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Abstract

In a previous paper ([14]) the author showed that a free inverse semigroup W9X is determined by its
lattice t(^ix) of inverse subsemigroups, in the sense that for any inverse semigroup T, tCSix) =*
£(7") implies 9$x =s T. (In fact, the lattice isomorphism is induced by an isomorphism of <3$x upon
T.) In this paper the results leading up to that theorem are generalized (from completely semisimple
to arbitrary inverse semigroups) and applied to various classes, including simple, fundamental and
£-unitary inverse semigroups. In particular it is shown that the free product of two groups in the
category of inverse semigroups is determined by its lattice of inverse subsemigroups.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 20 M 10; secondary 08 A 30.

1. Introduction

By a lattice isomorphism [L-isomorphism, structural isomorphism or projectivity]
$ of an inverse semigroup S upon another T we mean an isomorphism of £(S)
upon £{T) (£(5) denoting the lattice of inverse subsemigroups of S, including
the empty inverse subsemigroup). A mapping <p is said to induce 3> if A$> = A<p
for all A in £(5).

To say that a class G of inverse semigroups is closed under lattice isomor-
phisms means that if S E 6 and £(S) s t(T) then r s f i . A stronger state-
ment is to say that an inverse semigroup is determined by its lattice of inverse
subsemigroups, that is £(5) = t(T) implies S = T. We say S is strongly
determined by £(5) if every lattice isomorphism of 5 upon T is induced by an
isomorphism of S upon T. (For example, as noted above, free inverse semi-
groups have this property.)
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322 P. R. Jones [2 ]

In this section we will later show that with any lattice isomorphism between
inverse semigroups S and T are associated a 'weak isomorphism' of Es upon ET,
an 91- and £-preserving bijection of the 'non-subgroup' elements of 5 upon
those of T and a comparability-preserving bijection of $-(S) upon $(T). Using
these results we can then show, for example, that for any semilattice E the class
of simple inverse semigroups with semilattice of idempotents isomorphic with E is
closed under lattice isomorphisms.

In Section 3 the general results are specialized a little to £-unitary inverse
semigroups. Under some natural weak assumptions it is shown (Theorem 3.4,
3.10) that // S is E-unitary and £(S) = £{T) then T is also E-unitary, Es sat ET

and moreover t(S/a) s= £(T/o), the lattice isomorphisms commuting in a
certain sense. In particular this is true if 5 has a set of nonidempotent
generators. As a consequence (Theorem 3.12) the class of quasi-free inverse
semigroups [29] of given rank is closed under lattice isomorphisms.

The above results are applied in Section 4 to prove the result stated earlier: the
free product of two groups in the category of inverse semigroups [18], [21] is
determined by its lattice of inverse subsemigroups. (This answers, in this special
case, a question posed by Preston in [27], Problem 7.) If the groups are
torsion-free the semigroup is determined strongly (in the above sense) but
whether this is true in general the author does not know. The theorem is the
analogue to that of Sadovskii [31] for the free product of two nontrivial groups
in the category of groups. It is of interest to note that either of the groups may
be trivial in our case.

Throughout the rest of this section S and T are inverse semigroups and $ is a
lattice isomorphism of S upon T. If A C S then EA (or E(A)) will denote the set
of idempotents of A. For all other terminology the reader is referred to [14] (or
to [3], [12] for basic properties of inverse semigroups and [2] for lattice-theoretic
results).

RESULT 1.1 ([14], Lemma 1.1). There is a unique bijection <pE of Es upon ET

such that <e )$ = (eq>E)> for all e £E Es. In addition <pE satisfies
(0 etfifand only if etpE%fyE, and
(ii) e\\f implies (ef)<pE = {eyE){fyE).

(Recall that if (P, < ) is a poset thenp\q Up and q are comparable, andp\\q
otherwise). Where no confusion arises we will write (p for <pE. Such bijections
between semigroups were called weak isomorphisms by Sevrin [32]. It is easily
seen that a weak isomorphism is an isomorphism if and only if it is order-preserv-
ing, a fact which will be used without comment.
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As an immediate consequence of Result 1.1, <p maps a maximal subgroup He

of S, e G Es, to the maximal subgroup H^ of T. Further,

RESULT 1.2 ([14], Proposition 1.4). If S is completely semisimple, so is T.

