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FINITELY-GENERATED SOLUTIONS OF CERTAIN INTEGRAL
EQUATIONS

by D. PORTER and D. S. G. STIRLING
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Recent work has shown that the solutions of the second-kind integral equation arising from a difference kernel
can be expressed in terms of two particular solutions of the equation. This paper establishes analogous results
for a wider class of integral operators, which includes the special case of those arising from difference kernels,
where the solution of the general case is generated by a finite number of particular cases. The generalisation is
achieved by reducing the problem to one of finite rank. Certain non-compact operators, including those
arising from Cauchy singular kernels, are amenable to this approach.

1991 Mathematics subject classification: 45H05.

1. Introduction

In recent years, a number of authors have investigated the integral equation

pKx) = f(x) + lk(x-t)<t>(t)dt (Ogxgl) (1.1)
0

and shown how its solution for any free term / can be expressed in terms of its
solutions for certain particular free terms. Such results can lead to considerable
economy when numerical techniques have to be employed.

Porter [4] considered (1.1) via the equation

f (1.2)

in L2(0,1), where

(K<t>)(x) = ]k{x-t)<t>(t)dt (Ogx^ l ) , (1.3)
o

and it was assumed that keL2{-1,1). The analysis hinged on the fact that VaA + AV* is
a rank-two operator, where A=fil — K,
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326 D. PORTER AND D. S. G. STIRLING

(K0)W = J«~ta(x"VWA (O^xgl.aeR) (1.4)
o

and V* denotes the adjoint of Va. In fact,

O,l)), (1.5)

in which

/.(x) = e - t e (0^xgl ,«6B) (1.6)

and / is the kernel adjoint to k, that is,

l(x) = k(-x). (1.7)

As Porter [4] showed, (1.5) can be used to construct the solution of (1.2) for any
/eL2(0,1) once two particular solutions are known, corresponding to certain choices of
/ A number of such pairs of particular solutions serve this purpose, the pairs being
related through (1.5). For instance, a knowledge of 4>a and <f>p, which satisfy A<f>a = fx

and A<t>p = fp, a and /? being distinct, real numbers, is sufficient to solve (1.2) for any
/eL2(0,1), provided (<^a,/p)/0. Another solution pair with this property is i//, x, where
Atj/ = k and A*x = l, A* being the adjoint of A. The resulting formula for the solution of
(1.2) in terms of i// and x was first derived by Gohberg and Feldman [1], by analogy
with a parallel structure in matrix algebra, and has been extended to matrix-valued
kernels by Mullikin and Victory [2].

Sakhnovich [6] identified another pair of solutions of (1.2), in terms of which the
associated resolvent operator can be expressed, by starting from the version of (1.5) in
which a=0. This pair was generalised by Porter [4] who related it to the pairs </>„, <j>f

and xji, x by using (1.5). Thus, (1.5) can be regarded as a key property of (1.2), capable of
producing and connecting solution formulae previously found by various other means
and of generating useful new formulae.

The present work seeks to develop existing material in several ways. The pivotal
relationship (1.5) is extended by considering operators A = nl — K on L2(0,1) having the
property that VaA + VXA* is a finite rank operator. We express this property by means of
the notation

VaA(f> + AV:4>=Yi((l>,bJam (<£eL2(0,l)), (1.8)
m

where the sum is over finitely many terms.
The condition (1.8) is satisfied by operators A = pd — K other than those in which K is

generated by a difference kernel. In fact, if A is an invertible operator satisfying an
equation of the form (1.8) then so is its inverse. This feature dictates our strategy, which
is to establish methods of solving (1.8) for A and to apply these methods to the
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FINITELY-GENERATED SOLUTIONS 327

determination of A~l, thereby deriving explicit formulae for the solution of n<f> =
f + K<f>.

We also broaden the theory by including the practically important class of singular
integral equations. That is, we include integral operators on L2(0,1) of the form
K = aH + bJ, where a and b are constants, J is a compact operator and H denotes the
Hilbert transform defined by

} ^ (1.9)
0 t — X

H is a bounded operator on L2(0,1) but it is not compact.
The generality we seek to introduce requires us to adopt a different approach from

that of Porter [4]. Here we seek a structured framework for dealing with operators
satisfying (1.8), which subsumes the earlier work. It is also evidently capable of being
adapted to other classes of operators, by altering the Va of (1.8).

