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Abstract

Existential types provide a simple and elegant foundation for understanding generative

abstract data types of the kind supported by the Standard ML module system. However,

in attempting to extend ML with support for recursive modules, we have found that the

traditional existential account of type generativity does not work well in the presence of

mutually recursive module definitions. The key problem is that, in recursive modules, one

may wish to define an abstract type in a context where a name for the type already exists,

but the existential type mechanism does not allow one to do so. We propose a novel account

of recursive type generativity that resolves this problem. The basic idea is to separate the

act of generating a name for an abstract type from the act of defining its underlying

representation. To define several abstract types recursively, one may first “forward-declare”

them by generating their names, and then supply each one’s identity secretly within its own

defining expression. Intuitively, this can be viewed as a kind of backpatching semantics

for recursion at the level of types. Care must be taken to ensure that a type name is not

defined more than once, and that cycles do not arise among “transparent” type definitions.

In contrast to the usual continuation-passing interpretation of existential types in terms of

universal types, our account of type generativity suggests a destination-passing interpretation.

Briefly, instead of viewing a value of existential type as something that creates a new abstract

type every time it is unpacked, we view it as a function that takes as input a pre-existing

undefined abstract type and defines it. By leaving the creation of the abstract type name up

to the client of the existential, our approach makes it significantly easier to link abstract data

types together recursively.

1 Introduction

Recursive modules are one of the most frequently requested extensions to the ML

languages. After all, the ability to have cyclic dependencies between different files

is a feature that is commonplace in mainstream languages such as C and Java. To

the novice programmer especially, it seems very strange that the ML module system

should provide such powerful mechanisms for data abstraction and code reuse as

functors and translucent signatures, and yet not allow mutually recursive functions

and data types to be broken into separate modules. Certainly, for simple examples of

recursive modules, it is difficult to convincingly argue why ML could not be extended

in some ad hoc way to allow them. However, when one considers the semantics of a

general recursive module mechanism, one runs into several interesting problems for

which the “right” solutions are far from obvious.
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One problem involves the interaction of recursion and computational effects. The

evaluation of an ML module may involve impure computations such as I/O or

the creation of mutable state. Thus, if recursion is introduced at the module level,

it appears necessary to adopt a backpatching semantics of recursion (in the style

of Scheme’s letrec construct) in order to ensure that the effects within recursive

module definitions are only performed once. Under such a semantics, a recursive

definition letrec X = M in ... is evaluated by (1) binding X to an uninitialized ref

cell, (2) evaluating M to a value V, and (3) backpatching the contents of X’s cell with

V, thereby tying the recursive knot. As a matter of both methodology and efficiency,

it is desirable to know statically that this recursive definition is well-founded, that is,

that M will evaluate to V without requiring the value of X prematurely. In previous

work (Dreyer 2004), we studied this problem in detail and proposed a type-based

approach to guaranteeing well-founded recursion.

In this article, we focus on a second, orthogonal problem with recursive modules

that we and other researchers have struggled with. This problem is of particular

importance and should be of interest to a general audience because it concerns

the interaction of two fundamental concepts in programming, recursion and data

abstraction, and it is possible to understand and explore the problem independently

of modules. (In fact, that is precisely what we are going to do later in the article.)

To begin, however, we use some informal examples in terms of ML modules as a

way of illustrating the problem.

1.1 Mutually recursive abstract data types

Suppose we want to write two mutually recursive ML modules A and B, as shown

in Figure 1. Module A (resp. B) defines a type t (resp. u) and a function f (resp. g)

among other components. It is sealed with a signature SIGA(X) (resp. SIGB(X))

that hides the definition of its type component.1 Note that the type of the function

component in each module refers to the abstract type provided by the other module.

The code here is clearly contrived—for example, A.t and B.u are implemented as

int and bool—but it serves to concisely demonstrate the kind of type errors that

can arise very easily because of the interaction of recursion and abstract types.2 The

first type error comes in the first line of the body of A.f. The function takes as

input a variable x of type t (which is defined to be int), and makes a recursive call

to the function X.B.g, passing it x+3. The error arises because the type of X.B.g is

X.A.t -> X.B.u * X.A.t, and X.A.t is not equivalent to int. To see this, observe

that the variable X is bound with the signature SIG(X), whose A.t component is

specified opaquely.3

1 We make use here of parameterized signatures (Jones 1996), a mechanism not present in ML. While
they are not strictly necessary, they serve to simplify the presentation. See Dreyer (2006) for alternative
variants of this example that do not rely on parameterized signatures.

2 For a more realistic example, see Chapter 5 of Dreyer’s thesis (2005b).
3 Incidentally, one may wonder how it can be legal for the signature X is bound with to refer to X. This

is achieved through the use of recursively dependent signatures, which were proposed by Crary et al.
(1999) in theory and implemented by Russo (2001) and Leroy (2003) in practice. Subject to certain
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signature SIGA(X) = sig

type t

val f : t -> X.B.u * t

...

end

signature SIGB(X) = sig

type u

val g : X.A.t -> u * X.A.t

...

end

signature SIG(X) = sig

structure A : SIGA(X)

structure B : SIGB(X)

end

structure rec X :> SIG(X) = struct

structure A :> SIGA(X) = struct

type t = int

fun f (x:t) : X.B.u * t =

let val (y,z) = X.B.g(x+3) (* Error 1 *)

in (y,z+5) end (* Error 2 *)

...

end

structure B :> SIGB(X) = struct

type u = bool

fun g (x:X.A.t) : u * X.A.t = ...X.A.f(...)...

...

end

end

Fig. 1. Mutually recursive abstract data types.

The second type error, appearing in the next line of the same function, is similar.

The value z returned from the call to X.B.g has type X.A.t, but the function

attempts to use z as if it were an integer.

Both of these type errors are really symptoms of the same problem: Alice, the

programmer of module A, “knows” that X.A.t is implemented internally as int

because she is writing the implementation. Yet, this fact is not observable from the

signature of X. The only simple way that has been proposed to address this problem

is to reveal the identity of A.t in the signature SIGA(X) as transparently equal to

int. This is not really a satisfactory solution, though, since it exposes the identity

of A.t to the implementor of module B and essentially suggests that we give up on

trying to impose any data abstraction within the recursive module definition.

A more complex suggestion would be that we change the way that recursive

modules are typechecked. Intuitively, when we are typechecking the body of module

A, we ought to know that X.A.t is int, but we ought not know anything about

restrictions, they are straightforward to account for semantically, but their semantics is not the focus
of this article.

https://doi.org/10.1017/S0956796807006429 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006429


436 D. Dreyer

signature ORDERED = sig

type t

val compare : t * t -> order

end

signature HEAP = sig

type item; type heap;

val insert : item * heap -> heap

...

end

functor MkHeap : (X : ORDERED)

-> HEAP where type item = X.t

structure rec Boot : ORDERED = struct

datatype t = ...Heap.heap...

fun compare (x,y) = ...

end

and Heap : (HEAP where type item = Boot.t) = MkHeap(Boot)

Fig. 2. Bootstrapped heap example.

X.B.u. When we are typechecking the body of module B, we ought to know that

X.B.u is bool, but we ought not know anything about X.A.t. In addition, when

typechecking B, we ought to be able to observe that a direct hierarchical reference

to A.t is interchangeable with a recursive reference to X.A.t.

In the case of the module from Figure 1, such a typechecking algorithm seems

fairly straightforward, but it becomes much more complicated if the recursive module

body contains, for instance, nested uses of opaque sealing. It is certainly possible

to define an algorithm that works in the general case—Dreyer’s thesis (2005b)

formalizes such an algorithm—but it is not a pretty sight. Furthermore, we would

really like to be able to explain what is going on using a type system, not just an

ad hoc algorithm.

1.2 Recursion involving generative functor application

Figure 2 exhibits another commonly desired form of recursive module, one that is

in some ways even more problematic than the one from Figure 1. The example is

adapted and simplified from one given by Russo (2001).

In the present version, the goal is to define a recursive data type Boot.t of so-called

“bootstrapped heaps,” a data structure proposed by Okasaki (1998). The important

feature of bootstrapped heaps (for our purposes) is that they are defined recursively

in terms of heaps of themselves, where the heap data structure is constructed by

applying a library functor (in this case, MkHeap) to the Boot module.

The problem with this definition, at least in the case of Standard ML se-

mantics (Milner et al. 1997), is that functors in SML behave generatively, so

each application of MkHeap produces a fresh abstract heap type at run time. The

way this is typically modeled in type theory is by treating the return signature of

MkHeap as synonymous with an existential type. Consequently, while Boot.t must
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be defined before MkHeap(Boot) can be evaluated, the type Heap.heap will not even

exist until MkHeap(Boot) has been evaluated and “unpacked.” It does not make

sense in the ML type system to define Boot.t in terms of a type (Heap.heap) that

does not exist yet.

The usual solution to this problem is to assume that MkHeap is not generative, but

rather applicative (Leroy 1995). Under applicative functor semantics, MkHeap(Boot)

is guaranteed to produce the same heap type every time it is evaluated, and thus the

definition of Boot.t is allowed to refer to MkHeap(Boot).heap statically, without

having to evaluate MkHeap(Boot) first. This solution is certainly sensible if one

is designing a recursive module extension to O’Caml (Leroy 2004), for O’Caml

supports only applicative functors. There are good reasons, however, for supporting

generative functors. Their interpretation in type theory is simpler than that of

applicative functors, and they provide stronger abstraction guarantees that are

desirable in many cases.4 It seems unfortunate that MkHeap is required to be

applicative.

1.3 Overview

Given our exposition thus far, one may wonder: Is recursion fundamentally at

odds with type generativity? In this article, we argue that the answer is no. We

propose a novel account of type abstraction that resolves the problems encountered

in the above recursive module examples and provides an elegant foundation for

understanding how recursion can coexist peacefully with generativity.

The basic idea is to separate the act of generating a name for an abstract type

from the act of defining its underlying representation. To define several abstract

types recursively, one may first “forward-declare” them by generating their names,

and then supply each one’s identity secretly within its own defining expression.

Intuitively, this can be viewed as a kind of backpatching semantics for recursion

at the level of types! The upshot is that there is a unique name for each abstract

type, which is visible to everyone (within a certain scope), but the identity of each

abstract type is known only inside the term that defines it. This is exactly what was

desired in both of the recursive module examples discussed above.

While our new approach to type generativity is operationally quite different from

existing approaches, it is fundamentally compatible with the traditional interpreta-

tion of ADTs in terms of existential types. The catch is that, while existential types

are typically understood via the continuation-passing Church encoding in terms of

universals,5 we offer an alternative destination-passing interpretation. Briefly, instead

of viewing a value of existential type ∃α.A as something that creates a new abstract

type every time it is unpacked, we view it as a function that takes as input a

pre-existing undefined type name β and defines it, returning a value of type A

(with β substituted for α). How the function has defined β, however, we do not

know. By leaving the creation of the abstract type name β up to the client of the

4 For more details, see the discussion in Dreyer et al. (2003).
5 See Section 2.2 for details.
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SIGA = λα : T. λβ : T. {f : α→ β× α,...}
SIGB = λα : T. λβ : T. {g : α→ β× α,...}
SIG = λα : T. λβ : T. {A : SIGA(α)(β), B : SIGB(α)(β)}

new α ↑T, β ↑T in

letrec X : SIG(α)(β) =

{A = set α := int in {f = ...} : SIGA(α)(β),

B = set β := bool in {g = ...} : SIGB(α)(β)}
in ...

Fig. 3. New encoding of example from Figure 1.

existential, our approach makes it significantly easier to link abstract data types

together recursively.

The rest of the article is structured as follows. In Section 2, we discuss the details of

our approach informally, and give examples to illustrate how it works. In Section 3,

we define a type system for recursive type generativity as a conservative extension

of System Fω . To ensure that abstract types do not get defined more than once, we

treat type definitions as a kind of effect and track them in the manner of an effect

system (Gifford & Lucassen 1986; Talpin & Jouvelot 1994). The intention is that

this type system may eventually serve as the basis of a recursive module language.