Most of the results in [14] were proved for completely semisimple inverse
semigroups (those for which no two distinct ^D-related idempotents are com-
parable). Before going on to generalize those results we state first a result from
[6] and [17], whose fundamental importance to this paper stems from the
well-known fact that every inverse semigroup which is not completely semisim-
ple contains a copy of the bicyclic semigroup as an inverse subsemigroup.

RESULT 1.3 ([6], [17]). The bicyclic semigroup B is strongly determined by its
lattice of inverse subsemigroups—in fact every lattice isomorphism of B upon T is
induced by a unique isomorphism.

By Result 1.1, the restriction of this isomorphism to the idempotents of B is
just <pE.

Ersova [6] proved the weaker version of this result but also proved more
generally that any infinite elementary inverse semigroup is determined, weakly,
by its lattice of inverse subsemigroups.

LEMMA 1.4. / / 5 = <x>, an elementary inverse semigroup, then T is also
elementary.

PROOF. If S is a group, this follows from results of Ore [26]; see [33], Chapter
1.

If xx~x\\x~lx, the proof is identical with that of [14], Lemma 1.5, noting again
that M = S \ [x, x~1} is the maximum proper inverse subsemigroup of S.

If X J C ' ^ X " ^ then S is bicyclic, by [3], Lemma 1.31, so T is also, by Result 1.3.

In order to strengthen this lemma and for use in the sequel we require a
description of the elementary (or monogenic) inverse semigroups. These were
classified by Gluskin [7] and more succinctly by Ersova [5]; for a lucid account
see [4], pp. 27-28. An elementary inverse semigroup S = <JC> is of one of the
following types:

(I) a cyclic group;
(II) the free elementary inverse semigroup I3r91;
(III) defined by the relations xnx~" = x""x", xn + m = x", n > 2, m > 0,

whence S is completely semisimple, with a group kernel generated by xn + 1x~"
(as an inverse subsemigroup);
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(IV) bicyclic; or
(V) defined by the relation (x"x~n)(x'"x") = x"x", n > 2, (or its dual)

whence S has a bicyclic kernel, generated by x" + ix~" (or, dually, by x~in+i)x").
When S has a kernel K, S is an ideal extension of A" by °J^/In, where /„ is

the ideal of ?F5, generated by x".

LEMMA 1.5. If S = (x)>, not a group, then there exists a unique generatory of T
such that {xx~x)<p = yy~l and (xlx)<p = y'ly.

PROOF. Clearly S has one of the types (II) to (V) above. Types (II) and (III)
were covered in parts (i) and (ii) of the proof of [14], Lemma 1.6.

If S is of type (IV), that is bicyclic, let y be the image of x under the unique
isomorphism upon T which induces 4> (Result 1.3).

If 5 is of type (V), then by the comments following Result 1.3, T ~ 5, for S is
certainly infinite. Moreover if Ks, KT denote the kernels of S and T respectively,
Ks<& = KT, and the restriction of <fr£ to E{KS) is an isomorphism upon E(KT),
by Result 1.3. Then an argument almost identical with that of part (ii) of the
proof of [14], Lemma 1.6 (replacing the identity Ox of the subgroup kernel there
by the semilattice E{KS) of idempotents of the bicyclic kernel, and noting the
final sentence in the description of the elementary inverse semigroups above),
yields the required result.

(Note that even if 5 is a (cyclic) group there is still of course such a generator
y, but the properties above do not then define^ uniquely.)

Combining this lemma with Result 1.1 we have

PROPOSITION 1.6. For each x in S, either idempotent or in no subgroup of S,
there is a unique element y of T such that < x ) $ = (_y>, (xjc~')(p = yy~l and
(x~lx)<p = y~xy.

Combining this proposition with the comments preceding it and with those
preceding Result 1.2 yields a technical point which will be useful in the sequel:
for any x in S there existsy in T such that>> e R(XX-^ n <^>^* (and>> generates

COROLLARY 1.7. The mapping x \-^>y defines a partial one-to-one map <p of S
into T, extending <pE and taking S \ ( U £ £ £ He) onto T \ ( U / e £ r / / / ) . Further <jp
and (jT1 are <$,- and £ -preserving. If 0 is any homomorphism of S upon T which
induces <&, then x6 = xqp, wherever x<p is defined.
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PROOF. The bijectivity of <p between the nonsubgroup elements of S and those
of T comes from applying the above arguments to the lattice isomorphism <3>~' of
Tupon S.

Now suppose s, t E S and s<p, t<p are defined. Then stflt iff ss'1 = tt~l iff

(s<p)(s<pY ' = (ss~l)(p = (trl)<p = (t<f>)(t<pyl

iff s<p<3lt<p.