2. Some basic results

We make considerable use of the operator Vx on L2(0,1) defined by (1.4) and note
that

(K+v;)<t>=(cf>,fa)fa, (2.1)

using the notation of (1.6). In terms of the convolution \j/ * #, where

we may write

VA=L*<i> (2.2)

and it is easy to show that

<l>)=K<t>*<l> = vaii,*<l>. (2.3)

We shall also encounter operators which can be expressed in the form (Uip)*<f>,
where U is the reflection operator on L2(0,1) defined by

It is convenient to employ the summation convention to express finite rank operators
and their consequences in a concise form. Thus we write
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328 D. PORTER AND D. S. G. STIRLING

D<t> = (<t>,bm)am (<t>eL2(0,l)), (2.4)

D being the operator on L2(0,1) generated by the kernel

the sum being over finitely many terms. Only the subscript m will imply summation.
In the notation of (2.4), the operators A under consideration are those which satisfy

D (2.5)

for some D.
By using (2.1) we see that (Vx + Vt)A<t> = (<t>,A*fx)fx and A(VX + Vt)<j>={4>,fx)Afx.

Therefore

(V:A + AK)<t> = (<t>,A*L)L + (<t>,L)AL-(KA + AV:)<l> (</>eL2(0,l)), (2.6)

and it follows that if A satisfies (2.5) then V*A+AVX is a finite rank operator and
conversely. Clearly, if VXA + AV* is an operator of rank n then V*A + AVX has rank at
most n + 2 and we could replace (2.5) by the equivalent condition V*A + AVX = D', where
D' is a finite rank operator. It turns out to be convenient to consider VXA + AV* and
V*A + AVX separately, although the relationship between them will prove to be useful.

We therefore consider (2.5) in conjunction with V*A + AVX = D, using the operator D
again as a matter of notational convenience and temporarily setting aside (2.4). Our first
objective is to solve the two relationships for A, assuming D to be given. In a practical
problem, A will of course be given and it is A ~l that we shall seek, using the following
results.

Lemma 1. Let A be a bounded operator on L2(0,1). Then

(i)

(ii)

Proof. Suppose for the moment that A is an operator of the form

where k possesses continuous first-order partial derivatives. Then the kernel of the
integral operator V0A + AV% is Jjfc(s,t)ds+$'ok(x,u)du. Therefore (since this function is
continuous) if V0A + A Kg = 0 then

]k(s,t)ds + \k(x,u)du = O
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FINITELY-GENERATED SOLUTIONS 329

Differentiating in turn with respect to x and t yields k,(x,i) + kx(x,t)=0 for O^x , t^ l
whence k(x,t) = f(x — t) for some function / However, k(O,s) = k(s,O)=O for O ^ s ^ l
whence f(t) = 0 for - 1 ^ t<^ 1 and k(x, t) = 0 (0 g x, t g 1). In this case X=0.

A similar argument shows that if A arises from a Ct kernel and V%A + AVo=0 then
/l = 0.

Now let A be a typical bounded operator and suppose that VaA + AV*—0. Then,
defining U. by (UJ)(x) = e~'"^(x) we have F« = l/«Kol/*, and C/at/* = t/*C/a = /.
Therefore

whence V0J3 + BFg=0 where B = UfAUx. The invertibility of U, and I/* guarantees that
B=0=>A=0, so it is enough to show the result for <x = 0.

Now if VoA + AV$=0 it follows that Vo(V
n
oAV$n) + (Vn

oAVZn)Vt=0. Because VO is a
Hilbert-Schmidt operator, so is FOy4FJ, and it is therefore generated by an L2-kernel on
[0,1] x [0,1]. Then VQAV%3 is generated by a kernel whose first order partial
derivatives exist and are continuous. But V0(VlAV%z) + {VlAV%3)V%=Q so by the first
part VlAV%3=0. Since VO is injective, it follows that AV$3 = 0, VlA* = 0 and, in turn,
A=0.

The case V*A + AVa=0 is reduced to V%A + AVo = 0 and thence to the situation
where A arises from a continuously differentiable kernel, in a similar way, or by noticing
that V*A + AVa = Q implies that V*A* + A*Va=Q and using (i).

Theorem 1. Let A be a bounded operator on L2(0,1) and let D denote the finite rank
operator on L2(0,1) defined by D<f>=(4>,b^)am.