In Section 4, we develop the meta-theory of our type system. We state and prove

a number of important theorems, leading ultimately to a type soundness result. In

Section 5, we explore the expressive power of our destination-passing interpretation

of ADTs. In Section 6, we briefly compare the present type system with the one

given in the original conference version of this article (Dreyer 2005a) and discuss

some of the technical improvements. Finally, in Section 7, we consider related work,

and in Section 8, we conclude by discussing future work.

2 The high-level picture

We now try to paint a high-level picture of how our approach to recursive type

generativity works. The easiest way to understand is by example, so in Section 2.1,

we use the recursive module examples from Section 1 as a way of introducing the

key constructs of our language. In particular, we show how those examples would be

encoded in our language and why, under this new encoding, they typecheck. Then,

in Section 2.2, we also show how our approach makes it possible to support separate

compilation of recursive abstract data types. Lastly, in Section 2.3, we discuss some

of the subtler issues that we encounter in attempting to prevent “bad” cycles in type

definitions.

2.1 Reworking the examples

Figure 3 shows our new encoding of the recursive module example from Figure 1.

The first thing to notice here is that we have dispensed with modules. SIGA, SIGB,

and SIG are represented here via the well-known encoding of ML signatures as type
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operators in System Fω . The idea is simply to view the types of a signature’s value

components as being parameterized over the signature’s abstract type components.

Correspondingly, the ML feature of using where type to add type definitions to

signatures is encodable in Fω by type-level function application. (See Jones (1996)

for more examples of this encoding. We merely employ the Jones-style encoding

here so that we can study the interaction of recursion and data abstraction at the

foundational level of Fω , with which we assume the reader is familiar.)

Starting on the fourth line, however, we see something that is not standard. (The

underlined portions of the code indicate new features that are not part of Fω .) What

the “new” declaration does is create two new type variables α and β of kind T, the

kind of base types. Throughout this example, you can think of α as standing for A.t

and β as standing for B.u in the original example of Figure 1.

What does it mean to “create a new type variable”? Intuitively, you can think of

it much like creating a reference cell in memory. Imagine that during the execution

of the program you maintain a type store, mapping locations (represented by type

variables) to types. Eventually, each location will get filled in with a type, but

when a type memory cell is first created (by the “new” construct), its contents

are uninitialized. Formally speaking, what the new declaration does is to insert

α and β into the type context with a special binding of the form α ↑T, which

indicates that they have not yet been defined. We refer to such type variables as

writable.

Next, we make use of a letrec construct to define A and B. For simplicity, the

letrec construct employs an unrestricted (i.e., potentially ill-founded) backpatching

semantics for recursion.6 Specifically, we allocate an uninitialized ref cell X in

memory, whose type is rec(SIG(α)(β)). To use X within the body of the recursive

definition—that is, in order to get a value of type SIG(α)(β) without the “rec”—

one must first dereference the memory location by writing fetch(X). This fetch

operation must check whether X’s contents have been initialized and, if not, raise

a run-time error. Finally, when the body of the letrec is finished evaluating, the

resulting value (of type SIG(α)(β)) is backpatched into the location X. (There are

good reasons to require the dereferencing of X to be explicit, as we see in Figure 5.)

Now for the definition of “module” A: The first thing we do here is to backpatch

the type name α with the definition int. This is accomplished by the command

set α := int in {f = ...} : SIGA(α)(β). The use of “:=” notation is appro-

priate because at run time we can think of this operation as updating the contents

of the α location in the type store. At compile time, it results in a change to the

type context so that the typechecking of the remainder of A (i.e., {f = ...}) is done

with the knowledge that α is equal to int. As a result, the type errors from Figure 1

disappear!

Once we have finished typechecking A, however, we want to hide the knowledge

that α is int from the rest of the program. This behavior is built into the static

semantics of the set expression. In other words, the typing rule for set expressions

6 In principle, we believe it should be straightforward to incorporate static detection of ill-founded
recursion (Dreyer 2004) into the present calculus, but we have not yet attempted it.
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ORDERED = λα : T. {compare : α× α→ order}
HEAP = λα : T. λβ : T. {insert : α× β→ β,...}
HEAPGEN = λα : T. ∀β ↑T. unit

β↓−→ HEAP(α)(β)

MkHeap : ∀α ↓T. ORDERED(α)→ HEAPGEN(α)

new α ↑T, β ↑T in

set α :≈ (. . . β . . .) in

letrec X : {Boot:ORDERED(α), Heap:HEAP(α)(β)} =

{Boot = {compare = ...},
Heap = MkHeap [α](Boot)[β]()}

in ...

Fig. 4. New encoding of example from Figure 2.

is designed so that all the rest of the program gets to know about the definition

of A is the following: (1) it defines α in some abstract way, thus rendering α no

longer writable, and (2) it has type SIGA(α)(β). Note that the explicit type annotation

SIGA(α)(β) is critically important here, for it is this annotation that ensures that A.f

is exported at the type α→ β× α and not, say, at the type int→ β× int.

It is useful to compare the set construct with the well-known pack introduction

form for existential types, and also with the related “opaque-sealing” construct in

the ML module system. All of these mechanisms make the implementation of an

abstract type visible only within the scope of a particular term (or module), and

all of them require explicit type (or signature) annotations. The key difference

between the set expression and the traditional mechanisms for abstraction is

that the set expression is used to define an abstract type that has already been

created.

Finally, there is the definition of B, which is analogous to the definition of A.

Voilà! To summarize, by distinguishing the point at which α and β are created

from the points at which they are defined, we have made it possible for all parties

to refer to these types by the same names, but also for the underlying represent-

ation of each type to be specified and made visible only within its own defining

expression.

Let us move on to Figure 4, which shows our new encoding of the bootstrapped

heap example. As in the previous example, we define two abstract types here, α and

β, but now α stands for Boot.t, and β for Heap.heap. The signatures ORDERED and

HEAP are in parameterized form as expected, with the former parameterized over the

type α of items being compared, and the latter parameterized over both the item

type α and the heap type β.

The most unusual (and important) part of this encoding is the type that we

require for the MkHeap functor. Under the standard encoding of generative functors

into Fω , we would expect MkHeap to have the type

∀α : T. ORDERED(α)→∃β : T. HEAP(α)(β)
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The type shown in Figure 4 differs from our expectations in two ways. First, while α

is universally quantified, the quantification is written α ↓T. The reason for this has

to do with avoiding cycles in transparent type definitions, and we defer explanation

of it until Section 2.3. For the moment, read α ↓T as synonymous with α : T. Second,

MkHeap’s result type, HEAPGEN(α), is not an existential, but some weird kind of

universal!

Indeed, HEAPGEN(α) = ∀β ↑T. unit
β↓
−→ HEAP(α)(β) is a universal type, but a very

special one. Specifically, a function of this type takes two arguments, a type and a

value of type unit, and the first argument is required to be a type variable that has

not yet been defined (i.e., a writable variable—hence, the notation ∀β ↑T). Although

the value argument is clearly superfluous in this instance, we see a use for it in

the encoding of separate compilation presented in the following section. When the

function is applied, it will not only return a value of type HEAP(α)(β) but also define

β in the process. We write β ↓ on the arrow type to indicate that the application of

the function engenders the effect of defining β, but how it defines β we cannot tell.

The reason for defining HEAPGEN(α) in this fashion is that it allows us to come up

with a name (β) for the Heap.heap type ahead of time, before the MkHeap functor is

applied. In this way, it is possible for the definition of α (i.e., Boot.t) to refer to β

before β has actually been defined. As we explained in Section 1.2, this is something

that is not possible under the ordinary interpretation of HEAPGEN(α) as an existential

type.

The only other point of interest in this encoding is that α is defined by a new kind

of assignment (:≈). One can think of this assignment as analogous with datatype

definitions in SML, just as := is analogous with transparent type definitions (type

synonyms). The definition of α using :≈ does not change the fact that α is an

abstract type, but it introduces fold and unfold coercions that allow one to coerce

back and forth between α and its underlying definition. This form of type definition

is necessary in order to break up cycles in the type-variable dependency graph, as we

discuss in Section 2.3. Finally, note that α is defined at the top, outside the definition

of X, rather than inside the definition of Boot. The reason for this is that we do not

want the definition of α to be visible only within the implementation of Boot; we

want it to be visible in the largest scope possible.

2.2 Destination-passing style and separate compilation

The strange new universal type that we used to define HEAPGEN(α) in the last

example can be viewed as a kind of existential type in sheep’s clothing. Under

the usual Church encoding of existential types in terms of universals, ∃α : K. τ

can be understood as shorthand for ∀β : T. (∀α : K. τ→ β)→ β. This is quite similar

to ∀α ↑K. unit
α↓
−→ τ in the sense that a function of either type has some type

constructor α of kind K and some value of type τ hidden inside it, but the function’s

type does not tell you what α is. The difference is that the Church encoding is a

function in continuation-passing style (CPS), whereas our new encoding is a function

in destination-passing style (DPS) (Wadler 1985). In Section 5.2, we make the DPS

encoding of existentials precise.
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SeparateA : ∀β : T. ∀α ↑T. rec(SIG(α)(β))
α↓−→ SIGA(α)(β)

= Λβ : T.Λα ↑T. λX : rec(SIG(α)(β)). ...

SeparateB : ∀α : T. ∀β ↑T. rec(SIG(α)(β))
β↓−→ SIGB(α)(β)

= Λα : T.Λβ ↑T. λX : rec(SIG(α)(β)). ...

new α ↑T, β ↑T in

letrec X : SIG(α)(β) =

{A = SeparateA [β][α](X), B = SeparateB [α][β](X)}
in ...

Fig. 5. Separate compilation of A and B from Figure 3.

So, one may wonder, if our DPS universal type is really an existential in disguise,

why do not we just write, say, ∃α ↑K.A instead of ∀α ↑K. unit
α↓
−→ τ? Why bother

with the unit? The answer is that in some cases we want to write a function of

type ∀α ↑K. τ1

α↓
−→ τ2, where α ∈ FV(τ1)—that is, a function that takes as input a

writable type name α, together with a value whose type depends on α. In typical

programming, this does not come up often, but with recursive modules it arises

naturally, especially in the context of separate compilation.

Figure 5 illustrates such a situation. The goal here is to allow the recursive

“modules” A and B from Figure 3 to be compiled separately. We have put the

implementations of A and B inside of two separate “functors” SeparateA and

SeparateB, represented as polymorphic functions. SeparateA takes β (i.e., B.u) as

its first argument, α (i.e., A.t) as its second argument, and the recursive module

variable X as its third argument. The type of SeparateA employs a DPS universal

type to bind α because SeparateA wants to take a writable A.t and define it. Note,

however, that β is bound normally as β : T. (SeparateB of course does the opposite,

because it wants to define β, not α.) The important point here is that the type of the

argument X refers to both α and β, and therefore cannot be moved outside of the

DPS universal.7 If all we had was a DPS universal of the form ∀α ↑K. unit
α↓
−→ τ,

we would have no way of typing SeparateA and SeparateB.

If it is so important to be able to write a function that takes a value argument

after an α ↑K argument, it is natural to ask why we do not just offer two

separate type constructs, ∀α ↑K. τ and τ1

α↓
−→ τ2, of which ∀α ↑K. τ1

α↓
−→ τ2 would

be the composition. The former construct would require its argument to be a

writable variable, and the latter would be a standard sort of effectful function

type; in this case, the effect being the definition of some externally bound type

variable α.

The reason we do not divide up the DPS universal type in this way is that such

a division would result in serious complications for our type system. The main

complication is that, while τ1

α↓
−→ τ2 looks like a standard sort of effect type, the

7 Also important to the success of this encoding is the fact that X must be explicitly dereferenced.
Otherwise, the references to X in the linking module would result in a run-time error. See Dreyer (2004)
for more discussion of this issue.
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effect in question is highly unusual. In particular, if f were a function of that type,

it could only be applied once because, for soundness purposes, we require that a

type variable α can only be defined once. Another way of saying this is that the type

τ1

α↓
−→ τ2 only makes sense while α is writable.

