We note that, different from Shih et al. (2005), Portwood et al. (2019)
reported that Γ ∝ Re−1/2

b dependence does not exist for 100 < Reb < 1000 in a recent
DNS study with similar set-up. They argue that a transient effect in Shih et al. (2005)
is the possible cause of the scaling. Our results support the validity of the Γ ∝ Re−1/2

b
scaling. When Γ3d is parametrized as a function of the Froude number (Fr), the flux
coefficient in the present study also exhibits similar dependence as observed in the study
of homogeneous stratified forced turbulence of Maffioli et al. (2016). The peak value of
Γ3d occurs at Fr = ε/NK ≈ 0.2 and it decreases as Fr deviates from this value.

The results for the mixing-efficiency parameterization depend on the choice employed
for the vertical length scale of the shear layer. Figure 19(a) shows that the vertical
profiles of turbulent production, TKE dissipation and TPE dissipation extend outside the
boundaries of the shear layer marked by ±Iu/2. Clearly, the shear-layer thickness (Lsl) is
able to include the entire turbulent mixing zone better than Iu. The relationship between
the flux coefficient and the buoyancy Reynolds number (figure 19b) using ±Iu/2 has
some differences with that obtained using Lsl (figure 17b). Comparison of figures 17(b)
to 19(b) reveals the agreement with the scaling Γ3d = 4Re−1/2

b in the energetic regime
(Reb > 102) in the Ri = 0.04 case is less when Iu is used as the vertical length scale. The
flux coefficient decreases monotonically with decreasing Reb in the intermediate regime
(40 < Reb < 100) while it remains relatively constant when Lsl is used as the length scale
in the cases with 0.08 � Ri � 0.16. The values of the flux coefficient using ±Iu/2 are
considerably smaller in the intermediate regime for all cases since the high-efficiency
mixing in the TLs is excluded.
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The mixing efficiency in the cases with Ri � 0.08 exceeds Osborn’s model value of 1/6
over the entire turbulent state. Similar to the results of Salehipour et al. (2016), E3d also
exhibits a dependence on Rib. While Salehipour et al. (2016) suggested that the mixing
efficiency reaches its peak value of approximately 0.33 when Rib = 0.4 and is saturated
when Rib = 1, E3d in the Ri = 0.12 case reaches its maximum value of 0.31 when Rib is
as large as 1.2. The larger Rib found in the present study is directly related to the stronger
stratification in the TLs. The turbulent diffusivity (Kρ) and turbulent viscosity (Km) are
larger than Osborn’s model prediction as well as Shih et al. (2005). During entry into the
initial energetic regime when Reb increases to > 100, Rib also becomes large so that the
turbulent Prandtl number (Prt ∼ Rib/E3d) is larger than in Shih et al. (2005) or Salehipour
et al. (2016). In the other regimes, Prt increases with decreasing Reb similar to other flows.

The results of the present study further confirm that turbulent mixing and its
parameterization is sensitive to flow conditions including the shape of initial velocity
and density profiles. The evolution of Rib is significantly different between two-layer and
constant stratification profiles since local N2(z) and S2(z) evolve differently. In order for a
mixing parameterization to be generally applicable, future efforts would benefit by going
beyond the use of bulk parameters to account for problem-dependent variability of local
shear and stratification. It should be noted the parameterization of mixing efficiency may
require multiple parameters; some of which are not yet considered in the present study.
The value of the molecular Prandtl number (Pr = 1) in the present study is smaller than in
oceanic flows where Pr varies from 7 to 700. The mixing efficiency EC has been shown to
decrease at higher Pr (Smyth et al. 2001; Salehipour et al. 2015) for the two-layer density
profile. In light of the significant reduction in EC between the two-layer density profile and
uniform stratification (e.g. see figure 9), a further decrease due to higher-Pr effect would
bring EC closer to the value of 1/6 used in Osborn’s model.
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