(i) VXA + AV* = DoVaAV* = AmBZ, where AJ> = am*<t>, BJ> = bm*4>.

(ii) V*A + AVx = DoV*AVa = AZBm, where Am<l> = (Uam)*ct>, Bj>=(U6m)*ij>.

Proof. Note first that, by (2.2), V<Am = fa*am = am*flt = Amfa and that Vtbm =
Therefore

VxDV;<t>=(cl>,Vabm)Vaam

using (2.1). Since Am and Bm commute with Vx (all being defined by convolutions) we
thus have

VaDV; = VxAmBl + AmB*mV*a. (2.7)

Now VaA + AV* = D implies
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330 D. PORTER AND D. S. G. STIRLING

*) v; = vj)V*

which combines with (2.7) to imply that VaAV* = AmB^, by Lemma 1. Conversely, if
= AmBZ then

by (2.7). Therefore Va(VaA + AV*-D)V*=0, which implies that VaA + AV* = D.

The proof of (ii) follows in a similar way using

which are easy to establish. •

A further step is required to solve VXA + AV* = D for A, which, by the theorem, is
equivalent to solving VaAV* = AmB%. In some cases (that is, for some operators A) this
step is virtually immediate as we now show.

Theorem 2. Let A be a bounded operator on L2(0,1) and let D denote the finite rank
operator on L2(0,1) defined by D<p = (((>,bm)am.

(i) / / there exist bounded operators Pm and Qm such that

for all relevant m, then

(ii) / / there exist bounded operators Pm and Qm such that

VaPm<p=(UdJ*ct>, KQm(t>=(UBm)*<t>

for all relevant m, then

Proof. We notice that, since the operators Am (where Am<j> = am*4>) and Va commute
(both being defined by convolutions), Am=VaPm implies that Pm and Va also commute.
Similarly, Qm, Pm and Qm commute with Va. Using Am= VaPm and Bm= VxQm in Theorem
l(i) gives
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FINITELY-GENERATED SOLUTIONS 331

VaA + AV*,=Do VIA - PmQt) V* = 0oA = PmQ*.

Using Am = KPm = PmVa and Bm = VttQm = QmVa in Theorem l(ii) gives

D

The class of operators satisfying (2.5) therefore contains those of the form A = PmQl
where Pm and Qm are bounded operators which commute with Vx. In fact, VaA<f> +
AVt4>={<j>,QMPmfa for such A.

Theorem 2 does not apply to all of the operators having the property (2.5). Although
Theorem 1 shows that the sum AmB* is equal to VaAV*, it may not be the case that Va

and V* can be removed from the sum on a term-by-term basis. The extraction of A
from VaAV* = AmB* may need to be carried out for the sum as a whole. For some
operators A, the intermediate relationship VaA = AmQ*l (or XKJ = PmB*) can be deduced,
the removal of Va (or V*) being possible only in an overall sense.

Further deductions can of course be made if A is known to satisfy an additional
condition, over and above (2.5), such as

A* = UAU, (2.8)

where (U<t>)(x) = (f>(l— x) (O^xg l ) . Notice that U is not a linear map, but conjugate-
linear. If A is of the form fil — K, where K is an integral operator, (2.8) implies that the
kernel it generating K satisfies k(x,t) = k(l — t,l — x) (for almost all x and t). As the
important class of difference kernels falls into this category, we pursue the consequences
of (2.8).

The condition (2.5) implies that VaA* + A*V* = D* and if (2.8) is used to remove A*,
we find that

' VZA + AVa=UD*U,UD*V<t>=(<l>,Uam)U5m, (2.9)

because VaO = UV*, which is easily verified. Therefore VaA + AV* and V*A + AVa have
the same rank in this case. Further, we find that Theorem 1 applied to (2.9) gives
V*A Va = B*Am and we therefore have two formulae for A, namely

VaA V: = AmB*m, V*XA Va = B*mAm. (2.10)

Similarly, if Theorem 2 applies it may be modified if (2.8) is in force to give

(2.11)

One more useful deduction follows from (2.8). Making use of (2.5) and (2.9) in (2.6)
shows that
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Setting <t> = fa therefore,

Ah = (/., bm)am+(/„, UaJ UEm-(Af., / . ) / .