Meta-theoretically speaking, this becomes problematic from the point of view of

defining type substitution. If at some point in the program α gets defined as τ, and

α’s binding in the context changes correspondingly from α ↑T to α : T= τ, then we

should be able to substitute τ for free occurrences of α. But substituting τ for α in

τ1

α↓
−→ τ2 results in a type that does not make sense. In contrast, our type system

avoids this problem by not offering any type constructs whose well-formedness

depends on a free type variable being writable. Moreover, the joint DPS construct

∀α ↑K. τ1

α↓
−→ τ2 is sufficient to encode the kinds of recursive module examples that

we are interested in.

2.3 Avoiding cycles in transparent type definitions

We have now presented all the key constructs in our language and shown how

they can be used to support recursive definitions of generative abstract data types.

To make this approach work, there are two points of complexity that our type

system has to deal with. One involves making sure that writable type variables

get defined once and only once. This is a kind of linearity property and it is not

fundamentally difficult to track using a type-and-effect system, as we explain in

Section 3.

The other point concerns our desire to avoid cycles in transparent type definitions.

While our language is designed to permit recursive definitions of abstract types, we

require that every cycle in the type dependency graph must go through a “datatype,”

that is, one that was defined by α :≈A. (We use A and B here to denote type

constructors of arbitrary kind, as opposed to τ, which represents types of kind T.)

We make this restriction because we want to keep the definition of type equivalence

simple. If we were able to define α := β× β and β := α× α, then we would need to

support some form of equi-recursive types (Amadio & Cardelli 1993; Crary et al.

1999). In fact, since we allow definitions of type constructors of higher kind, we

would need to support equi-recursive type constructors, whose equational theory is

not fully understood.

The mechanism we employ to guarantee that no transparent type cycles arise is

slightly involved, but the reasoning behind it is straightforward to understand. Let

us step through it. First of all, if α is defined by α :≈A, then clearly no restrictions

are necessary. If, however, α is defined transparently by α := A, then we must require

at the very least that A does not depend on α. By this we mean that the normal

form of A, in which all type synonyms have been expanded out, must not refer

to α.

Unfortunately, in the presence of data abstraction, this restriction alone is not

sufficient. Suppose, for instance, that in our example from Figure 3 the type variable

α were defined by A and β by B (instead of by int and bool). The definition of α
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and the definition of β each occur in contexts where the other variable is considered

abstract. Consequently, the restriction that A does not depend on α and B does not

depend on β would not prevent A from depending on β and B from depending

on α. How can our type system ensure that each definition does not contribute to

a transparent cycle without peeking at what the other one is (and hence violating

abstraction)?

A simple, albeit conservative, solution to this dilemma is to demand that, if α is

defined by α := A, then A may not depend on any abstract type variables, except

those that are known to be datatypes. We will say that a type A obeying this

restriction is stable. While this approach does the trick, it is rather limiting. For

example, in ML, it is common to define a type transparently in terms of an abstract

type imported from another module (which may or may not be known to be a

datatype). The stability restriction, however, would prohibit such a type definition

inside a recursive module.

Therefore, to make our type system less draconian, we employ a modified form of

the above conservative solution, in which the restriction on transparent definitions

is relaxed in two ways. First, in order to permit transparent definitions to depend on

abstract types that are not datatypes, we expand the notion of stability by allowing

type variables to be considered stable if they are bound in the context as such. A

stable type variable, bound as α ↓K, may only be instantiated with other stable types.

We also introduce a new form of universal type, ∀α ↓K. τ, describing polymorphic

terms whose type arguments are required to be stable.

We have already seen an instance where a stable universal is needed, namely, in

the type of the MkHeap functor from Figure 4. The reason for quantifying the item

type α as a stable variable is that it enables the MkHeap functor to define the heap

type β transparently in terms of α (e.g., set β := α list in . . .). If α were only

bound as α : T, then β would have to be defined as a datatype to ensure stability.

Since MkHeap requires its item argument to be stable, it is imperative that the actual

type α to which it is applied be stable. In the case of the Boot module, α is defined

as a datatype, so all is well.

The second way in which we relax the restriction on transparent type definitions

is that, while we require them to be stable, we do not need them to be immediately

stable. For example, say we have two writable type variables α and β. It is

clearly OK to define β := int, followed by α := β, but what about processing

the definitions in the reverse order? If α := β comes first, then α’s definition is

momentarily unstable. Ultimately, though, the definitions are still perfectly acyclic

because α’s definition is eventually stable. Moreover, there are situations where it is

useful to have the flexibility of defining α and β in either order (in particular, see

Section 5.1).

To afford this flexibility, when typechecking set α := A in e : τ, we allow A to

depend on some set of writable variables σ (not including α), so long as the variables

in σ are all backpatched with stable definitions by the time α’s definition is hidden

(i.e., by the time e has finished evaluating). While this requirement is not strictly

necessary, it has the benefit that all the code that is evaluated in the aftermath of

α’s defining expression may depend on α without any restrictions.
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Type Variables α, β ∈ TypVars

Type Variable Sets σ ∈ Pfin(TypVars)

Kinds K,L ::= T | 1 | K1×K2 | K1→K2

Constructors A,B ::= α | b | 〈〉 | 〈A1,A2〉 | πiA | λα : K.A | A1(A2)

Base Types b ::= unit | A1×A2 | A1→A2 | rec(A) |
∀α : K.A | ∀α ↓K.A | ∀α ↑K.A1

α↓−→A2

Eliminations E ::= • | πiE | E(A)

Type Contexts ∆ ::= ∅ | ∆, α : K | ∆, α ↑K | ∆, α ↓K |
∆, α : K = A | ∆, α : K≈A

Type Effects ϕ ::= α := A | α :≈A | σ ↓

Fig. 6. Syntax of types.

3 The type system

In this section we present the static and dynamic semantics of a core calculus for

recursive type generativity named RTG.

3.1 Type structure

The syntax of RTG’s type structure is shown in Figure 6. The base type constructors

b include all the usual Fω base types, plus the new type constructs introduced in

the examples of Section 2. The language of higher type constructors and kinds is

standard Fω , extended with products. Type eliminations E are used in the typing

rules for fold’s and unfold’s (see the discussion of Rules 16 and 17 in Section 3.2).

Type contexts ∆ include bindings for ordinary types (α : K), writable types (α ↑K),

stable types (α ↓K), transparent type synonyms (α : K= A), and datatypes (α : K≈A).

We treat type contexts as unordered sets, assume implicitly that all bound variables

are distinct, and take comma (“,”) to mean disjoint union. We write ∆(α) to denote

the kind to which α is bound in ∆. It is useful to refer to certain subsets of the

domain of a context, according to the following definitions:

Definition 3.1 (common subdomains of a type context)

Given a type context ∆, the following are subsets of dom(∆):

writable(∆)
def
= {α | α ↑K ∈ ∆}

unstable(∆)
def
= {α | α ↑K ∈ ∆ ∨ α : K ∈ ∆}

abstract(∆)
def
= {α | α ↑K ∈ ∆ ∨ α : K ∈ ∆ ∨ α ↓K ∈ ∆ ∨ α : K≈A ∈ ∆}

Our first task is to define judgments for kinding (∆  A : K) and equivalence

(∆  A1 ≡ A2 : K). For this purpose, we steal (with only minor extensions)

the judgments defined by Stone (2005) in Section 9.1 of Pierce’s ATTAPL book.

Note that the language we are referring to is not the Stone-Harper singleton kind

language (2005); it is just Fω with β-η equivalence, extended with support for

type definitions in the context. Our new type constructs require only minimal,

straightforward extensions to Stone’s language. The kinding and equivalence rules

are shown in Figure 7.
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Well-formed type constructors: ∆  A : K

∆(α) = K

∆  α : K ∆  unit : T

∆  A1 : T ∆  A2 : T

∆  A1×A2 : T

∆  A1 : T ∆  A2 : T

∆  A1→A2 : T

∆  A : T
∆  rec(A) : T

∆, α : K  A : T

∆  ∀α : K.A : T

∆, α : K  A : T

∆  ∀α ↓K.A : T

∆, α : K  A1 : T ∆, α : K  A2 : T

∆  ∀α ↑K.A1

α↓−→A2 : T

∆  〈〉 : 1

∆  A1 : K1 ∆  A2 : K2

∆  〈A1,A2〉 : K1×K2

∆  A : K1×K2

∆  πiA : Ki

∆, α : K1  A : K2

∆  λα : K1.A : K1→K2

∆  A1 : K2→K ∆  A2 : K2

∆  A1(A2) : K

Type constructor equivalence: ∆  A ≡ B : K

∆  A : K
∆  A ≡ A : K

∆  B ≡ A : K
∆  A ≡ B : K

∆  A1 ≡ B : K ∆  B ≡ A2 : K

∆  A1 ≡ A2 : K

∆  A1 ≡ B1 : T ∆  A2 ≡ B2 : T

∆  A1×A2 ≡ B1×B2 : T

∆  A1 ≡ B1 : T ∆  A2 ≡ B2 : T

∆  A1→A2 ≡ B1→B2 : T

∆, α : K  A ≡ B : T

∆  ∀α : K.A ≡ ∀α : K.B : T

∆, α : K  A ≡ B : T

∆  ∀α ↓K.A ≡ ∀α ↓K.B : T

∆  A ≡ B : T
∆  rec(A) ≡ rec(B) : T

∆, α : K  A1 ≡ B1 : T ∆, α : K  A2 ≡ B2 : T

∆  ∀α ↑K.A1

α↓−→A2 ≡ ∀α ↑K.B1

α↓−→B2 : T

∆  A1 ≡ B1 : K1 ∆  A2 ≡ B2 : K2

∆  〈A1,A2〉 ≡ 〈B1,B2〉 : K1×K2

∆  A ≡ B : K1×K2

∆  πiA ≡ πiB : Ki

∆, α : K1  A ≡ B : K2

∆  λα : K1.A ≡ λα : K1.B : K1→K2

∆  A1 ≡ B1 : K2→K ∆  A2 ≡ B2 : K2

∆  A1(A2) ≡ B1(B2) : K

α : K = A ∈ ∆

∆  α ≡ A : K

∆  A1 : K1 ∆  A2 : K2

∆  πi〈A1,A2〉 ≡ Ai : Ki

∆, α : K1  A2 : K2 ∆  A1 : K1

∆  (λα : K1.A2)(A1) ≡ {α �→A1}A2 : K2

∆  A : 1 ∆  B : 1
∆  A ≡ B : 1

∆  π1A ≡ π1B : K1 ∆  π2A ≡ π2B : K2

∆  A ≡ B : K1×K2

∆, α : K1  A(α) ≡ B(α) : K2 α �∈ FV(A) ∪ FV(B)

∆  A ≡ B : K1→K2

Fig. 7. Kinding and equivalence rules for type constructors.

The only thing that the kinding judgment needs to know from the context ∆ is

what the kinds of its bound variables are. The equivalence judgment additionally

cares whether a variable is bound as abstract or transparent. Neither judgment,

though, cares whether a variable is stable or writable etc., since these notions are

only relevant to the term language. Thus, when we make reference to the kinding

and equivalence judgments, we make use of the following context erasure:
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Definition 3.2 (erasure of a context)

Given a type context ∆, let ∆ be its erasure, defined as follows:

∆
def
= {α : ∆(α) | α ∈ abstract(∆)} ∪ {α : K = A | α : K = A ∈ ∆}

To avoid irritating proliferation of erasure notation, we take ∆  A : K and

∆  A1 ≡ A2 : K to be shorthand for ∆  A : K and ∆  A1 ≡ A2 : K, respectively.

Now that we have settled on a kinding judgment, we can define what it means

for an RTG type context to be well-formed. The interesting part of this definition is

the restriction that a type context may only contain cyclic dependencies if the cycle

is broken by a datatype binding. To be precise:

Definition 3.3 (acyclic type contexts)

We say that a type context ∆ is acyclic if there is an ordering of its domain—

α1, · · · , αn—such that ∀i ∈ 1..n, if αi : Ki = Ai ∈ ∆, then FV(Ai) ⊆ {α1, · · · , αi−1}. In

this case, we call α1, · · · , αn an acyclic ordering of ∆.

