A NEW BOUND FOR NIL U-RINGS

R. G. BIGGS

A U-ring is a ring in which every subring is a meta ideal. A meta ideal of a
ring R is a subring I of R which lies in a chain of subrings,

LCLC...CIs=R,

with the properties:

(1) I, is an ideal of Iy for all A < 8;

(2) If @ is a limit ordinal number, then I, = Ux<a D>

Freidman [3] proved that every nil U-ring is a locally nilpotent ring. Since
there are many locally nilpotent rings which are not U-rings, the class of
locally nilpotent rings is not a very good bound for the class of nil U-rings.
This paper establishes a new bound for nil U-rings based on a property of the
multiplicative semigroup of the ring.

Example. Let B = {y,:s € (0,1) and s is a rational number}. Define
multiplication in B by the rule: ysy, = yo4,if s + ¢ < 1; otherwise y,y, = 0.
Let p be any prime number. The Zassenhaus Example modulo p is the algebra
over the field of integers modulo p with basis B. More generally, any algebra
with basis B will be called a Zassenhaus Example.

The theorem below shows that a Zassenhaus Example is not a U-ring.
However, such rings are Baer radical rings (see [2]), and hence are locally
nilpotent. The following theorem shows that the class of U-rings excludes all
rings which have a multiplicative structure similar to a Zassenhaus Example.

THEOREM. Suppose that a ring R has a sequence of elements, {x;: 1 € N}, such
that x i = x,_1 where n; = 2 for all 1 € N and x1 % 0 while xo = 0. Then R
is not @ U-ring.

The following lemmas are needed to establish the proof. In each of the
lemmas, S denotes any ring of the type indicated below.

Let W be a subset of (0,1) N Q (Q = rational numbers) which has the
properties:

(A) ifs,t € Wands+t<1,thens+ ¢t € W,

(B) if s,t € Wands —t> 0, thens —t € W,

(C) 0is an accumulation point of W (in the usual topology).

Let S be any ring which has the set of generators, {y;: s € W}, which for all
s, t € W satisfy the relations:
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(1) ysyt=y3+lifs—|—t< ]_’
2) yy.,=0if s+t = L

LeMMA 1. Suppose that ys, ys, € S and sy < ss < 1 and L; is the charac-
teristic of vs; for i = 1, 2. Then L, divides L.

Proof. Note that Lyy,, = 0 implies that (L )¥ss—sn = L1ys, = 0. Since
Lyy,, = 0, Ls, the greatest common divisor of L; and L, must be a solution
of the equation Xy, = 0. Since L, is the smallest positive integral solution of
this equation, L, must be L; and therefore L, does divide L.

Definition. A point in S will be an element of the form y,.

If the additive characteristic of every or all but one non-zero element in
the ring S is 0, define G = 0. Otherwise let

G* = min{char(y,): ys € S and char(y,) > 1}.

Let y,, € S be any element with characteristic G*. Either (1) v, is the only
point in .S which has characteristic G* or (2) there exists a maximum open
interval (a1, az) € (0, 1) such that ¢ € (a4, a2) implies that y, has charac-
teristic G*. In case (1), let

G = min{char(y;): ¥; € S and char(y;) > G*}

and let y,, be a point in .S which has characteristic G. Then every point y,,
where s; < ¢t < 59, must have characteristic G by Lemma 1. Hence there
exists a maximum open interval (a1, as) C (0,1) such that ¢ € (a1, as)
implies that y, has characteristic G. In case (2), let G = G*. Note also that if
G = 0, then there is a maximum open interval (a1, ¢:) € (0, 1) such that
t € (a1, az) implies that y, has characteristic 0.

Definition. G is called the primary characteristic of S; (a1, az) is called the
primary interval of S.

Definition. A formal additive relationship in S is an equation of the form
i1 Ly, =0, where s; = s, implies that < = j, L; € Z, and Ly,, = 0 for
every 7 in [1, &].

LemMMmA 2. There exists no formal additive relationships in S in which every
term has subscripts which lie in the primary interval (ay, as).

Proof. Let h be the least positive number of terms that a formal additive
relationship has, when every term has subscripts in (a1, @2). Suppose that
> t-1 Ly, = 0is a formal additive relationship where s; € (a1, a2) for every
¢ in [1, ]. Let s, = max{sy, ..., sy} and s; = min{sy, ..., s,}. Given any
u > 0 there exists a rational number s < u such that y, € S.
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Due to this fact, there exists y, € S such that ¢t 4+ s, < a2 < ¢ + s,. Since
Lmy(3m+l) =0,

h h
_Z=:1Liy(.h+t) = <Z=:1Liyﬁ) y:.=0

can be rewritten as a formal additive relationship in (a1, a2) with fewer than
k terms. This is a contradiction.

LemMmA 3. There exists no formal additive relationships in S in which any
term has the form Hy,, where G does not divide H and t < g/2, where g is the
length of the primary interval, (a1, az).

Proof. Suppose that Hy, + >.7-1 L;y;; = 0 is a formal additive relationship
where G does not divide H and ¢ < g/2. Suppose also that

S1<...<g<t<mmm<...< sy
There exists v, € S such that a1 + g/2 < ¢t + u < a.. Then

<Hyt + Zl Ljys]')yu =0
9=

is an additive relationship in which every term lies in (a1, a2) but not every
term is O since Hy .1y # 0. Consequently, this can be rewritten as a formal
additive relationship in the primary interval, which contradicts Lemma 2.

Definition. A point y; € S is an M-endpoint if My, # 0 but My, = 0 for
every ¢t > s where M is an integer.

Definition. 1f y; is an M-endpoint for some integer M and L is the smallest
positive integer such that vy, is an L-endpoint, then L is the near characteristic
of ys.