and, taking the inner product of both sides with /„ and using Ufx=eixfa, we find that
(Afa,L) = (am,L)(L,bm). Hence

Af. = Ua,bJam + e-'\am,MU5m-(am,fM.,bm)fa. (2.12)

We give some illustrations at this stage to fix ideas.
Suppose that A=ftl — K, where K is defined by (1.3) and keL^ —1,1). According to

(1.5), VaA + AV* is a rank-two operator and, in the notation of (2.4) and (2.5),

«i = -b2 = f^2 = Vak,b1=lifaL- VJ. (2.13)

Therefore the operators Am and Bm arising in this case are given by

where (2.2) and (2.3) have been used. Obviously Theorem 2 applies here, with

using which it easily follows that A = PmQ^=fiI — K is recovered, because of (1.7). Since
this A satisfies (2.8), we also have A = QZPm, by (2.11), ,while (2.12) gives

Afa = nfx-Vak-e-"uWl. (2.14)

Now, let A be the different operator fil—H, where H is the Hilbert transform defined
by (1.9) and H<$> can be evaluated as a Cauchy principal value if 0 is sufficiently smooth.
Here we find that

(2.15)

where

p. = (l- iocVJq, q(x) = logx ( 0 < x ^ 1).

For the purpose of this example we may take a = 0 in which case the associated
rank-two operator D has the elements

Oi = b2 = f0, a2=q, bl=fif0-q.

Writing Q<\> = q*<p,we thus have
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and Theorem 1 gives

(2.16)

As there is no bounded operator P such that Q = V0P, Theorem 2 does not apply and a
more subtle approach is needed to extract A. Since Vo and Q commute and
Qfo = <l*fo = fo*q= K><?, (216) implies that

where (2.1) has been used. Hence

and Vo is removed by differentiation to give

almost everywhere in [0,1]. The second term on the right-hand side can be shown to be
equal to — (i/$)(x) (almost everywhere), as required.

The condition (2.8) is satisfied by A = fil — H and (2.10) gives an alternative to (2.16),
namely,

which may be solved for A by a similar rearrangement to that used for (2.16).
It is not surprising, of course, that singular integrals should introduce additional

complication into the proceedings. The following lemma, which will prove to be useful
later, gives another example in which Theorem 2 does not apply directly.

Lemma 2. Let p,qeL2(0,1). Then

(i) VxA<t> + AV;<f> = (<£,p)Vaq + (<£,

(ii)

Proof. With A4>={<t>,p)q it follows at once that
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VaA(f> + A V;<f> = (0, p) VJ+ (<!>, VaP)q.

Conversely, given the previous equation and applying Lemma 1 gives the result. •

One final illustration is required to dispel the idea that we are, in effect, only able to
deal with the operator A = /iI — K, where K is generated by a difference kernel. We have
already noted that the class of eligible operators includes those of the form A = PmQ*
where Pm and Qm are bounded operators which commute with Va. A simple example of
such an operator is A = / + K where

I

0
xl/2_tl/2 <Kt)dt.

This A can be written in the form A = PtPf + P2P* where Pt = / and

These operators Pt and P2 have the required properties and therefore VaA + AV* has
rank two by the foregoing theory. It can be confirmed that (VaK + KV*)(/) =
(<t>,PJa)P2f* whence VJLV*4> = CC*4 where C0 = f5(P2/J(x-t)^(O*. It is easy to
check that C = VaP2 whence the expression of K in the form P*P2 can be recovered.

3. Inverse operators

Let k: [0,1] x [0,1]-»C be such that

(K<f>)(x) = $k(x,t)<t>(t)dt (3.1)
o

defines a bounded operator on L2(0,1) and suppose that A = \il — ¥L is an invertible
operator with the property (2.5), that is,

VaA + AV; = D,D<t>=(<l>,bm)am, (3.2)

for some (known) am, bm e L2(0,1).
It follows from (3.2) that

lVa = E,E4>=(4>,A*-lbm)A-lam. (3.3)

Obviously, E has the same rank as D. Adapting (2.6) we find that
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V^A^ l+A lV* = F, ^ | ^

The rank of F exceeds that of E by no more than two. Rather than make use of (3.4),
the counterpart of (3.2), we base the determination of A'1 on the apparently less
cumbersome (3.3).