Definition 3.4 (well-formed type contexts)

We say that a type context ∆ is well formed, written  ∆ ok, if:

1. ∆ is acyclic

2. (α : K = A ∈ ∆ ∨ α : K≈A ∈ ∆)⇒ ∆  A : K

A key concept in our type system is the idea of stability. To define what it means

for a type constructor to be stable, we first define a useful auxiliary notion, which

we call the basis of a type constructor. Intuitively, the basis of a type constructor

A is the set of unstable abstract type variables on which A depends. This set is

determined by first computing the η-long, β-normal form of A, written norm∆(A),

and then inspecting its free variables. (For details on how to compute norm∆(A),

see Section 4.1.) Stable types are precisely those types whose bases are empty.

Formally:

Definition 3.5 (basis of a type constructor)

Given a well-formed type context ∆ and a type constructor A that is well-formed in

∆, let basis∆(A) be defined as follows:

basis∆(A)
def
= FV(norm∆(A)) ∩ unstable(∆)

Definition 3.6 (stable type constructor)

We say that a type constructor A (with kind K in well-formed type context ∆) is

stable, written ∆  A ↓ K, if ∆  A : K and basis∆(A) = ∅.

The final and most unusual element of our type structure is the notion of type

effects ϕ. A type effect is something that changes the state of knowledge about

one or more type variables in the context. The effect α := A changes α from being

writable to being a type synonym for A. The effect α :≈A changes α from being

writable to being a datatype whose underlying definition is A. The effect σ ↓ changes

all the variables in σ from writable to stable, but does not reveal how the variables

have been defined. We now formalize this description:

https://doi.org/10.1017/S0956796807006429 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006429


448 D. Dreyer

Well-formed type effects: ∆  ϕ ok

α ↑K ∈ ∆ ∆  A : K basis∆(A) ⊆ writable(∆) \ {α}
∆  α := A ok

(1)

α ↑K ∈ ∆ ∆  A : K

∆  α :≈A ok
(2)

σ ⊆ writable(∆)

∆  σ ↓ ok
(3)

Fig. 8. Well-formedness of type effects.

Definition 3.7 (application of a type effect)

Let the application of type effect ϕ to type context ∆, written ∆@ϕ, be defined as

follows:

∆@ α := A
def
= ∆ \ {α ↑∆(α)} ∪ {α : ∆(α) = norm∆(A)}

∆@ α :≈A
def
= ∆ \ {α ↑∆(α)} ∪ {α : ∆(α)≈A}

∆@ σ ↓ def
= ∆ \ {α ↑∆(α) | α ∈ σ} ∪ {α ↓∆(α) | α ∈ σ}

The reason that ∆@ α := A defines α as norm∆(A) instead of A is to ensure that the

resulting context is acyclic. To take a silly example, suppose one tried to set α := A,

where A = (λβ : T. int)(α). This definition is semantically valid because A is stable

(its normal form is int). Nevertheless, the binding α : T= A is syntactically cyclic.

Normalizing A eliminates the potential for a purely syntactic cycle of this sort.

Figure 8 defines a judgment of well-formedness for type effects (∆  ϕ ok). Rules 2

and 3 are self-explanatory. In Rule 1, the third premise checks that the transparent

definition α := A is semantically acyclic, as well as that A does not depend on any

variables β bound as β : K. This latter condition is in place to ensure that type

substitution holds. Suppose, for instance, that A = β, where β is bound as β : K.

There is nothing preventing β from being substituted with α, and in that case the

effect would become α := α, which is clearly ill-formed.

Note that the same thing cannot happen if β is bound as β ↑K because

substitutions are not permitted to alias writable variables. (See Section 4.3 for a

full definition of well-formed type substitution.) Moreover, if A depends on an

unstable, non-writable β, there is no way that A can eventually become stable via

the backpatching of β. Thus, since A is irrevocably unstable, there is no point in

allowing the definition α := A.

3.2 Term structure

The syntax of RTG’s term structure is shown in Figure 9. After the exposition of

Section 2, the new term constructs in our language should all look familiar. A few

minor exceptions: let α= A in e enables local transparent type definitions inside

expressions. It is semantically equivalent to {α �→A}e—that is, e with A substituted

for free occurrences of α. Also, instead of a letrec, we employ a self-contained

recA(x. e) expression. One can think of this as shorthand for letrec x : A = e in x.

For simplicity, we require that all sequencing of operations be done explicitly

with the use of a let expression (let x= e1 in e2). It is straightforward to
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Value Variables x, y ∈ ValVars

Values v ::= x | () | (v1, v2) | λx : A. e | Λα : K. e | Λα ↓K. e |
Λα ↑K. λx : A. e | foldA | unfoldA | foldA(v)

Terms e, f ::= v | πiv | v1(v2) | v[A] | v1[α](v2) | recA(x. e) | fetch(v) |
let α= A in e | let x= e1 in e2 | new α ↑K in e |
set α := A in e : B | set α :≈A in e : B

Value Contexts Γ ::= ∅ | Γ, x : A

Fig. 9. Syntax of terms.

code up standard left-to-right (or right-to-left) call-by-value semantics for function

application etc. using a let.

We say that a value context Γ is well-formed under type context ∆, written

∆  Γ ok, if  ∆ ok and ∀x : A ∈ Γ. ∆  A : T.

Figure 10 defines the typing rules for terms. Our typing judgment has the form

∆; Γ  e : A with σ ↓, and is read: “Under type context ∆ and value context Γ, the

term e has type A and type effect σ ↓.” We leave off the “with σ ↓” if σ = ∅.
Rules 4 through 11 are completely standard. Note that function bodies are not

permitted to have type effects, that is, to define externally bound type variables.

If they were, we would need to support effect types such as A1

α↓
−→ A2, which we

argued in Section 2.2 is a problematic feature.

Rules 12 and 13 for stable universals are completely analogous to the normal

universal rules (10 and 11).

Rules 14 and 15 for DPS universals are straightforward as well. The body of a

DPS universal is required to define its type argument, but that is the only type effect

it is allowed to have since that is the only effect written on its arrow. What if we

want to write a function that takes multiple writable type arguments and defines all

of them? It turns out that such a function is already encodable within the language

by packaging all the writable types together as a single writable type constructor of

product kind. See Section 5.1 for details.

Rules 16 and 17 for foldA and unfoldA require that the type A that is being

folded into or out of is some type path E{α} rooted at a datatype variable α, whose

underlying definition is B. These coercions witness the isomorphism between E{α}
and E{B}. (For simplicity, we have made foldA and unfoldA into new canonical

forms of the ordinary arrow type. In practice, one may wish to classify these values

using a separate coercion type, so as to indicate to the compiler that they behave

like the identity function at run time (Vanderwaart et al. 2003).)

Note that we have not included any type abstraction mechanisms corresponding

to the context bindings α : K = A and α : K≈A. Intuitively, one might expect such

mechanisms to be useful in interpreting ML functors whose arguments contain

transparent type or datatype components. Yet, while there is nothing wrong in

supporting such mechanisms, we do not believe they are necessary in practice. In

particular, a transparent type abstraction construct, Λα : K = A. e, is obviated by the

ability to let-bind α, that is, let α= A in e. A datatype abstraction construct,
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Well-formed terms: ∆; Γ  e : A with σ ↓

We write ∆; Γ  e : A as shorthand for ∆; Γ  e : A with ∅ ↓.
x : A ∈ Γ

∆; Γ  x : A
(4)

∆; Γ  () : unit
(5)

∆; Γ  v1 : A1 ∆; Γ  v2 : A2

∆; Γ  (v1, v2) : A1×A2

(6)
∆; Γ  v : A1×A2 i ∈ {1, 2}

∆; Γ  πiv : Ai

(7)

∆  A : T ∆; Γ, x : A  e : B

∆; Γ  λx : A. e : A→B
(8)

∆; Γ  v1 : A→B ∆; Γ  v2 : A

∆; Γ  v1(v2) : B
(9)

∆, α : K; Γ  e : A

∆; Γ  Λα : K. e : ∀α : K.A
(10)

∆; Γ  v : ∀α : K.B ∆  A : K

∆; Γ  v[A] : {α �→A}B
(11)

∆, α ↓K; Γ  e : A

∆; Γ  Λα ↓K. e : ∀α ↓K.A
(12)

∆; Γ  v : ∀α ↓K.B ∆  A ↓ K

∆; Γ  v[A] : {α �→A}B
(13)

∆, α : K  A : T ∆, α ↑K; Γ, x : A  e : B with α ↓

∆; Γ  Λα ↑K. λx : A. e : ∀α ↑K.A
α↓−→B

(14)

∆; Γ  v1 : ∀α ↑K.A
α↓−→B ∆; Γ  v2 : {α �→ β}A β ↑K ∈ ∆

∆; Γ  v1[β](v2) : {α �→ β}B with β ↓
(15)

∆  A ≡ E{α} : T α : K≈B ∈ ∆

∆; Γ  foldA : E{B}→A
(16)

∆  A ≡ E{α} : T α : K≈B ∈ ∆

∆; Γ  unfoldA : A→E{B}
(17)

∆  A : T ∆; Γ, x : rec(A)  e : A with σ ↓
∆; Γ  recA(x. e) : A with σ ↓ (18)

∆; Γ  v : rec(A)

∆; Γ  fetch(v) : A
(19)

∆  A : K ∆, α : K = A; Γ  e : B with σ ↓
∆; Γ  let α= A in e : {α �→A}B with σ ↓

(20)

∆; Γ  e1 : A1 with σ1 ↓ ∆@ σ1 ↓; Γ, x : A1  e2 : A2 with σ2 ↓
∆; Γ  let x= e1 in e2 : A2 with σ1, σ2 ↓

(21)

∆, α ↑K; Γ  e : A with α, σ ↓ α �∈ FV(A)

∆; Γ  new α ↑K in e : A with σ ↓ (22)

∆  α := A ok ∆@ α := A; Γ  e : B with σ ↓ basis∆(A) ⊆ σ

∆; Γ  (set α := A in e : B) : B with α, σ ↓ (23)

∆  α :≈A ok ∆@ α :≈A; Γ  e : B with σ ↓
∆; Γ  (set α :≈A in e : B) : B with α, σ ↓ (24)

∆; Γ  e : B with σ ↓ ∆  A ≡ B : T

∆; Γ  e : A with σ ↓ (25)

Fig. 10. Typing rules.

Λα : K≈A. e, cannot be mimicked as directly in general. However, the kind K of

an ML datatype α always has the form T or Tn→T—that is, it represents a single

(possibly polymorphic) type component. To parameterize a term over α : K≈A for

this special case of K, we follow the interpretation of ML datatypes as ADTs

formalized by Harper and Stone (2000): If K = T, we abstract over a stable
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α ↓T, together with two functions of type A→ α and α→A, representing foldα
and unfoldα, respectively. If K = Tn→T, we abstract over a stable α ↓K, together

with two polymorphic functions of type ∀β : Tn.A(β)→ α(β) and ∀β : Tn. α(β)→A(β),

representing Λβ : Tn. foldα(β) and Λβ : Tn. unfoldα(β), respectively. These additional

term arguments are enough to support all possible ways that we could fold/unfold

α if we had access to the binding α : K≈A directly.

Rules 18 and 19 for rec and fetch are completely straightforward. Notice that

the body of a rec may have arbitrary type effects. Also, the canonical forms of type

rec(A) are variables. In the operational semantics (Section 3.3), we use variables to

model backpatchable memory locations.

Rule 20 processes the let binding of α= A by adding that type definition to the

context when typechecking the let body. It substitutes A for α, however, in the

result type. Note that there is no need to restrict A to be stable because α’s definition

as A is never hidden.

Rule 21 for let x= e1 in e2 is slightly interesting in that the type effect σ1 ↓
engendered by e1 must be applied to the type context ∆ before typechecking e2.

Rule 22 for new α ↑K in e introduces α into scope as a writable variable

during the typechecking of e and requires e to define it. In addition, α is not

permitted to escape its scope by appearing in the free variables of the result

type A.

Rule 23 formalizes the semantics for transparent type backpatching that we

described at the end of Section 2.3. In particular, the first premise, ∆  α := A ok,

allows α to depend on any writable type variables besides α. It does not check

that A is immediately stable. Once the body of the set has been typechecked, we

know what variables will have become stable by the time α is hidden, namely, the

ones in σ. The rule then checks that the only variables that A depends on are

contained in σ, and it adds α to the list of variables that are defined by the set

expression.

