Canad. Math. Bull. Vol. 24 (2), 1981

AN EXTRAPOLATION THEOREM FOR CONTRACTIONS WITH FIXED POINTS

ву RYOTARO SATO

1. Introduction. In [9] de la Torre proved that if (X, \mathcal{F}, μ) is a finite measure space and T is a linear operator on a real $L_p(X, \mathcal{F}, \mu)$ for some fixed $p, 1 , such that <math>||T||_p \le 1$ and simultaneously $||T||_{\infty} \le 1$, and also such that there exists $h \in L_p(X, \mathcal{F}, \mu)$ with Th = h and $h \ne 0$ a.e., then the dominated ergodic theorem holds for T, i.e. for every $f \in L_p(X, \mathcal{F}, \mu)$ we have

$$\left\|\sup_{n}\frac{1}{n}\left|\sum_{i=0}^{n-1}T^{i}f\right|\right\|_{p}\leq\frac{p}{p-1}\left\|f\right\|_{p}.$$

de la Torre proved his result, by showing that the operator S, defined by $Sf = (\operatorname{sgn} h) \cdot T(f \cdot \operatorname{sgn} h)$ for $f \in L_p(X, \mathcal{F}, \mu)$, is positive, and by applying Akcoglu's theorem [1] to S.

In this paper we shall show that such an operator may be regarded as a Dunford-Schwartz operator on $L_1(X, \mathcal{F}, \mu)$, i.e. $||T||_1 \le 1$ and simultaneously $||T||_{\infty} \le 1$; therefore de la Torre's result follows from Dunford and Schwartz [5] (see also Garsia [8], Chapter 2). It is important that in the present paper (X, \mathcal{F}, μ) may be σ -finite (and $L_p(X, \mathcal{F}, \mu)$ may be a complex Banach space). On the other hand, de la Torre's argument does apply for the finite measure space case only.

THEOREM. Let (X, \mathcal{F}, μ) be a σ -finite measure space and T a linear operator on an $L_p = L_p(X, \mathcal{F}, \mu)$ for some fixed p, $1 , such that <math>||T||_p \le 1$ and simultaneously $||Tf||_{\infty} \le ||f||_{\infty}$ for every $f \in L_p \cap L_{\infty}$. Assume that there exists $h \in L_p$, $h \neq 0$ a.e., such that Th = h. Then

$$||Tf||_1 \le ||f||_1 \quad \text{for every} \quad f \in L_1 \cap L_p,$$

and thus T is uniquely extended to a Dunford-Schwartz operator on L_1 . Furthermore, if we set $\tau f = (\overline{\operatorname{sgn} h}) \cdot T(f \cdot \operatorname{sgn} h)$ for $f \in L_1$, then τ is a positive Dunford-Schwartz operator on L_1 , and there exists $g \in L_1 \cap L_\infty$, g > 0 a.e., such that $\tau g = g$ and hence $T(g \cdot \operatorname{sgn} h) = g \cdot \operatorname{sgn} h$.

COROLLARY. Let (X, \mathcal{F}, μ) be a σ -finite measure space and T a linear operator on an L_p for some fixed p, $1 , such that <math>||T||_p \le 1$ and simultaneously $||Tf||_1 \le ||f||_1$ for every $f \in L_1 \cap L_p$. Assume that there exists $h \in L_p$, $h \ne 0$ a.e., such

Received by the editors September 18, 1979.

that Th = h. Then $||Tf||_{\infty} \leq ||f||_{\infty}$ for every $f \in L_p \cap L_{\infty}$, and thus T is uniquely extended to a Dunford-Schwartz operator on L_1 .

2. Proofs.

Proof of Theorem. Put $e(x) = \operatorname{sgn} h(x)(=h(x)/|h(x)|)$. Since L_q with 1/p + 1/q = 1 is the dual space of L_p , it then follows from Hölder's inequality that

$$\begin{split} \|h\|_{p}^{p} &= \int he^{-1} |h|^{p-1} d\mu = \langle h, e^{-1} |h|^{p-1} \rangle \\ &= \langle Th, e^{-1} |h|^{p-1} \rangle = \langle h, T^{*}(e^{-1} |h|^{p-1}) \rangle \\ &\leq \|h\|_{p} \|T^{*}\|_{q} \|e^{-1} |h|^{p-1}\|_{q} \leq \|h\|_{p} \|e^{-1}|h|^{p-1}\|_{q} \\ &= \|h\|_{p}^{p}, \end{split}$$

so that $T^*(e^{-1}|h|^{p-1}) = e^{-1}|h|^{p-1}$, because there is only one function $f \in L_q$ for which $\int hf d\mu = \|h\|_p \|f\|_q = \|h\|_p^p$.