The final statement follows from the uniqueness of y in Proposition 1.6.

In particular if S is combinatorial (whence by [14], Corollary 1.3 so is T), <p is
therefore a bijection of S upon T and if 9 is a homomorphism of S upon T
inducing $, then 0 = <p. For instance, in Result 1.3 the isomorphism of B
inducing a lattice isomorphism $ of t(B) must in fact be <p.

Denote by ^ (U) the set of D̂ -classes of a semigroup U.

PROPOSITION 1.8. If e,f G Es, then e^f if and only if e*ptf)f<p. Hence there is a
bijection <poil of ty (S) upon ^(T). Further for each ty-class D of S

\ET n Dq>^\ = \ES n D\.

PROOF. If e, f G Es, e =£f, then e6!)/ implies e = xx~l, x~xx = f for some
x G S, in no subgroup of S. Then by Corollary 1.7, «p = (jc<p)(x«p)"1 and
(x<p)~l(x<p) = fq>, that is etp^fy. The converse is similar.

Define tp^ by Z)<jPq, = D^ for some (any)e G £ o . This is clearly well-defined
and bijective. The final statement is then immediate from the bijectivity of <p£.

An application is the following. An idempotent e (and similarly any subgroup
of He) is called isolated [13] if Es n De = {e} (that is, if De = i/e), and
otherwise nonisolated.

COROLLARY 1.9. If S has no isolated nontrivial subgroups then there is a
one-to-one correspondence between the cardinalities of the %-classes of S and the
cardinalities of those of T. Hence \S\ = \T\.

PROOF. Since the % -classes within any given D̂ -class of 5 have the same
number of elements it is sufficient to show, by the proposition, that for each
'I)-class of S, an % -class of D has the same number of elements as some
% -class of Dysp.

Let e G ED. If D = {e}, then Ap^ = {e<p}. Otherwise by assumption, e ^ / f o r
some/ G Es,f¥= e. Since the X-class H = Re n Lj of S intersects no subgroup
of S, <p is defined on H and moreover maps qp bijectively upon the % -class
R^ n Lyv of T (since <p is 6il- and £-preserving). Thus \H\ = |//<p|.
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Since \ET n D<p<%\ = \ES n D\, we have therefore \Dy6i\ = \D\ for each £> e
. But 1^(5)1 = 1*0(7% so | 5 | = |T|.

Before proving the analogue for fy -classes of Proposition 1.8, we prove a result
of interest in its own right. Some applications are considered in Section 2.

LEMMA 1.10. The weak isomorphism <pE is order-preserving on the idempotents of
each §- -class of S.

PROOF. Let / be a % -class of S and let e,f G £,, e < / . T h e n / ^ g for some
g G Es, g < e (see, for example, [3], Section 8.4, Exercise 3). Let x G Rf n Lg:
clearly xx ' = / > g = x"1*, that is x is strictly right regular, and so <x> is
bicyclic. By the comments following Corollary 1.7, <pE is therefore an isomor-
phism on the idempotents of ( JC) . Thus/qp > gy (whence x<p is also strictly right
regular).

Now ex<3le and ex =£ e (for if ex = e, then gx — g, that is x'xx2 = x^x,
impossible in a bicyclic semigroup). Further by the comments following Proposi-
tion 1.6, applied to ex, there exists y in T such that y G Z?^ n <ex>4>. Thus
^ £ <£•$, JC>3> = <2sr, x<p> (since xtp is not in a subgroup), and by Lemma 2.2
of [16], yy~} < (xcpXxcp)"1, that is e<p < ftp.

Denote by f(U) the poset of ^-classes of an inverse semigroup U (where
Ju < Jv if UuU < UvU, u,v e U).

COROLLARY 1.11. If e,f G Es, then eff if and only if ey$f<p. Hence there is a

bijection <p^of f(S) upon ^{T) such that

(i) \ET n Jn\ = \ES n J\,
(ii) Ji\\J2 if and only if Jxy^\\J2Vp and
(iii) J and Jy^ have the same number of D̂ -classes, for all J, / „ J2 G j-(S).

PROOF. Let e, f G £ s , <?£/. Again / ^ g for some g G Es, g < e. By Proposi-
tion 1.8, fytygy and by the lemma gy < e<jp. Hence 7/v = J^ < 7^ . Similarly
/ ^ < 7^, whence eyfyfy. The converse is similar.