Rule 24 for datatype definitions is similar to the previous rule, but simpler

because datatype definitions are always considered stable. The type annotation B is

not actually necessary in this case, since a datatype is an abstract type even when

its definition is known, but we include the annotation for symmetry.

Finally, Rule 25 is a standard type conversion rule.

3.3 Operational semantics

We define the operational semantics of our language in Figure 11 using an

abstract machine semantics. A machine state Ω is either of the form BlackHole

or (∆; ω; C; e). The former arises when an attempt is made to fetch a recursive

location whose contents have not yet been initialized. In the normal state, ∆ is the

current type context (i.e., the type store), ω is the current value store, C is the current

continuation, and e is the expression currently being evaluated.

In the language defined here, the only purpose of the value store is to support

a backpatching semantics for recursion. It could naturally be extended to support

other things, such as mutable references. A value store ω binds variables to either
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Machine States Ω ::= (∆; ω; C; e) | BlackHole

Value Stores ω ::= ∅ | ω, x �→ v | ω, x �→ ?

Continuations C ::= • | C ◦F
Continuation Frames F ::= let x= • in e | recA(x ← •)

Reductions: e � e′

πi(v1, v2) � vi
(26)

(λx : A. e)(v) � {x �→ v}e
(27)

(Λα : K. e)[A] � {α �→A}e
(28)

(Λα ↓K. e)[A] � {α �→A}e
(29)

(Λα ↑K. λx : A. e)[β](v) � {α �→ β}{x �→ v}e
(30)

unfoldA(foldB(v)) � v
(31)

let α= A in e � {α �→A}e
(32)

Machine state transitions: Ω � Ω′

e � e′

(∆; ω; C; e) � (∆; ω; C; e′)
(33)

(∆; ω; C; let x= e1 in e2) � (∆; ω; C ◦ let x= • in e2; e1)
(34)

(∆; ω; C ◦ let x= • in e; v) � (∆; ω; C; {x �→ v}e)
(35)

x �∈ dom(ω)

(∆; ω; C; recA(x. e)) � (∆; ω, x �→ ?; C ◦ recA(x ← •); e) (36)

x ∈ dom(ω)

(∆; ω; C ◦ recA(x ← •); v) � (∆; ω@ x := v; C; v)
(37)

x ∈ dom(ω) ω(x) = v

(∆; ω; C; fetch(x)) � (∆; ω; C; v)
(38)

x ∈ dom(ω) ω(x) = ?

(∆; ω; C; fetch(x)) � BlackHole
(39)

α �∈ dom(∆)

(∆; ω; C; new α ↑K in e) � (∆, α ↑K; ω; C; e)
(40)

α ↑K ∈ ∆

(∆; ω; C; set α := A in e : B) � (∆@ α := A; ω; C; e)
(41)

α ↑K ∈ ∆

(∆; ω; C; set α :≈A in e : B) � (∆@ α :≈A; ω; C; e)
(42)

Fig. 11. Operational semantics.

values (v) or junk (written ?). Assuming x ∈ dom(ω), we write ω(x) to denote the

contents of location x in ω. Mirroring the syntax of type effect application, we

write ω@ x := v to signify the store ω′ with the property that dom(ω′) = dom(ω),

ω′(x) = v, and ω′(y) = ω(y) for all y ∈ dom(ω), y �= x.

Continuations C are represented as stacks of continuation frames F. There are

only two continuation frames. The first is let x= • in e, which waits for x’s binding

to evaluate to a value v and then plugs v in for x in e. The second is recA(x ← •),
which waits for the body of a recursive term to evaluate to a value v and then

backpatches the recursive memory location x with v.
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The operational semantics itself is entirely what one would expect given our

discussion from Section 2. The new construct has the effect of creating a new entry

in the type store at run time. The set constructs have the effect of updating the

type store at run time. In short, the semantics is faithful to our intuition.

That said, it is worth noting that, while the type store ∆ is useful in defining

the operational semantics in such a way that it is easy to prove type soundness,

it does not have any real influence on run-time computation. In other words,

the operational semantics of Figure 11 never consults the type store in order to

determine the identity of a type variable and make a transition on the basis of

that information. Consequently, there is no need in an actual implementation to

construct and maintain the type store, and the operations for creation and definition

of abstract type variables may both be compiled as no-ops.

4 Meta-theory

In this section, we develop the meta-theory of RTG to the point that we can prove

a type soundness theorem. For any type judgment J, we use the notation “∆ � J”

to signify that  ∆ ok and ∆  J. For any term judgment J, we use the notation

“∆; Γ � J” to signify that ∆  Γ ok and ∆; Γ  J.

4.1 Normalization

Figure 12 defines norm∆(A), the η-long, β-normal form of type constructor A in

context ∆. The style of definition follows Stone and Harper (2005). Kind-directed

normalization, ∆  A : K =⇒ B, converts A into η-long form and reduces the

normalization problem to one for constructors of kind T. Weak head normalization,

∆  A
wh
=⇒ A′, reduces A to a path A′, which is either a base type, b, or a sequence of

eliminations rooted at an abstract variable, E{α}. Finally, structural normalization,

∆  A′ −→ B, descends recursively into A′, normalizing its subterms.

We begin with a few basic facts about normalization. Theorem 4.1 can be proven

using a standard logical relations argument, but the proof is beyond the scope of

this article. See Stone (2005) and Stone and Harper (2005) for details.

Theorem 4.1 (fundamental theorem of normalization)

Suppose  ∆ ok. Then:

1. If ∆  A : K, then ∆  A ≡ norm∆(A) : K.

2. If ∆  A ≡ B : K, then norm∆(A) = norm∆(B).

Lemma 4.2 (useful facts about normalization)

Suppose ∆ � A : K and B = norm∆(A). Then:

1. If FV(A) ⊆ abstract(∆), then FV(B) ⊆ FV(A) (and thus, as a corollary,

basis∆(A) ⊆ FV(A) ∩ unstable(∆)).

2. FV(B) ⊆ abstract(∆).

3. If ∆′ ⊆ ∆ and ∆′ � A : K, then norm∆′(A) = B (and thus, as a corollary,

FV(B) ⊆ dom(∆′).)
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Type constructor normalization: norm∆(A) ∆  A =⇒ B

norm∆(A) = B if ∆  A =⇒ B

∆  A =⇒ B if ∆  A : K and ∆  A : K =⇒ B

Kind-directed normalization: ∆  A : K =⇒ B

∆  A : 1 =⇒ 〈〉
∆  A : T =⇒ B if ∆  A

wh
=⇒ A′ and ∆  A′ −→ B

∆  A : K1×K2 =⇒ 〈B1,B2〉 if ∆  π1A =⇒ B1 and ∆  π2A =⇒ B2

∆  A : K1→K2 =⇒ λα : K1.B if ∆, α : K1  A(α) =⇒ B

Weak head normalization: ∆  A
wh
=⇒ B

∆  A
wh
=⇒ B if ∆  A

wh−→ A′ and ∆  A′
wh
=⇒ B

∆  A
wh
=⇒ A if A = b, or A = E{α} and α : K ∈ ∆

Weak head reduction: ∆  A
wh−→ B

∆  E{πi〈A1,A2〉}
wh−→ E{Ai} always

∆  E{(λα : K.A2)(A1)}
wh−→ E{{α �→A1}A2} always

∆  E{α} wh−→ E{A} if α : K = A ∈ ∆

Structural normalization: ∆  A −→ B

∆  unit −→ unit always

∆  A1×A2 −→ B1×B2 if ∆  A1 =⇒ B1 and ∆  A2 =⇒ B2

∆  A1→A2 −→ B1→B2 if ∆  A1 =⇒ B1 and ∆  A2 =⇒ B2

∆  ∀α : K.A −→ ∀α : K.B if ∆, α : K  A =⇒ B

∆  ∀α ↓K.A −→ ∀α ↓K.B if ∆, α : K  A =⇒ B

∆  ∀α ↑K.A1

α↓−→A2 −→ ∀α ↑K.B1

α↓−→B2 if ∆, α : K  A1 =⇒ B1

and ∆, α : K  A2 =⇒ B2

∆  α −→ α always

∆  πiA −→ πiB if ∆  A −→ B

∆  A1(A2) −→ B1(B2) if ∆  A1 −→ B1 and ∆  A2 =⇒ B2

Fig. 12. Normalization of type constructors.

Proof

By inspection of the normalization algorithm. Specifically:

For Part 1, the only way B can refer to type variables outside of FV(A) is if A

refers to type synonym variables that the normalization algorithm expands. This

possibility is precluded, however, by the premise that FV(A) ⊆ abstract(∆). The

second conclusion of Part 1 follows directly from the definition of basis∆(A).

For Part 2, suppose that FV(B) �⊆ abstract(∆). It is straightforward to define

a type constructor B′ that is equivalent to B but where FV(B′) ⊆ abstract(∆), by

simply expanding out all type synonym variables that B refers to. Then, by appealing

to Part 1 of the lemma, we see that FV(B) ⊆ FV(B′), yielding a contradiction.

For Part 3, since  ∆′ ok, the bindings in ∆′ are self-contained. Since FV(A) ⊆
dom(∆′), there is no way that the normalization algorithm, when given A and ∆,
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can ever access one of the bindings that is in ∆ but not in ∆′. Thus, B = norm∆′(A).

The corollary follows from the fact that norm∆′ (A) is well-formed in ∆′. �

4.2 Validity

Next, we have a standard validity (aka regularity) property, the proof of which relies

on the fact that the “static” judgments of kinding, equivalence, stability, and context

well-formedness are unaffected by the application of well-formed type effects to their

contexts.

Proposition 4.3 (context well-formedness preserved under effects)

If ∆ � ϕ ok, then  ∆@ϕ ok.

Proof

The cases for ϕ = α :≈A and ϕ = σ ↓ are straightforward. In the case that

ϕ = α := A, we have basis∆(A) ⊆ writable(∆) \ {α}. We therefore know that α �∈
FV(norm∆(A)). By Part 2 of Lemma 4.2, we have that FV(norm∆(A)) ⊆ abstract(∆).

Thus, replacing the binding α ↑∆(α) with α : ∆(α) = norm∆(A), which is what the

definition of ∆@ α := A does, will not introduce any cycles among the transparent

definitions of ∆. �

Proposition 4.4 (kinding and equivalence preserved under effects)

Suppose ∆ � ϕ ok. Then:

1. ∆  A : K if and only if ∆@ϕ  A : K.

2. If ∆  A1 ≡ A2 : K, then ∆@ϕ  A1 ≡ A2 : K.

3. If ϕ = σ ↓ and ∆@ϕ  A1 ≡ A2 : K, then ∆  A1 ≡ A2 : K.

4. ∆  Γ ok if and only if ∆@ϕ  Γ ok.

Proof

First of all, recall that both the kinding and equivalence judgments only expect

contexts that have undergone erasure, and that the notation ∆  A1 ≡ A2 : K is

really shorthand for ∆  A1 ≡ A2 : K. Furthermore, recall that the kinding judgment

cares only about the kinds of the variables in the context. Part 1 is valid because ϕ

does not change the kinds of the variables in ∆. Part 2 is valid because, if anything,

∆@ϕ is a more informative context than ∆. Part 3 is valid because ∆@ σ ↓ = ∆.

Part 4 follows from Part 1. �

Proposition 4.5 (stability preserved under effects)

If ∆  A ↓ K and ∆ � ϕ ok, then ∆@ϕ  A ↓ K.

Proof

Let B = norm∆(A) and let ∆′ = ∆@ϕ. By Proposition 4.4, since ∆  A ≡
B : K, we have ∆′  A ≡ B : K. Thus, basis∆′(A) = basis∆′(B). By Part 2

of Lemma 4.2, together with the fact that A is stable, we have that FV(B) ⊆
abstract(∆) \ unstable(∆). Now, let B′ = norm∆′(B). By Part 1 of Lemma 4.2,

FV(B′) ⊆ FV(B). In addition, note (by definition of ∆@ϕ) that unstable(∆′) ⊆
unstable(∆). Consequently, since basis∆′(B) = FV(B′) ∩ unstable(∆′), we have that

basis∆′(A) ⊆ (abstract(∆) \ unstable(∆)) ∩ unstable(∆) = ∅. �
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Proposition 4.6 (validity)

If ∆; Γ � e : A with σ ↓, then ∆  A : T and ∆  σ ↓ ok.