LEMMA 4. Every dense subset of an open interval (bi, b2) C (0, 1) contains
points s such that yg 1s not an M-endpoint for any M € Z or there is no point
ys im S.

Proof. If the M-endpoints in .S are ordered according to their near charac-
teristics, then no two M-endpoints have the same near characteristics and as
the near characteristics of the M-endpoints increase towards infinity, the
y-subscripts decrease towards 0. Since the positive integers have only one
limit point (plus infinity), the y-subscripts of the M-endpoints in .S have at
most one limit point. But every dense subset of the interval (b1, 02) € (0, 1)
has infinitely many limit points. Hence some of the points in the dense subset
of (by, bs) either are not the y-subscripts of any M-endpoints in S or are not
the y-subscripts of any points in S at all.

The proof of the theorem will now be given.

Since every subring of a U-ring is a U-ring, it is sufficient to show that a
subring of Risnota U-ring. Let S be the subring of R generated by {x,: 7 € N}.
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Then S is commutative. Moreover, for all k, p € N, (x;)? can be renamed as
Y/, Where d = I, if p/d < 1; otherwise (x;)? = 0. Then if y,, y, € S,
they are both powers of some x; in the sequence generating S, and therefore
Y¥: = Y51 (which may be 0if s + ¢ > (n; — 1/m1)). Note that

W=1{s€(0,1):y, €S}

has the properties (A), (B), and (C).
Let E = {y14 € S: & € N} and let P(S) = {primes p: p divides k for some
k € N such that yi; € E}.

Case (1). Suppose that P(S) is an infinite set. Then choose po € P(S) and let
= {Z?=1 Liyli/ki + Z7=1 ijs,- + 25;:1 wY tw €S Li € Z, (lu ki) =1,
and (po, k) = 1forallsin [1, k]; M, € Z, and y,, is an M j-endpoint for all
jin [1, m]; H, € Z, and either t, = g/2 or G divides H,, for every w in [1, v]}.

Note that the set {//k: k,] € N and p, divides %k} is dense in (0, g/2).
From the proof of Lemma 4 there exists some v, € .S such that ¢t € (0, g/2),
t = I/k, where po divides &, and v, is not an M-endpoint for any integer M.
By Lemma 3 there exists no formal additive relationships involving elements
of the form H,y,,, where t,, < g/2 and G does not divide H,,. Hencey, ¢ S~ T,
and therefore T" # S. Note that the product of an M-endpoint with any
other element in S is 0 and that (H,y,,) + (Ly,) = LH,Y,,+4 Where either G
divides LH,, or t, + u > g/2 for every w in [1, v]. If py divides neither k; nor
ks, then po does not divide k1ks. Consequently,

Ly um) Loy iams) = LiLoY ot ok siries

liesin T if Ly, € T fore = 1, 2. Hence T is a subring of S since it is closed
under addition and multiplication. If Ly;; € S~ T, and (I, k) = 1, then
Do divides &, I/k < g/2, L does not divide G, and there exists ¢ > I/k such
that Ly, £ 0. Since P(S) is an infinite set, there exists y1;, € 1 such that
1/ky 4+ I/k < min{g/2, t}. Consequently, (Ly i) Yim) = LYakitr may is not 0
and is not in T since p, divides kk1, (po, k1 + k) = 1 and by Lemma 3 this
element cannot be expressed as a sum of terms which lie in 7. Hence Ly, is
not in the idealizer of 7, and 7" is its own idealizer in S due to the arbitrary
nature of this element.

Case (2). Suppose that P(S) is a finite set. Then choose p1 € P(S) such
that p; divides an infinite number of terms in the sequence {#z;: 7 € N}. Note
that every power of p; divides some % such that y;; € E. Let

Q= {;Ltyu/k; € S:L;€ Z, (k) =1,and ky = p,"

for some # € N for all 7 in [1, k]} .
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Let ¢ be a prime such that ¢ ¢ P(S) and let

f

h m
Q* = l; Lyeum: + ; My, +

v

leytw € Q: Lyup: € Q for all 4in [1, Al;

M, € Z, and y;,; is an M ;-endpoint for all j in [1, m];
H, € Z, and either ¢, = g/2 or G divides H,, for all w in [1, v]} .

Note that the set {//p1":I,n € N and (I, prg) = 1 is dense in (0, g/2).
From the proof of Lemma 4, it follows that there exists a point ¥, € .S such
that ¢ € (0, g/2), v, is not an M-endpoint for any integer M, and ¢ = I/p/",
where (/, p1g) = 1. By Lemma 3 there exists no formal additive relationships
involving elements of the form H,y,,, where f, < g/2 and G does not divide
H,. Hence y, € Q ~ Q* and therefore Q # Q*. Now, note that if L1y,
and Loy g,/, are elements in Q*, their product, LiLyy,, where

d = q(hhky + lok1)/Raks,

is an element in Q*. Since the statements found in Case (1) on M ;-endpoints
and elements of the form H,y,,, where either ¢, = ¢g/2 or G divides H,, apply
in this case also, Q* is a subring of Q.

If Ly, € Q~Q* and (J,k) =1, then (¢,/) =1, G does not divide
L,1l/k < g/2, and there exists a rational number ¢ > //k such that Ly, = 0.
Note that minf{¢, g/2} < (I/k + ¢/p1") for some natural number z and there
exists a point y1, € E such that p," divides k;. Consequently,

Ly ur) Vo) = LY Gprnsan) o

which is not 0 and does not lie in Q* since (g, /p1® + ¢k) = 1 and by Lemma 3
this element cannot be expressed as a sum of terms which lie in Q*. Hence
Ly, is not in the idealizer of Q*, and Q* is its own idealizer in Q due to the
arbitrary nature of this element.
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