Let the elements cm and dm of L2(0,1) be defined by

Acm = am,A*dm = bm. (3.5)

Then (3.3) may be written as

and, according to Theorem 1,

V*aA-lV, = C*mDm,
CJ>=(UcJ • <f>, DJ> = ( U J J * <t>.

Theorem 2 gives A ~l explicitly as

provided that the operators Sm and tm so defined exist. If this is not the case, A~l has
to be determined from (3.7) less directly. Either way, A'1 can be considered known
once cm and dm have been found.

For some operators A, an explicit formula for the resolvent kernel can be deduced
from (3.8). We wish to express Cm in the form Vjim and Dm in the form VaTm, which is
possible if and only if Ucm has the form A/a— Vjt// for some i^eZ^O, 1) and AeC or
equivalently cm = X'fx—V*\)/' for ^'eL2(0,1) and A'eC, with similar conditions for dm.
This is true, in particular, if all of cm and dm are continuous (0,1], differentiable on (0,1)
and their derivatives are in L2(0,1). Then if we define pm and qm by

Pm = c'm + i«cm, qm = d'm + iadm (3.9)

we have cm = cm(l)efafa- V; pm and dm = dJH)eff.- V*aqm. Defining §m and fm by

Sm<l>=cm(l)<t>-(Upm)*<t>, Tm(f>=dJi\)cl>-(Uqm)*<f> (3.10)
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now yields VaSm = Cmjmd Jm m

Forming A * = 5*7^ in this case leads to

(3.11)

where

o

the resolvent kernel r(x, t) being defined for almost all x and t in [0,1] by

r{x,t)= J pm(l-s + x)qm(l-
max (x, t)

\dm(l)pm(l- l ' '

If K is a compact operator, we can be sure that n 1 = cm(l)dm(l), since (3.11) must
have the form

A'^^-'I + R, (3.13)

where R is compact.
Now suppose that A satisfies (2.8), in which cases so does A'1; that is UA~1U =

(A'1)*, and the foregoing formulae can be amplified. It follows, for instance, that the
operator F of (3.4) is given by F=UE*tJ and application of Theorem 1 to VaA~l +
A~1V* = UE*U results in VaA-*-V* = Dj%. We therefore have

V*A~'Vx = €ZDm, VaA~lV* = Dm€*, (3.14)

if (2.8) holds, Cm and Dm being defined in (3.7). In consequence, (3.8) can be revised to
give

A-^SZT^TJZ, (3.15)

if §m and fm exist. The formulae (3.14) and (3.15) are the counterparts for A'1 of (2.10)
and (2.11).

An alternative expression for the resolvent kernel r results from A~l = fmS$,, under
the same conditions as those prevailing for the version (3.12). This is
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We note that, if A*<f> = f and if (2.8) holds, then AU<j> = Uj, showing that (3.5) can be
replaced in this case by

U5m. (3.17)

4. The determination of c and d
m m

We have shown how A ~i can be expressed in terms of the solutions of

Acm = am,A*dm = bm, (4.1)

am and bm being defined by

>=((t>,bm)am. (4.2)
This relationship can be used to relate cm and dm to other elements of L2(0,1), allowing
(4.1) to be replaced by other equations which may be more convenient to solve.

Let <f>a denote the solution of A(fr = fa, where a e R and let /?eR be distinct from a.
Since

setting (j) = 0p in (4.2) gives

Therefore, using (4.1),

(*„ bjcm = Hfi-ay1^ - <j>a) + V*4>f. (4.3)

If the rank of V^A + A V* is n, we can choose n distinct values of /?, /?, say, all different
from a, giving

Thus, if the solution of A<l>a = fa is known for n + l distinct values of a, this system of
equations provides the required clt...,cn, as long as det(^/|J,fein)#0. In practical terms,
the solution of A<fra = fa is required for a e U.

To determine du...,dn, let A*il/X = fa, where aeR, and note that (4.2) implies

which leads to the system of equations
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(i/V am)dm = Wj - a) ~ lWfj - 0 J + K * ^ 0' = 1,..., n).

We have shown that the equations can generally be replaced by the auxiliary
equations A<j>a = fa and A*if/a=fa for various values of a, whatever the rank of
VaA + AV*. If A satisfies (2.8) then ij/a = e~ixU$a so only one of these sets of equations
needs to be solved.