On the other hand, since $||Tf||_{\infty} \leq ||f||_{\infty}$ for every $f \in L_p \cap L_{\infty}$ (by hypothesis), T^* may be regarded as an operator on L_1 , denoted by the same letter T^* , such that $||T^*||_1 \leq 1$. To see this, it suffices to notice that for every $f \in L_1 \cap L_q$ we have

$$\int |T^*f| d\mu = \int (T^*f) \cdot \operatorname{sgn} \overline{T^*f} d\mu = \lim_n \int_{A_n} (T^*f) \cdot \operatorname{sgn} \overline{T^*f} d\mu$$
$$= \lim_n \langle T(1_{A_n} \cdot \operatorname{sgn} \overline{T^*f}), f \rangle$$
$$\leq \int |f| d\mu \quad (\text{because } ||T(1_{A_n} \cdot \operatorname{sgn} \overline{T^*f})||_{\infty} \leq 1)$$

where $A_1 \subset A_2 \subset \cdots$, $\mu(A_n) < \infty$ for each $n \ge 1$, and $\lim_n A_n = X$. Now, by Chacon and Krengel [4], there exists a positive linear operator P on L_1 , called the linear modulus of T^* (on L_1), such that $||P||_1 \le 1$ and also such that for every $0 \le f \in L_1$

$$Pf = \sup\{|T^*g| : g \in L_1 \quad \text{and} \quad |g| \le f\}.$$

Let C and D denote the conservative and dissipative parts (cf. [7]) of X with respect to P. Thus, for every $0 \le f \in L_1$, $\sum_{k=0}^{\infty} P^k f(x) = 0$ or ∞ a.e. on C and $\sum_{k=0}^{\infty} P^k f(x) < \infty$ a.e. on D. It follows that for every $f \in L_1$

$$\lim_{n} \frac{1}{n} \left| \sum_{k=0}^{n-1} T^{*k} f \right| \le \lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} P^{k} |f| = 0 \quad \text{a.e. on } D.$$

To see that $e^{-1} |h|^{p-1} = 0$ a.e. on D, let $\varepsilon > 0$ be given and choose $f \in L_1 \cap L_q$ so that

$$\|f-e^{-1}\|_{q} < \varepsilon.$$

[June

Then from the fact that $||T^*||_q = ||T||_p \le 1$ we have

$$\left\|\frac{1}{n}\sum_{k=0}^{n-1}T^{*k}f - e^{-1}|h|^{p-1}\right\|_q < \varepsilon \qquad (n \ge 1),$$

and by a mean ergodic theorem (cf. [6], p. 662)

$$\lim_{n} \left\| \frac{1}{n} \sum_{k=0}^{n-1} T^{*k} f - \tilde{f} \right\|_{q} = 0$$

for some $\tilde{f} \in L_q$. Therefore $\tilde{f} = 0$ a.e. on D, and

$$\|\tilde{f}-e^{-1}\,|h|^{p-1}\|_q\leq\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, this implies that $e^{-1} |h|^{p-1} = 0$ a.e. on *D*, and thus $\mu(D) = 0$, because |h| > 0 a.e. (by hypothesis).

We have proved that X = C. Hence, by Akcoglu and Brunel [2], there exists an invariant set $\Gamma \in \mathscr{F}$ with respect to P and a function $s \in L_{\infty}(\Gamma)$ such that

(i) |s| = 1 a.e. on Γ and $T^*f = \bar{s}P(sf)$ for $f \in L_1(\Gamma)$,

(ii) if $\Delta = X - \Gamma$ then $(I - T^*)L_1(\Delta)$ is dense in $L_1(\Delta)$, in the norm topology,

(iii) a function $t \in L_{\infty}(\Gamma)$, with |t| = 1 a.e. on Γ , satisfies $T^*f = \overline{t}P(tf)$ for all $f \in L_1(\Gamma)$ if and only if there exists a function $u \in L_{\infty}(\Gamma)$, with |u| = 1 a.e. on Γ , such that $P^*u = u$ a.e. on Γ and t = us.

Since X = C, Γ and Δ are invariant sets with respect to P; thus $T^*(1_{\Delta}e^{-1}|h|^{p-1}) = 1_{\Delta}e^{-1}|h|^{p-1}$. Using this relation, we now prove that $\mu(\Delta) = 0$. To do this, let $\varepsilon > 0$ be given and take $f \in L_1(\Delta) \cap L_a(\Delta)$ with

$$\|f-1_{\Delta}e^{-1}\|_{q} < \varepsilon.$$

Then

$$\left\|\frac{1}{n}\sum_{k=0}^{n-1}T^{*k}f - 1_{\Delta}e^{-1}|h|^{p-1}\right\|_{q} < \varepsilon \qquad (n \ge 1)$$

and

$$\lim_{n} \left\| \frac{1}{n} \sum_{k=0}^{n-1} T^{*k} f - \tilde{f} \right\|_{q} = 0$$

for some $\tilde{f} \in L_q$. But, by (ii), we have easily that

$$\lim_{n} \left\| \frac{1}{n} \sum_{k=0}^{n-1} T^{*k} f \right\|_{1} = 0.$$

Hence $\tilde{f} = 0$ a.e., and since $\varepsilon > 0$ was arbitrary, $1_{\Delta}e^{-1} |h|^{p-1} = 0$ a.e. and so $\mu(\Delta) = 0$.