If J G J(S) , define 7<p̂  = J^ for some (any) e G £y. Then <p« is clearly
well-defined and bijective, and (iii) (and therefore (i)) follow from the corre-
sponding result for D̂ -classes.

To prove (ii) suppose 7, \\J2, Jx, J2 G f(S). Then by [3], Section 8.4, Exercise 2
again, e | | / for some e G E(J}),f G E(J2). By Result 1.1, e<p\\f<p, whence Jxy^ =

converse is similar.
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From part (ii) of this corollary we can deduce (as in Result 1.1) that w* is an
order isomorphism if and only if it is order preserving.

Using Lemma 1.10 and its corollary the conditions under which the weak
isomorphism <pE is an isomorphism can be substantially weakened. The results of
Sections 3 and 4 depend strongly on this weakening.

PROPOSITION 1.12. The following are equivalent:
(a) <p£ is order-preserving (that is, an isomorphism),
(b) for all Ju J2 G $(S) such that 7, < J2, there exist e G E(J{), f G E^J^

such that etp < fip,
(c) <p^ is order-preserving (that is, an order-isomorphism).

PROOF. We prove (a) => (b) => (c) => (a).
(a) => (b): Let 7, < J2 ( /„ J2 G $(S)). As above, there exist e G E(J{), f G

E(JJ,e < f. By (a) ap<fip.
(b)=>(c): Let JX,J2 G f(S), / , < J2. By (b) eq> </<p for some e G £(./,),

/ G £(y2), that is7,<iPj = Jev<Jh = J2<pf.
(c)^>(a): Let e,f G £5 , e < / . If ej-f then by Lemma 1.10, e<p <fip. Other-

wise Je <Jf, so that by (c), J^ <Jfr By Result 1.1, «p||/<p, possible only if
e<p <fip.

COROLLARY 1.13. / / S is an elementary inverse semigroup then <pE is an
isomorphism.

PROOF. Recall the five types of elementary inverse semigroup listed earlier.
Let S = <x>. If 5 is a group, the result is obvious, if S is free, then it follows
from [14], Theorem 2.1 and if S is bicyclic, it follows from Result 1.3. Otherwise
5 is of type (III) or (V).

In either case, we have, for some n > 2

j(S)={Jx,Jx2,...,Jx.-,,K}

where JX>JX2>-- > / , „ - , > K and the kernel K = Jx, = Jx-, = . . . .
(Since JC^FfJ,) is a chain, so is J (S) . Then use the final comment before Lemma
1.5.) Now x"~lx^n~l) G Jxn-, and x"~1x'^~1)\\x~lx (since the same is true in
<5ix) so if e = (xn'xx<n'V))(x-'ix),i\icnJe <Jx.-t, that is e G AT. By Lemma 1.1,
ey = (x"~xx<n~i))<p(x-xx)q>, that is «p < (x"" 1 ^^"" 1 ' )^ , so Ktp^ <Jxn-,tpf

Again using the comments before Lemma 1.5, Jx'<p^ < Jxr-i<p^ for 2 < r <
n - 1, since x ' - ' x ^ - ' ' G /,,-., x ' - ' x ^ - ^ l x - ' x and x[(xr-lx^r-i))(x-ix))x-i

= xrxr, that is e = (xr'ix~(r~1))(x-ix) GJX,, whence etp < (xr~xx<r~l))y.
Hence ip̂  is an isomorphism and by the proposition, tpE is an isomorphism.
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To complete this section we consider for a moment fundamental inverse
semigroups. An inverse semigroup is fundamental [22], [24] if it admits no
non-trivial idempotent-separating congruence.

Alternatively S is fundamental if ju = t, where ju, is the largest idempotent-
separating congruence on S, defined [11] by xpy if xex~l = yey ~~' for all e G Es.
The congruence ju, is the largest congruence contained in %.

We now characterize fundamental inverse semigroups by properties of their
lattices of inverse subsemigroups-from this it easily follows that the class of
fundamental inverse semigroups is closed under lattice isomorphisms. An appli-
cation will be considered in Section 2.

PROPOSITION 1.14. An inverse semigroup S is fundamental if and only if for
every nonidempotent x of S, (Es, x ) is not a union of subgroups of S.

PROOF. Suppose S is fundamental and x is non-idempotent. Since p. = t,
{x, xlx) & /x and so xfx~x =£ (x~1x)f(x~lx) = f(x~xx), for some/ G Es. But then
(xf)(xf)~l =£ (xf)~l(xf), that is xfis not in a subgroup of S.