Other auxiliary equations can be devised, in which the free terms are polynomials
rather than exponentials, for instance. Let Axj=gj where gj(x) = xJ~i (jeN) and note
that, with a = 0, (4.2) gives

Since Vogj= j~igj+i = J~lAXj+i> a °d using (4.1), we deduce that

l Vtoj. (4-4)

By taking j=l,...,n, we produce a system of equations for clt...,cn. Another system
for dy,..., dn can be constructed in a similar way from the adjoint of (4.2).

To express this process in general terms, suppose that A<S>j=hj (j=l,...,n) for some
chosen hj. Then (4.1) and (4.2) imply that

VJij + A V*<J>j = (<t>j, bm) Acm(j=l,..., n).

T h i s r e d u c e s t o a set of e q u a t i o n s for cu...,cn if 4*, (j—l,...,n) a r e k n o w n sat isfying
AxVj=VahJ, for t h e n

(d>j, bm)cm = H»j+ V:<S>j (j=l,..., n).

The 2n elements O,,...,<!>„, x¥1>...,*¥„ are thus required to determine ct,...,cn. In the
two specific cases considered above the number of distinct elements needed is reduced
by virtue of relationships between the sets (hj) and (VJij). Choices of (hj) other than
those we have given have this desirable property, such as hJ=PJ-l, where Pj is the
Legendre polynomial of order j .

There is evidently scope for representing (cm) (and similarly (dm)) in terms of other
elements of L2(0,1) and hence for representing A'1.

The issue of whether the elements cm and dm have the properties which make (3.12)
available will be considered by means of examples in the next section.

5. Applications

(a) Compact operators with difference kernels

The natural starting point for examining how the theory may be put into practice is
to consider A = \d — K with K given by (1.3). We assume that the kernel k generating K
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is such that keL2( —1,1). This is a case which has been investigated by other authors
and we can show how existing and new representations of A ~l can be constructed by
the approach developed above. (As before, we assume that fil — K is invertible.)

For this A, VXA + AV* is a rank-two operator, D, where £>0=(#,fcm)am, where (from
(2.13)) we recall that

a1 = -b2 = fa,a2 = Vxk and b^jif.-VJ.

In forming the finite-rank operator E=(<f>,dm)cm, where Acm = am and A*dm=bm we
notice first that c1 = cj>x and d2=—\j/x. Because, in this case, the condition (2.8),
A* = UAU, holds we can immediately relate </>„ and i]/x since \J/x = e~iaU$x. A further
equation arises from (2.14) showing that VBi=ei'(nfx-e~illCVJ) = ̂ \Afx+Vxk) =
e"x(Afx + a2). In this case, therefore

Cl = </>,, Ac2 = Vxk (5.1)

and

AV3y=el\Afx +Ac2\

giving

US, = (hj. + c2), U32 = - c-Cl. (5.2)

Therefore dt and d2
 m a v De obtained from Cj and c2 which may, in turn, be obtained

from (5.1).
The direct approach, then, is to chose

Ci=4>.,c2 = a>. (5.3)

where Aa>x=Vxk. This leads to the representation of A~l derived (in the case a=0) by
Sakhnovich [6]. This is, however, less appealing than alternative formulae for E since
the calculation of cox is not as simple as others.

At this point we notice that it is the operator E which we seek rather than the
individual vectors cm and dm which form it. We therefore write E = (<f>,3m)cm and seek
other representations by varying cm and 3m. Since E is to remain fixed the subspace
spanned by ct and c2 will be that spanned by ct and c2, with the corresponding result
for <?! and 32. We therefore seek cm and 3m satisfying (5.2) for which E=((j),3m)cm. It is
easily checked that if we set c2 = c2 — Xcl for a scalar X and define 3, by (5.2), with
ct =Cj, then we obtain a representation of E, irrespective of the choice of A.

From (4.3) we have, for /?# a,

whence, by adding a suitable multiple of ct to c2 to obtain c2 we may choose c2 to
satisfy
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(4>» Qc2 = - i(P-a) - »(0, - cj)a) - V*^ (5.4)

(noting that b2=—fa). Since {/2pn:peZ} is a complete orthonormal set and A is
invertible, for each txeU we can certainly choose /? such that (00,/J#O. In this case
finding $„ and <f>fi yields the operator E.