Proof

By straightforward induction on derivations, with appropriate uses of Proposi-

tions 4.3 and 4.4 for Rules 21, 23, and 24. �

4.3 Type substitution

Next, we prove a type substitution property. This is a bit more involved. Let a

type substitution δ be a total mapping from type variables to type constructors

that behaves like the identity on all but a finite set of variables, called its domain,

written dom(δ). Let id stand for the identity substitution. We write δA (resp. δe,

δΓ) to signify the result of performing the substitution δ on the free variables of A

(resp. e, Γ) in the usual capture-avoiding manner. For sets σ, we take δσ to mean

{δα | α ∈ σ}, and for effects ϕ = α := A, α :≈A, or σ ↓, we take δϕ to mean δα := δA,

δα :≈ δA, or δσ ↓, respectively.

The definition of well-formed type substitution is long (because there are five

different kinds of context bindings) but fairly straightforward:

Definition 4.7 (well-formed type substitutions)

We say that a type substitution δ maps ∆ to ∆′, written ∆′  δ : ∆, if:

1. dom(δ) ⊆ dom(∆)

2.  ∆ ok and  ∆′ ok

3. ∀α ∈ dom(∆). ∆′  δα : ∆(α)

4. ∀α : K = A ∈ ∆. ∆′  δα ≡ δA : K

5. ∀α : K≈A ∈ ∆. ∃α′ : K≈A′ ∈ ∆′. ∆′  α′ ≡ δα : K and ∆′  A′ ≡ δA : K

6. ∀α ↓K ∈ ∆. ∆′  δα ↓ K

7. ∀α ↑K ∈ ∆. ∃α′ ↑K ∈ ∆′. α′ = δα

8. ∀α1 ↑K1 ∈ ∆. ∀α2 ↑K2 ∈ ∆. (δα1 = δα2)⇒ (α1 = α2)

The only conditions that are really unusual are the last two. We require that δ map

writable variables to variables, not arbitrary type expressions, and furthermore that

it not alias any two writable variables that were originally distinct. These conditions

are critical, since it is only safe to backpatch a writable variable once.

Let us first restate some substitution properties from Stone (2005):

Proposition 4.8 (substitution on types and contexts)

Suppose ∆′  δ : ∆. Then:

1. If ∆  A : K, then ∆′  δA : K.

2. If ∆  A1 ≡ A2 : K, then ∆′  δA1 ≡ δA2 : K.

3. If ∆  Γ ok, then ∆′  δΓ ok.

Definition 4.9 (equivalent type substitutions)

We say that δ1 and δ2 are equivalent substitutions, written ∆′  δ1 ≡ δ2 : ∆, if:

1. ∆′  δ1 : ∆ and ∆′  δ2 : ∆

2. ∀α ∈ dom(∆). ∆′  δ1α ≡ δ2α : ∆(α)
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Proposition 4.10 (functionality)

If ∆′  δ1 ≡ δ2 : ∆ and ∆  A1 ≡ A2 : K, then ∆′  δ1A1 ≡ δ2A2 : K.

The following lemma states a monotonicity property that is useful in proving the

subsequent theorems. It says essentially that, if a type A only depends on some

set of writable variables, then the basis of A cannot grow unexpectedly to include

other variables when the type undergoes a well-formed substitution. One obvious

instance where this is important is in proving type substitution for the construct

“set α := A in . . .” (Rule 23). When we apply a substitution δ to this construct,

we want to make sure that δA does not suddenly grow to depend on δα. While the

monotonicity property itself is fairly intuitive, the proof is somewhat fiddly.

Lemma 4.11 (monotonicity of basis)

If ∆ � A : K, basis∆(A) ⊆ writable(∆), and ∆′  δ : ∆,

then basis∆′(δA) ⊆ δ(basis∆(A)).

Proof

Let B = norm∆(A). By Proposition 4.8, since ∆  A ≡ B : K, we also have ∆′ 
δA ≡ δB : K. Since equivalent type constructors have the same basis, basis∆′(δA) =

basis∆′(δB) and δ(basis∆(A)) = δ(basis∆(B)). The proof reduces to showing that

basis∆′(δB) ⊆ δ(basis∆(B)).

As a technical device, we find it useful now to define a substitution δn that is

equivalent to δ but whose output is normalized (except for writable variables, where

the definition of well-formed substitution requires δn to return a variable, not the

η-long β-normal form of a variable):

δn(α)
def
=

{
δα if α ∈ writable(∆)

norm∆′ (δα) otherwise

From Part 1 of Lemma 4.2, for all α ∈ dom(∆), we have that FV(δnα) ⊆ abstract(∆′).

(In the case that α is writable, δnα is not explicitly normalized, but it does not matter:

the well-formedness of δ guarantees that δnα = δα is also writable, and therefore

abstract.)

We can now observe that FV(δnB) ⊆ abstract(∆′) (actually, this is true for any

B that is well-formed in ∆, not just B = norm∆(A)). By Part 2 of Lemma 4.2,

basis∆′(δnB) ⊆ FV(δnB) ∩ unstable(∆′). It is easy to check that ∆′  δ ≡ δn : ∆. By

functionality, ∆′  δB ≡ δnB : K. Consequently, basis∆′(δB) = basis∆′(δnB), and so

basis∆′(δB) ⊆ FV(δnB) ∩ unstable(∆′).

Suppose that α ∈ basis∆′(δB). Then, α ∈ FV(δnB)∩unstable(∆′). We need to show

that α ∈ δ(basis∆(B)). Note that, since α ∈ FV(δnB), there must exist β ∈ FV(B)

such that α ∈ FV(δnβ). We proceed by cases on the binding of β in ∆:

• Case: β : K ∈ ∆. Since B is in normal form, we know that β ∈ basis∆(B).

However, by assumption, basis∆(B) = basis∆(A) ⊆ writable(∆). Thus, we

have a contradiction.

• Case: β : K = B′ ∈ ∆. By Part 2 of Lemma 4.2, we have a contradiction.

• Case: βSK ∈ ∆. By well-formedness of δn, we have ∆′  δnβ ↓ K. This

means that basis∆′ (δnβ) = ∅. Since δnβ is already in normal form, we have
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that FV(δnβ) ∩ unstable(∆′) = ∅. However, by assumption, α ∈ FV(δnβ) ∩
unstable(∆′). Thus, we have a contradiction.

• Case: β : K≈B′ ∈ ∆. By well-formedness of δn, there exists β′′ : K≈B′′ ∈ ∆′

such that ∆′  β′′ ≡ δnβ : K. By Part 1 of Lemma 4.2, basis∆′ (β
′′) ⊆

FV(β′′) ∩ unstable(∆′) = ∅. Thus, basis∆′ (δnβ) = ∅. By the same reasoning as

in the previous case, we have a contradiction.

• Case: β ↑K ∈ ∆. By well-formedness of δ, we have that δnβ = δβ = α. Since

B is in normal form, we know that β ∈ basis∆(B). Thus, α ∈ δ(basis∆(B)).

�

Corollary 4.12 (substitution on stable types)

If ∆  A ↓ K and ∆′  δ : ∆, then ∆′  δA ↓ K.

Proof

By monotonicity, basis∆′(δA) ⊆ δ(basis∆(A)) = ∅. �

Proposition 4.13 (substitution on effects)

If ∆  ϕ ok and ∆′  δ : ∆, then ∆′  δϕ ok and ∆′@ δϕ  δ : ∆@ϕ.

Proof

Let us begin with the first conclusion (∆′  δϕ ok). For ϕ = α :≈A and ϕ = σ ↓,
the proof is completely straightforward. For ϕ = α := A, we know that basis∆(A) ⊆
writable(∆)\{α}, and we need to show that basis∆′(δA) ⊆ writable(∆′)\{δα}. Thanks

to the Monotonicity Lemma, this is easy. Specifically, monotonicity gives us that

basis∆′ (δA) ⊆ δ(basis∆(A)). By assumption, the latter is a subset of δ(writable(∆) \
{α}), which is, in turn, a subset of writable(∆′) \ {δα} (by well-formedness of δ).

For the second conclusion, first observe that  ∆@ϕ ok and  ∆′@ δϕ ok (by

the first conclusion together with Proposition 4.3). For the bindings in ∆@ϕ that

are holdovers from ∆, the proof follows easily from Propositions 4.4 and 4.5. For

the remaining bindings, we argue the proof by cases on ϕ:

• Case: ϕ = α :≈A. Here, ∆@ϕ changes α ↑K to α : K≈A. There will be a

corresponding binding δα : K≈ δA in ∆′@ δϕ, so we are done.

• Case: ϕ = σ ↓. For each variable α in σ ↓, ∆@ϕ will bind α as stable, but

∆′@ δϕ will bind δα as stable, too, so we are done.

• Case: ϕ = α := A. As usual, the most interesting case. Here, ∆@ϕ changes

α ↑K to α : K = norm∆(A), but ∆′@ δϕ changes δα ↑K to δα : K = norm∆′(δA).

By Proposition 4.4, it suffices to show ∆′  δ(norm∆(A)) ≡ norm∆′ (δA) : K.

Then, since ∆  norm∆(A) ≡ A : K, we have by Proposition 4.8 that ∆′ 
δ(norm∆(A)) ≡ δA : K. Finally, since ∆′  δA ≡ norm∆′(δA) : K, the desired

result follows by transitivity.

�

Proposition 4.14 (type substitution on terms)

If ∆; Γ � e : A with σ ↓; and ∆′  δ : ∆, then ∆′; δΓ  δe : δA with δσ ↓.
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Proof

By straightforward induction on derivations, with appropriate uses of the propos-

itions proved above. In particular, note that monotonicity pops up again in the

case of Rule 23. The third premise of the rule tells us that basis∆(A) ⊆ σ, and

from the second premise we know that σ ⊆ writable(∆). We need to show that

basis∆′(δA) ⊆ δσ. By monotonicity, basis∆′(δA) ⊆ δ(basis∆(A)) ⊆ δσ. �

4.4 Value substitution and the “use it or lose it” lemma

Now we come to value substitutions. Unlike Definition 4.7, the definition of a

well-formed value substitution is very simple:

Definition 4.15 (well-formed value substitutions)

We say that a value substitution γ maps Γ to Γ′ under ∆, written ∆; Γ′  γ : Γ, if:

1. dom(γ) ⊆ dom(Γ)

2. ∆  Γ ok and ∆  Γ′ ok

3. ∀x : A ∈ Γ. ∆; Γ′  γx : A

Proving the value substitution property, however, is a bit tricky. In the cases for

Rules 21, 23, and 24, the premises of the rules have type contexts of the form ∆@ϕ,

so we need to be able to show that value substitutions that are well-formed in ∆ are

also well-formed in ∆@ϕ. This boils down to showing that the typing derivation

for a value cannot possibly rely on any variables in the context being writable.

To make the induction go through, we prove instead a more general result, which

we call the “use it or lose it” lemma. It says that, if a term e is well-typed in a

context where α is writable, then either e must use the fact that α is writable (i.e.,

e defines α) or e can afford to lose the fact that α is writable (i.e., e will also be

well-typed even if α is not bound as writable).

Lemma 4.16 (use it or lose it)

If ∆, α ↑K; Γ � e : A with σ ↓; and α �∈ σ, then ∆, α :K; Γ � e : A with σ ↓.

Proof

By straightforward induction on derivations. �

Corollary 4.17 (“pure” term typing preserved under effects)

If ∆; Γ � e : A and ∆  ϕ ok, then ∆@ϕ; Γ � e : A.

Proof

Let ∆′ = ∆ \ {α ↑K | α ↑K ∈ ∆} ∪ {α : K | α ↑K ∈ ∆}. By Lemma 4.16, ∆′; Γ � e : A.