Conversely, suppose for all nonidempotents x of S, (Es, x} is not a union of
subgroups of S; let a\sb, a, b E. S. Clearly ab^fibb'1. Put c = ab~x and e = bb~\
Since (i C DC, c G He.

If c & Es, then (Es, c> JZ Es. Let s be a nonidempotent of (Es, c). Then (by
commuting idempotents, if necessary), s = he" for some h G Es, n ¥= 0. Since
c"ju.e, syJie, that is s G Hhe. Therefore <£, c ) is a union of subgroups, contradict-
ing the hypothesis. So c G Es, that is c G E. That a = b then follows, whence
/i = i.

THEOREM 1.15. 77*e class of fundamental inverse semigroups is closed under
lattice isomorphisms.

PROOF. Let S be fundamental and 4> an isomorphism of £ (S ) upon t(T). If 7"
is not fundamental, then for some nonidempotent / of T, (ET, /> is a union of
subgroups, and so Es V ( O ^ " ' is also. (If j e £ s V < / > $ ' ' = (ET, t}4>~\
then <•?><!> C (ET, t} since <-s>3> = <6> for some b E: T, and <$><!> is a sub-
group of T. Hence <s> is a subgroup of 5.) Let 5 G <f>$~' , nonidempotent.
Then (f^, i ) is a union of subgroups, a contradiction, by the proposition.
Hence T is fundamental.
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2. Simple inverse semigroups

Applying 1.8-1.11 to simple inverse semigroups, we have the following.

THEOREM 2.1. Let S be a simple inverse semigroup with a ty-classes. If
£(!T)~ £(5) then T is also simple with a tf)-classes, and moreover ET ^ Es and
\S\ = \T\.

PROOF. By Lemma 1.10, the induced weak isomorphism of Es upon ET is
order-preserving, thus an isomorphism. The remainder of the theorem follows
from Corollary 1.9 and 1.11.

In particular, if 5 is bisimple and £(T) =̂  £(S) then so is T.
In view of Corollary 1.9 we may be a little more precise than just \S\ = \T\ in

the theorem-there is a one-to-one correspondence between the cardinalities of
the % -classes of 5 and the cardinalities of those of T. If we apply the theorem
to the semilattice Ca of positive integers under the inverse of their usual order,
we see that the class of simple inverse to-semigroups with d ^D-classes (d finite;
see [19], [23] or [12], Chapter V) is closed under lattice isomorphisms. More
particularly if S is the fundamental simple inverse semigroup Bd with d ^-classes
and £ ( T ) ~ £ ( 5 ) , then T is again fundamental, by Theorem 1.15, whence
7"~ 5. (It was shown by different methods in [17] that the inverse semigroups
Bd are in fact strongly determined by their lattices of inverse subsemigroups.)

Of course for some semilattices E there is no simple inverse semigroup having
E as its semilattice of idempotents. Munn [25] characterized those semilattices
which are the semilattice of idempotents of a simple inverse semigroup as being
subuniform-E is subuniform if for all e,f E. E there exists g G E, g < / , such
that Ee ^ Eg. Given a subuniform semilattice E, every fundamental simple
inverse semigroup having semilattice of indepotents E is isomorphic with a full
inverse subsemigroup of TE, the (fundamental and simple) inverse subsemigroup
of §E consisting of the isomorphisms between principal ideals of E.

PROPOSITION 2.2. Let E be a subuniform semilattice. If £ (5 ) ^ £(TE)for some
inverse semigroup S, then S is isomorphic with a full inverse subsemigroup of TE.

Further if each principal ideal of E has a finite group of automorphisms, then

PROOF. Let $ : £ (S ) -» £(TE) be the isomorphism. By Theorem 2.1 (applied
to 4>~'), S is simple, and by Theorem 1.15 S is fundamental. Further the weak
isomorphism <pE: Es —» E(TE) is an isomorphism. There is a monomorphism 0 of
S into TE extending yE, and S9 is a full inverse subsemigroup of TE.
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In fact by the arguments of Corollary 1.9, we have \H9\ = \Rap n L^] and
HO C R^ n Lfv, for each % -class H = Re n Lf of 5. If each principal ideal of
E has finite automorphism group, then the % -classes of TE are finite. Thus
SO = Te and S =: T£.

For example if £ is an u-tree, that is a semilattice in which each principal
ideal is isomorphic with Cu, then Eu is (sub)uniform and each principal ideal
has trivial automorphism group. Thus TE is determined by its lattice of inverse
subsemigroups.