Since we have observed that $X = C = \Gamma$, it follows that $Pf = sT^*(s^{-1}f)$ for all $f \in L_1$. Therefore P is also an operator on L_q such that $||P||_q = ||T^*||_q \le 1$. Hence, by Akcoglu and Chacon [3], we get

$$\|Pf\|_{\infty} \leq \|f\|_{\infty}$$
 for every $f \in L_1 \cap L_{\infty}$,

1981]

R. SATO

so that the operator τ (on L_{∞}) adjoint to P (on L_1) satisfies $\|\tau\|_{\infty} \le 1$ and, for every $f \in L_1 \cap L_{\infty}$,

$$\tau f = P^* f = s^{-1} T(sf)$$
 and $\|\tau f\|_1 \le \|f\|_1$.

 τ is then uniquely extended to a positive linear operator on L_1 , denoted by the same letter τ , such that $\|\tau\|_1 \leq 1$. (Thus T is also extended to a (unique) Dunford-Schwartz operator on L_1 .) By the Riesz convexity theorem, τ may be regarded as a positive linear operator on each L_r , $1 \leq r \leq \infty$, such that $\|\tau\|_r \leq 1$. Since $\tau |h| \geq |Th| = |h|$, it then follows that $\tau |h| = |h|$ and thus $X = C_{\tau}$, where C_{τ} denotes the conservative part of X with respect to τ .

To prove that $s^{-1}h$ is measurable with respect to the σ -field \mathscr{I} of all invariant sets with respect to τ , write $s^{-1}h = (f_1 - f_2) + i(f_3 - f_4)$, where each f_k is nonnegative and $f_1f_2 = f_3f_4 = 0$. Since $h = Th = s\tau(s^{-1}h)$, it follows that $\tau(s^{-1}h) = s^{-1}h$ and then $\tau f_k \ge f_k \ge 0$ for each k. Hence $\tau f_k = f_k$ for each k, and (cf. [7], Chapter III) each f_k and $s^{-1}h$ are measurable with respect to \mathscr{I} . Using this, we next prove that

$$\tau f = (\operatorname{sgn} h) \cdot T(f \cdot \operatorname{sgn} h) \text{ for all } f \in L_1.$$

To do so, we now apply Akcoglu and Brunel [2] (see (iii) above). Since $\overline{\operatorname{sgn} h} = (\overline{s^{-1}h}/|h|)s^{-1}$, it may be readily seen that it suffices to check that

$$\tau^*(\overline{s^{-1}h}/|h|) = \overline{s^{-1}h}/|h|.$$

And this is done easily, because $\overline{s^{-1}h}/|h|$ is measurable with respect to \mathcal{I} .

Finally we must construct a function $g \in L_1 \cap L_\infty$, g > 0 a.e., such that $\tau g = g$. For this purpose, put

$$B_n = \{x : |h(x)| > 1/n\}$$

for each $n \ge 1$. Then $B_n \in \mathcal{I}$, $\mu(B_n) < \infty$ and $\lim_n B_n = X$. Therefore if we set $g = \sum_{n=1}^{\infty} 2^{-n} (1 + \mu(B_n))^{-1} 1_{B_n}$, then 0 < g < 1 a.e. and $\tau g = g$.

The proof is completed.

Proof of Corollary. This is essentially done in the proof of Theorem (see the first half of the above proof) and omitted here.

References

1. M. A. Akcoglu: A pointwise ergodic theorem in L_p -spaces, Canad. J. Math. 27 (1975), 1075–1082.

2. M. A. Akcoglu and A. Brunel: Contractions on L_1 -spaces, Trans. Amer. Math. Soc. 155 (1971), 315–325.

3. M. A. Akcoglu and R. V. Chacon: A convexity theorem for positive operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete **3** (1965), 328-332.

4. R. V. Chacon and U. Krengel: Linear modulus of a linear operator, Proc. Amer. Math. Soc. 15 (1964), 553–559.

5. N. Dunford and J. T. Schwartz: Convergence almost everywhere of operator averages, J. Rational Mech. Anal. 5 (1956), 129-178.

[June

6. N. Dunford and J. T. Schwartz: Linear operators. Part I: General theory, New York, 1958.

7. S. R. Foguel: The ergodic theory of Markov processes, New York, 1969.

8. A. M. Garsia: Topics in almost everywhere convergence, Chicago, 1970.

9. A. de la Torre: A dominated ergodic theorem for contractions with fixed points, Canad. Math. Bull. 20 (1977), 89-91.

Department of Mathematics Okayama University Okayama, 700 Japan