It is easy to see that ∆@ϕ  id : ∆′. Thus, the desired result follows from

Proposition 4.14. �

Corollary 4.18 (value substitution typing preserved under effects)

If ∆; Γ′  γ : Γ and ∆  ϕ ok, then ∆@ϕ; Γ′  γ : Γ.

Proof

By Corollary 4.17, together with Part 4 of Proposition 4.4. �
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Proposition 4.19 (value substitution on terms)

If ∆; Γ  e : A with σ ↓ and ∆; Γ′  γ : Γ, then ∆; Γ′  γe : A with σ ↓.

Proof

By straightforward induction on derivations. In the cases for Rules 21, 23, and 24,

the premises of the rules have type contexts of the form ∆@ϕ, so we need to obtain

∆@ϕ; Γ′  γ : Γ in order to make progress, but this is precisely what we get from

Corollary 4.18. �

Corollary 4.17 is similarly useful for guaranteeing that the mutable value store

maintained by our dynamic semantics remains well-formed throughout execution

(see Corollary 4.24 in Section 4.6).

Another corollary of the “use it or lose it” lemma says that if we have an expression

e referring to two writable type variables of the same kind, and e depends only on

one of them being writable, then we can merge them into one writable type variable.

As stated here, this is exactly what we need in order to prove type preservation in

the case of β-reduction for DPS universal types (see the case for Rule 30 in the

proof of Theorem 4.28 below).

Corollary 4.20 (merging together two writable types)

If ∆  Γ ok and β ↑K ∈ ∆ and ∆, α ↑K; Γ, x : A � e : B with α ↓,
then ∆; Γ, x : {α �→ β}A � {α �→ β}e : {α �→ β}B with β ↓.

Proof

Let ∆ = ∆′, β ↑K. By Lemma 4.16, ∆′, β : K, α ↑K; Γ, x : A � e : B with α ↓. It is

easy to see that ∆  {α �→ β} : ∆′, β : K, α ↑K. Thus, the desired result follows from

Proposition 4.14. �

4.5 Typechecking

As the RTG calculus is explicitly typed, it is completely straightforward to define

a syntax-directed type synthesis algorithm, ∆; Γ  e ⇒ A with σ ↓, that takes ∆, Γ,

and e as input and returns A and σ as output. The soundness and completeness of

this algorithm can be summarized as follows:

Theorem 4.21 (soundness and completeness of type synthesis)

Suppose ∆  Γ ok. Then:

1. If ∆; Γ  e⇒ A with σ ↓, then ∆; Γ  e : A with σ ↓.
2. If ∆; Γ  e : A with σ ↓, then there exists B such that ∆; Γ  e ⇒ B with σ ↓

and ∆  A ≡ B : T.

We omit the details of this algorithm, as they are entirely standard. Essentially,

wherever a premise requires a subterm e to have a type of a particular form, say,

for example, ∀α ↓K.A, the synthesis algorithm synthesizes the type B of e, and then

normalizes B to get it into the shape of ∀α ↓K.A. (Full normalization is not actually

necessary for this purpose; weak head normalization will suffice.) See Chapter 3 of

Dreyer’s thesis (2005b) for a fully specified example of such an algorithm.
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Well-formed continuations: ∆; Γ  C : A cont

∆  A : T
∆; Γ  • : A cont

(43)
∆; Γ  F : A� B with σ ↓ ∆ @ σ ↓; Γ  C : B cont

∆; Γ  C ◦F : A cont
(44)

∆; Γ  C : B cont ∆  A ≡ B : T

∆; Γ  C : A cont
(45)

Well-formed continuation frames: ∆; Γ  F : A� B with σ ↓

∆  A : T ∆; Γ, x : A  e : B with σ ↓
∆; Γ  let x= • in e : A� B with σ ↓ (46)

x : rec(A) ∈ Γ

∆; Γ  recA(x ← •) : A� A with ∅ ↓
(47)

Fig. 13. Well-formedness of continuations.

There is one case worth noting, namely, the new construct. When synthesizing

the type for new α ↑K in e, the algorithm synthesizes the type A of e. However,

it is possible that the synthesized type A may refer, in a non-essential way, to α.

The synthesized type for new α ↑K in e is therefore not A, but norm∆′(A) (where

∆′ = ∆, α ↑K). If the new is well-formed—that is, if there exists a type B equivalent to

A that avoids mention of α—then Part 3 of Lemma 4.2 guarantees that norm∆′(A)

will not mention α either.

4.6 Type soundness

We define well-formedness of value stores as follows. The notion of run-time context

is useful as a way of describing the contexts that classify stores.

Definition 4.22 (run-time value contexts)

We say that a value context Γ is run-time if it only contains bindings of the form

x : rec(A).

Definition 4.23 (well-formed value stores)

We say that a value store ω is well-formed in ∆ and has type Γ, written ∆  ω : Γ, if:

1. ∆  Γ ok and Γ is run-time

2. dom(ω) = dom(Γ)

3. ∀x : rec(A) ∈ Γ. either ω(x) = ? or ∆; Γ  ω(x) : A

Corollary 4.24 (value store typing preserved under effects)

If ∆  ω : Γ and ∆  ϕ ok, then ∆@ϕ  ω : Γ.

Proof

Follows directly from Corollary 4.17. �

The typing judgments for continuations and continuation frames are shown in

Figure 13. The latter is slightly interesting in that a frame may have a type effect.

One can read the judgment (∆; Γ  F : A � B with σ ↓) as: “starting in type
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context ∆, the frame F takes a value of type A and returns a value of type B while

defining the variables in σ.” Continuations C may of course have a type effect as

well, but they are irrelevant because we never return from a continuation.

Proposition 4.25 (validity for continuations)

1. If ∆; Γ � C : A cont, then ∆  A : T.

2. If ∆; Γ �F : A� B with σ ↓, then ∆  A : T, ∆  B : T, and ∆  σ ↓ ok.

Proposition 4.26 (type substitution on continuations)

Suppose ∆′  δ : ∆. Then:

1. If ∆; Γ � C : A cont, then ∆′; δΓ � δC : δA cont.

2. If ∆; Γ �F : A� B with σ ↓, then ∆′; δΓ � δF : δA� δB with δσ ↓.

We can now define what it means to be a well-formed machine state and state

the standard preservation and progress theorems leading to type soundness. The

interesting part of the definition is that the expression e currently being evaluated

may have type effect σ ↓, so these effects must be incorporated into the “starting”

context of the continuation C.

Definition 4.27 (well-formed machine states)

We say that a machine state Ω is well-formed, written  Ω ok, if either Ω = BlackHole

or Ω = (∆; ω; C; e) and there exist Γ, A, and σ such that:

1. ∆  ω : Γ

2. ∆; Γ  e : A with σ ↓ and ∆@ σ ↓; Γ  C : A cont

Theorem 4.28 (preservation)

If  Ω ok and Ω � Ω′, then  Ω′ ok.

Proof

Straightforward. We sketch the interesting cases.

• Case: Rule 30. By inversion on typing, we know that ∆, α ↑K; Γ, x : A 
e : B with α ↓, ∆; Γ  v : {α �→ β}A, and β ↑K ∈ ∆. By Corollary 4.20,

∆; Γ, x : {α �→ β}A  {α �→ β}e : {α �→ β}B with β ↓. By value substitution,

∆; Γ  {α �→ β}{x �→ v}e : {α �→ β}B with β ↓, so we are done.

• Case: Rule 40. By assumption, ∆; Γ  new α ↑K in e : A with σ ↓ and

∆@ σ ↓; Γ  C : A cont. By inversion on typing, ∆, α ↑K; Γ  e : A with α, σ ↓.
By Proposition 4.26, (∆@ σ ↓), α ↓K; Γ  C : A cont. Since (∆@ σ ↓), α ↓K =

(∆, α ↑K) @(α, σ ↓), we are done.

• Case: Rule 41. By assumption, ∆; Γ  (set α := A in e : B) : B with α, σ ↓
and ∆@ α, σ ↓; Γ  C : B cont. By inversion on typing, ∆  α := A ok,

∆@ α := A; Γ  e : B with σ ↓, and basis∆(A) ⊆ σ. From the first and third

of these, it is easy to see that (∆@ α := A) @ σ ↓  id : ∆@ α, σ ↓. Then,

by Proposition 4.26, (∆@ α := A) @ σ ↓; Γ  C : B cont. In addition, since

∆  ω : Γ, Corollary 4.24 gives us that ∆@ α := A  ω : Γ, so we are

done.

• Case: Rule 42. Analogous to (and simpler than) the previous case.
�

https://doi.org/10.1017/S0956796807006429 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006429


Recursive type generativity 463

Definition 4.29 (terminal states)

A machine state Ω is terminal if it is of the form BlackHole or (∆; ω; •; v).

Definition 4.30 (stuck states)

A machine state Ω is stuck if it is not terminal and there is no state Ω′ such that

Ω � Ω′.

Lemma 4.31 (canonical forms)

Suppose ∆; Γ � v : A and Γ is run-time. Then:

1. If A = unit, then v is of the form ().

2. If A = A1×A2, then v is of the form (v1, v2).

3. If A = A1→A2, then v is of the form λx : B. e or foldB or unfoldB.

4. If A = ∀α : K.B, then v is of the form Λα : K. e.

5. If A = ∀α ↓K.B, then v is of the form Λα ↓K. e.

6. If A = ∀α ↑K.A1

α↓
−→A2, then v is of the form Λα ↑K. λx : B. e.

7. If A = rec(B), then v is of the form x.

8. If A = E{α}, where α : K≈B ∈ ∆, then v is of the form foldA′ (v
′).

Proof

By inversion on typing. �

Theorem 4.32 (progress)

If  Ω ok, then Ω is not stuck.

Proof

Straightforward, using the Canonical Forms Lemma. �

Corollary 4.33 (type soundness)

If ∅; ∅  e : A, then for all Ω, (∅; ∅; •; e) �∗ Ω implies that Ω is not stuck.

Proof

By Progress and Preservation Theorems. �

5 Encodings in Destination-Passing Style (DPS)

5.1 Multiple-argument DPS universal types

It is likely that in practice one may wish to define a function of DPS universal type

that takes multiple writable type arguments and defines all of them. However, our

language as presented in Section 3 appears to allow DPS universals to take only a

single writable type argument. Figure 14 illustrates that in fact multiple-argument

DPS universals can be encoded in terms of single-argument ones. For simplicity, we

take “multiple-argument” to mean “two-argument,” but the technique can easily be

generalized to n arguments.

The idea is to encode a function taking two writable type arguments α1 and α2

(of kinds K1 and K2) as a function taking one writable type argument α (of kind

K1×K2). In Figure 14, we assume the value argument and result types have the

form A(α1)(α2) and B(α1)(α2), respectively, where α1, α2 �∈ FV(A) ∪ FV(B).

https://doi.org/10.1017/S0956796807006429 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006429


464 D. Dreyer

[[ ∀α1 ↑K1, α2 ↑K2.A(α1)(α2)
α1↓, α2↓−−−−→ B(α1)(α2) ]]

def
= ∀α ↑K1×K2.A(π1α)(π2α)

α↓−→B(π1α)(π2α)

[[ Λα1 ↑K1, α2 ↑K2. λx : A(α1)(α2). (e : B(α1)(α2)) ]]

def
= Λα ↑K1×K2. λx : A(π1α)(π2α).

new α1 ↑K1 in

new α2 ↑K2 in

set α := 〈α1, α2〉 in

e : B(π1α)(π2α)

[[ v1[α1][α2](v2) : B(α1)(α2)]]

def
= new α ↑K1×K2 in

set α1 := π1α in

set α2 := π2α in

v1[α](v2) : B(α1)(α2)

Fig. 14. Encoding of multiple-argument DPS universals.

[[ ∃α ↓K.A ]]DPS
def
= ∀α ↑K. unit

α↓−→A

[[ pack [A, v] as ∃α ↓K.B ]]DPS
def
= Λα ↑K. λ().

set α := A in v : B

[[ let [α, x] = unpack v in e ]]DPS
def
= new α ↑K in

let x = v[α]() in e

Fig. 15. DPS universal encoding of existentials.