Alternatively, we could use (4.4) with a = 0 in this case to give (with j= 1)

Here we may choose c1 = cl = <£0(
 = Xi) a n < l

(5.5)

where gt(x) = 1 as in Section 4, since b2= — ii-
Now UVa=V*U (using the notation £/ introduced with (2.8)) and Ufa = e'*fa, so,

using (Va+V:)<f> = ((f>,fa)fa, we obtain UVJ=V:uT=ei*(fa,r)fa-V0LUT. Using this in
(2.14) yields

^{fc-e-'"t77)- (5-6)

From (1.5) we have, for waeL2(0,1)

A Vtwa = (wa, fifa- Va l)fa - Fa{(wa,/Jk + Awx},

and adding this to (5.6) gives

where

provided we can choose wa to satisfy

>lwa = e - ' " [ / r - { l + K,/J}fc. (5.7)

If wa is so chosen

C<f>a (5.8)

and

(5.9)

Now since X is of the form fil + compact operator, for /i#0, the Fredholm Alternative
shows that (5.7) will have a unique solution wa provided that
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Aw+(w,fa)k = 0

has only the trivial solution, which will be the case if \// = A~lk has the property that
W»/«) / - ! • If M / « ) = - l then (5.7) will have a solution provided that e'^UT-k is
orthogonal to all solutions of A*v + (v,k)fx=0, that is, to all scalar multiples of ^a, since
(il/x, k) = (fx, i//) = — 1 in this case. Now

(e - "UT- k, «/O = (I efV*J + 1 = (<t>x, 0 + 1

and this cannot be zero, since AV*ip = (\]/,llfx — VJ)fx, giving

hence (V*i//,l)= -{^x,I){^+(V*il/,l)} showing that (&,, / )#-1 because ^#0. So a
necessary and sufficient condition for (5.7) to be satisfied is {\jix,k)^ — \ or, equivalently,
W'fa)^ — 1- From the given properties of /„, (^,/J can be equal to —1 only for an
isolated set of values of a, so we may choose a for which (i/>, fx)¥= — l.

Assuming that (\j/, fx) # — 1 then we can discount the possibility that the constant C in
(5.8) is zero, since fx does not belong to the image of V*. From this we see that (f>a is of
the form kfx— V*g for geL2(0,1) and AeC, the condition required to implement the
factorisation in (3.8). Even in the case when (i/f, fa)= — 1, (5.10) shows us that </>a is of
this form (with A = 0) since the line following that equation shows us that pi + (V*tl/,l)^
0.

Because $a is of the form ^.fx-V*g (geL2(0,1)), (5.4) shows that both ct and c2 in
this formulation have the same form. By the remarks following (5.3), it follows that the
ct and c2 of (5.3) and (5.5) also have the same form, and the factorisation of (3.8) may
be carried out.

This information is sufficient to show that A'1 is given by (3.13) in this case, where
the kernel generating R has the two alternative forms (3.12) and (since (2.8) applies)
(3.16). Each of these forms has three versions, given by using (5.3), (5.4) or (5.5) in (3.9).

To give an explicit form for A~l = fi~1I + R, and one which is evidently new, we use
cl and c2 in the forms given by (5.5). As a = 0 in this representation, (3.9) reduces to
pm = c'm, qm—3.'m (for m=l,2) and it follows from (5.2) that qi=—Up2 and q~2 = Upl.
Constructing the kernel r of R according to (3.12) and (3.16) we find after some
simplification that

for almost all x and t in [0,1], where

and
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r2(x,t)= } {z'i(l-
max (x, r)

m ' T '
It is easy to check that the alternative expressions for r2 are indeed equal and that
r(x,t) = r(l— t, 1— x), in line with the remarks following (2.8).

A further representation of A'1 is provided by pursuing (5.8). Guided by (5.7), and
assuming that (i//, fx) # — 1, let

the latter being equivalent to A*x = l- Then

from which we deduce that

the last equality holding because (fa,x) = (A<t><i,X)=(<l><x,A*x)=((t>a,I)- Thus, (5.9) simpli-
fies to C{1 +(</',/J} =\i and we deduce from (5.8) that

J '

using (2.1) to derive the second version from the first.
Either of the equivalent expressions (5.11) for n</)a may be used to replace (/>„ and </>̂

in (5.4), giving cx and c2 in terms of <j/ and x- The manipulation leading to A~l is
straightforward since $a and <f>p satisfy the conditions which allow the factorisation (3.8)
and (5.11) gives

Then, using (5.4) we obtain a similar expression for (<f>f,fa)p2- The expression for A'1

which results from this approach was given by Gohberg and Feldman [1] and Porter

(b) Singular integral equations

We first consider the prototype singular equation
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/, (5.12)

where H is the Hilbert operator defined by (1.9) and neU. With A = fil-H, VXA + AV*
is the rank-two operator given in (2.15). The condition (2.8) applies again, allowing us
to use (2.12), which gives Afa=nfx+px-e~iaUpx. Following the procedure in (a), we
find that Acl=fa, Ac2=px and that (5.2) supplies dx and d2.

Restricting attention to the case a=0, we use (5.5) to provide ct and c2, requiring the
solutions of (/*/ — H)xj=gj to be determined for 7 = 1,2 where gJ{x) = xi~1. Since ct and
c2 are real-valued, (5.2) leads to d1=gl + Uc2 and d2= — Uct. Substituting (5.5) and
these expressions for dx and d2 into E<f>=($, dm)cm we find, after a minor rearrangement,
that

>, uXl)Xl-(4>, uX2)Xl.
Using Lemma 2 and (3.6) we see that

(Xx,gx)A-l = P + B, (5.13)

where

P<t>={<t>,UXi)Xi (5.14)

and B satisfies

=(<)>, VXl)Xi-(4>, UX2)Xl. (5.15)

(A similar decomposition to that in (5.13) could have been employed in (a), but is less
significant there).

It remains to determine B from (5.15), employing our established techniques.
Reference to [5, pp. 309, 314] reveals that

where

v = 7i"' sin (ny), \i = n cot (ny) (0 < |y| < $),

for each fieU except n=0. The result of using Xi and Xi ' n (515) is that B satisfies

(VtB + BV0)<j> = (4>,2m)cm, (5.16)

where we have redefined cm and 2m (m = 1,2) by

cl(x) = vx-'(l-xy,c2(x) = vx1-y(l-xy(0<x<l) (5.17)

and
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2l = -Uc2,22 = Ucl.

Since A = fil — H and P satisfy (2.8), so do A'1 and B. Therefore (5.16) implies

V%BV0 = £*Dm, V0BVt = DmC*m, (5.18)

with Cm and Dm defined in the usual way.
Unfortunately, it is not possible to factorise each of the terms Cm and Dm in the form

(3.8) and then reassemble the results to give a simple formula for the solution of (5.12).
This may, however, be carried through if we make additional assumptions about /. If
we assume that / is differentiable and /'eL2(0,1) then /(x) = /(0)+(Fo/')(x) =
/(I ) - (^o/ ' ) (*)• Since (5.13), (5.14) and the fact that (Xi,gi) = y show that Bg1=O we
deduce from (5.18) that

and

V0Bf=-V0BVtf = DmC*mf.

These yield

(Bf)(x)=^-\]cl(l-s + x)dx]c2(S-t)f'(t)dt-\c2(l-i
UX [x 0 x 0 )

=—J f'(t)dt J {ci(l— s + x)c2(s — t) — c2(l— s + x)Ci(s — t)}ds (5.19)
@XQ max(x, t)

and

(5.20)

all versions being valid for almost all x e [0,1].
Finally, we note that Xi = Ci and therefore

where B is defined above.
This form of the solution of n<f> = f+ H<f> appears to be new. A one-term solution
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consisting of repeated indefinite integrals was given by Peters [3] using a 'simplifying
operator' idea, which was exploited by Porter and Stirling [5] to generate other forms
of the solution. These previous solutions do not exhibit the symmetric structure of (5.19)
and (5.20).

More general singular integral equations, of the form n<j) = / + (H + K)(f>, where K is
compact and generated by a difference kernel, for instance, can be dealt with using the
method described above. The modification required is virtually immediate, and we find
that(xl,g1)A-1=P + B, where P(/>=(<!>, Uxi)Xi and

(V*B + BV0)<l> = (<l>,Uxi)X2-(<l>,Ux2)Xi- (5.21)

Here Xi a nd Xi a r e defined by (fil — H — K)Xj=gj where gj{x) = xJ~l (O^x^l) . The
extraction of B from (5.21) follows once the behaviour of X\ and Xi *s established.
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