In the introduction form, we divide the single α into two writable variables α1

and α2 by creating those variables with a new and then defining the original α in

terms of them. For the elimination form, it is the reverse. We start with two writable

variables, and in order to apply the DPS universal, we must package them up as

one. This is achieved by simply creating a new α of the pair kind, and then defining

the original writable variables as projections from it. For the elimination form to be

well-typed, it is important of course that α1 and α2 be distinct.

In the encoding of both the introduction and elimination forms, we rely heavily

on the ability to define a writable variable transparently in terms of another writable

variable, which is then subsequently defined in some stable way. This provides good

motivation for our policy that definitions of writable variables need not be stable

immediately, but only by the time they are hidden (as discussed at the end of

Section 2.3).

5.2 Existential types

In Section 2.2, we argued that the special case of the DPS universal in which the

value argument has unit type can be viewed as a kind of existential type. We
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now make that argument precise. Figure 15 shows how existential types and their

introduction and elimination forms may be encoded using that special case of the

DPS universal type. The caveat is that DPS universals are not capable of encoding

arbitrary existentials ∃α : K.A, but only what we call stable existentials, which we

write as ∃α ↓K.A. As the name suggests, a value of stable existential type is a package

whose type component is stable, and the standard CPS encoding of existentials can

be trivially modified to define ∃α ↓K.A as shorthand for ∀β : T. (∀α ↓K.A→ β)→ β.

To package type constructor A with value v, we write a DPS function that asks

for a writable abstract type name α, and then returns v after defining α to be A. The

data abstraction one normally associates with existential introduction is achieved

here by our set construct. Note that A must be stable in order for the encoding of

pack to be well-typed, since A serves as the definition for the writable variable α.

To unpack an existential value v, we (the client) must first create a new writable

type name α and then pass it to v to be defined. A potential benefit of the DPS

encoding over the CPS encoding is that it allows the body e of the unpack to have

arbitrary type effects so long as they do not refer to α. In the CPS encoding of

unpack, e must be encapsulated in a function, so that it is not allowed to define any

externally bound variables.

The DPS encoding is encouraging because it means that our approach to recursive

type generativity is fundamentally compatible with the traditional understanding of

generativity in terms of existential types. For instance, returning to the bootstrapped

heap example from Figure 4, we can now rewrite the type of MkHeap as

∀α ↓T. ORDERED(α)→∃β ↓T. HEAP(α)(β)

This looks just like the standard Fω interpretation of a generative functor signature,

except that we have replaced the normal type variable bindings by stable ones. It is

not even necessary for the existential in the result type of MkHeap to be encoded in

DPS—a value of stable existential type (under any encoding) can always be coerced

to [[ ∃α ↓K.A ]]DPS by first unpacking its components and then repacking them using

the DPS encoding of pack.

6 Comparison with conference version

The type system and meta-theoretic development presented in Sections 3 and 4

exhibit some technical improvements over the type system presented in the conference

version of this article (Dreyer 2005a). We now briefly summarize these improvements.

The most noticeable change is that in the conference version of the type system

the act of backpatching an abstract type and the act of sealing its definition were

separated into two distinct constructs, whereas in this system they are merged into

one (the set construct). This change was suggested to us by Andreas Rossberg, and

we feel the present approach marks an improvement for several reasons. First of

all, none of the examples we gave in the original paper exploited the separation of

constructs. If anything, the examples are all easier to read when phrased in terms of

the set construct. Second, as we remarked in Section 2.1, the set construct is close

in form to traditional mechanisms for data abstraction. In some sense, it feels very
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natural for the construct that defines an abstract type to also specify the scope in

which that definition is visible. Third, the set construct simplifies the type system.

In the conference version, the type effect engendered by a term e could be a set of

arbitrary ϕ’s. In this system, it is only possible for a term to engender an effect of

the form σ ↓.
The other, less noticeable, but semantically more significant, change is in how

we define the basis of a type constructor. In the conference version of the type

system, we defined basis∆(A) as the set of unstable free variables of B, where B is A

with all references to type synonym variables fully expanded out. In this system, we

define basis∆(A) as the set of unstable free variables of A’s normal form, norm∆(A).

Superficially, these definitions might seem interchangeable, but they are not. For

instance, consider the context ∆ = α ↑T, β : T×T= 〈α, int〉. What is basis∆(π2(β))?

Under our present definition, it is the empty set, since π2(β) is equal to int. However,

under our conference definition, it is {α}—if we expand out the type synonym β,

we get π2〈α, int〉, which has a free, albeit inessential, reference to α. The present

definition of basis∆(A) is thus clearly superior.

Moreover, the present approach simplifies the definition of well-formed substitu-

tion. In the conference version, we were forced to include an ugly extra side condition

on Part 4 of Definition 4.7 in order for the Monotonicity Lemma (Lemma 4.11)

to go through. No such side condition is necessary under the present definition of

basis∆(A).

7 Related work

7.1 Recursive modules

As discussed in the introduction, there has been much work on extending ML

with recursive modules, but a clear account of recursive type generativity has until

now remained elusive. Crary et al. (1999) have given a foundational type-theoretic

account of recursive modules, but it does not consider the interaction of recursion

with ML’s sealing mechanism (opaque signature ascription). Russo has formalized

and implemented recursive modules as an extension to the Moscow ML compiler

(Russo 2001; Romanenko et al. 2000). Under his extension, any type components of

a recursive module that are referred to recursively must have their definitions made

public to the whole module. Leroy (2004) has implemented recursive modules in

O’Caml, but has not provided any formal account of their semantics. With none of

these approaches is it possible to implement the bootstrapped heap example using

a generative MkHeap functor.

In reaction to the difficulties of incorporating recursive linking into the ML

module system, others have investigated ways of replacing ML’s notion of module

with some alternative mechanism for which recursive linking is the norm and

hierarchical linking a special case. Ancona and Zucca’s (1999) CMS calculus, in

particular, has been highly influential and led to a considerable body of work on

“mixin modules”. However, it basically ignores all issues involving type components

(and hence, data abstraction) in modules.
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More recently, Duggan (2002) has developed a language of “recursive DLLs”.

His calculus is not intended as the basis of a source-level language, but rather as

an “interconnection” language for dynamic linking and loading of shared libraries.

On the basis of his informal discussion, Duggan appears to address some of the

problems of recursive ADTs in a manner similar to the typechecking algorithm

we suggested in Section 1.1. It is difficult, though, to determine precisely how his

approach relates to ours because he is working in a relatively low-level setting.

In addition, Duggan simplifies the problem to some extent by not supporting full

ML-style transparent type definitions, but only a limited form of sharing constraint

that is restricted to atomic types.

Interestingly, the work that seems most closely related to our approach comes

from the Scheme community. Flatt and Felleisen developed a recursive-module-like

construct called “units” for use in MzScheme (Flatt 2005). While MzScheme is

dynamically typed, their article formalizes an extension of units to the statically

typed setting as well (Flatt & Felleisen 1998). A unit has some set of imports and

exports, which may include abstract types. Two units may be “compounded” into

one, with each unit’s exports being used to satisfy the other’s imports.

While our approach differs from units in many details, there are considerable

similarities in terms of expressive power. For instance, one can think of the DPS

universal type ∀α ↑K.A
α↓
−→B as the type of a unit with a value import of type A,

a value export of type B, and a type export α. (We model type imports separately,

via standard universal quantification.) The avoidance of transparent type cycles,

which we handle by distinguishing between stable and unstable forms of universal

quantification, is dealt with in the unit language by means of unit “signatures,”

which specify explicitly how the export types of a unit depend on the import types.

The unit approach to cycle avoidance is potentially more accurate, but at the expense

of infecting interfaces with complex dependency information.

Ultimately, the main distinction between our approach and units is that, while

units do many things at once, we have tried instead to isolate orthogonal concerns

as much as possible. As a result, our language constructs are more lightweight,

and our semantics is easier to follow. In contrast, the unit typing rules are large

and complex. Given that units were intended as a realistic, programmable language

construct, this complexity is understandable, but there are some other problems with

units as well. In particular, they lack support for ML-style type sharing, and their

emphasis on “external linking” forces one to program in a recursive analogue of

“fully functorized” style. Nonetheless, we hope that our present account of recursive

type generativity will help draw attention to some of the interesting and novel

features of units that the existing work on recursive ML-style modules has heretofore

ignored.

7.2 Data abstraction, effects, and linearity

Rossberg (2003) gives an account of type generativity that, like ours, provides a new

construct for creating fresh abstract types at run time. Rossberg’s focus, however,

is not on recursion but on the interaction of data abstraction and run-time type
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analysis. Thus, his system requires one to define an abstract type at the same point

where it is created.

Dreyer et al. (2003) give an interpretation of ML-style modularity in which data

abstraction is treated as a computational effect. In fact, they consider two kinds

of effects—static and dynamic—corresponding to the different varieties of data

abstraction offered by different dialects of ML, and use an effect system to track

what kinds of abstract types (if any) a module defines. In this work, we also use

effects (of a somewhat different flavor) to track abstract type definitions. We ignore

static effects, though, and restrict attention to dynamic effects, which correspond

to the form of type generativity supported by Standard ML. Our interpretation of

dynamic effects is more refined than that of Dreyer et al. (2003) in that we allow

abstract types to be created and referred to before they are defined, thus making it

possible to link such types recursively.

Our type system treats the definition of abstract types in a strictly linear way—

that is, once a variable α is introduced as writable, it must be defined exactly once

before it leaves scope. It is natural, therefore, to ask whether it is possible and/or

worthwhile to recast our tracking of abstract type definitions in terms of a linear

type system (Wadler 1990) instead of an effect system (Gifford & Lucassen 1986).

Traditionally, linear type systems use linear types as a way of ensuring that variables

are used exactly once. In our language, however, it is never our goal to restrict a

type variable α to be used exactly once. Rather, the resource that we wish to restrict

to be used exactly once is the ability to define a writable variable.

For this reason, we believe that our tracking of type effects has less in common

with linear type systems than with type systems that track capabilities, most notably

that of Walker et al. (2000).8 Developed in the setting of region-based memory

management, the type system Walker et al. uses capabilities to track the permissibility

of certain effectful operations, such as memory access and deallocation. In the context

of our type system, the writable binding α ↑K can be viewed as a combination of an

ordinary binding α : K and a linear capability specifying that α may be written to.

While we think it would be interesting to split our writable binding in this way and

make the writable capability explicit in the style of Walker et al., we fail to see how

it would lead to any significant simplification of our type system or its meta-theory.

8 Future work

There exists a rich body of work on semantic methods—both denotational (Mitchell

1996) and operational (Pitts 2005)—for reasoning about programs with existential

types. One criticism of our approach to recursive type generativity is that it is not

clear how easy it will be to develop analogous semantic methods for reasoning about

data abstraction in the presence of type-level recursive backpatching. We concede

that this is a valid criticism, and we are currently investigating whether it is feasible

to adapt to our setting any of the recently proposed methods for semantic reasoning

8 At least conceptually. Formally speaking, as Morrisett et al. (2005) have recently shown, capability
tracking can be expressed as a particular mode of use of linear typing.
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in the presence of mutable state (Benton & Leperchey 2005; Bohr & Birkedal 2006;

Koutavas & Wand 2006). In any case, this remains an important consideration for

future work.

Another interesting question is whether the full power of our language is useful, or

only a fragment of it is really needed for practical purposes. For example, our type

system allows the programmer to define types at run time on the basis of information

that is only available dynamically. If one is only interested in supporting “second-

class” recursive modules, then the language we have presented here is more powerful

than necessary. In that case, it is worth considering whether there is a weaker subset

of the language that suffices and is easier to implement in practice.

This question is tied in with the more general question of whether the ideas of this

article are scalable to the level of a module language. When the conference version of

this article (Dreyer 2005a) was originally published, the answer to this latter question

was unclear. Since then, however, we have adapted the RTG type system to serve as

the basis of a preliminary proposal for recursive SML-style modules (Dreyer 2006).

We have also found, somewhat surprisingly, that the ability to forward-declare

types that RTG offers is useful independently of recursive modules—namely, in

establishing a soundness and completeness result for Damas-Milner type inference

in the presence of non-recursive modules (Dreyer & Blume 2007). These results

suggest that RTG has the potential to serve as a foundation for future evolution of

the ML module system.
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