There is an analogue of Theorem 2.1 for 0-simple inverse semigroups. Note
first, however, that if U and V are inverse semigroups such that £([/) ^ £(K),
then £(C/°)^ £(K'). We show, rather surprisingly perhaps, that this is the
'worst' that can happen if S is 0-simple: if £(T) ~ £(5), either T is 0-simple or
T = V1 where £(K) ~ £(5 \ 0). More precisely (denoting S \ 0 by S*).

THEOREM 2.3. Let S be a 0-simple inverse semigroup with a ty-classes, and
suppose £(S) ^ £(7"). Either T is 0-simple with a ^-classes and ET ^ ES, or
S* <S (that is S = (S*f) and T = (5*$) ' , where 5*4> is simple with a - 1
ty-classes and E(S*&) =; E(S*).

PROOF. Let 4>: £ (5 ) -* £(T) be the isomorphism. Since S has two ^-classes,
one of which is trivial, the same is true of T. Suppose S* <f S. Then ef = 0 for
some e,fe E(S*). By Result 1.1, (etp)(f<p) = 0<p and so 0<p < eq>. Thus <j>« is
order-preserving and by Proposition 1.12, <pE is an isomorphism. Since J^ is
trivial, 0<p is the zero of T, whence T is 0-simple.

Now suppose S* < S and let / G E(S*). If 0<p < ftp, then as above <pE is an
isomorphism and T is 0-simple. Otherwise <p̂  is order-inverting and so 0<p > g
for all g £ 2s(S*<&). Put 0<p = e. We must show ey = ye = y for all_v e £*<&.

Let^ be a nonidempotent of S*Q>. Since e >>y~1, eytflyy'1. Now ey e <e, _y),
so

= {0} V <y>^ = {0} U
But since e £ <ey>, 0 $ <ey>$~1, that is <ey)$"' C <>'>$"', or ey G <>>>.
Suppose^"11|y'^y; then <>>> n Ryy-i = {w"1,^}, so that ey = y (for if ev =
>y ', then y~ley = >>"', a contradiction, for y is nonidempotent). Otherwise
yy'\y~Xy a n d ( j ' ) is bicyclic. Then ey G <^> implies y~xey G <>>> and ey =
y(y~xey). Thus eyqy, and since eytfly and <>> is ii-unitary (see Section 3),
ey = y. Similarly ye = y.

Hence T = (S*$)'. The final statement is an application of Theorem 2.1.

Applications similar to those of Theorem 2.1 can be made for 0-subuniform
semilattices [25].
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In a slightly different direction, suppose S is a Brandt semigroup, that is a
completely 0-simple inverse semigroup. If S = G°, a group with zero adjoined,
and £(S) =: £(7) , then T = H° or T = / / ' for some group # with £ ( # ) ^
£(G). If 5 ^ G°, then T is again 0-simple, \T\ = \S\ and £ r ^ £,5, where T is
completely 0-simple. If S = 91t°(G; / , / ; A), say ([3], Chapter 3), | / | > 2, then
T^L 91t°(//; /, / ; A) for some group H such that £(G) ^ £( / f ) and \G\ = | # | .
(Note that by cardinality arguments similar to those used above, it can be seen
that 4> is even a strictly index-preserving isomorphism of £(G) upon £(.//), that is
\V:U\ = \ K$: t / # | for all U < V < G.)

If for instance G is cyclic, then so is H, whence G =̂  H and S ==± 7\ However,
there exist non-isomorphic finite groups G and H with a strictly index-preserving
lattice isomorphism between them (even preserving conjugacy), [33], p. 57. The
author does not know, however, whether for two such groups G and H

/, / ; A)) ^ £(91t°(//; /, / ; A)).

3. £"-unitary inverse semigroups

An inverse semigroup S is called E-unitary (or proper, or reduced) if ex = e,
e2 = e imply x2 = x, x, e G S. Equivalently [28] S is ^-unitary if <3l n a = 1,
where a is the least group congruence on S, defined by aab if ea — eb for some
e G Es.

Before applying the results of Section 1 to £-unitary inverse semigroups, some
observations are in order.

The existence of isolated subgroups in an inverse semigroup S can clearly lead
to difficulties when considering lattice isomorphisms of S. There are, of course,
many nonisomorphic groups having isomorphic lattices of subgroups. More
importantly, from our point of view, are examples like the semilattices SGH of
groups G and H, where eG > eH and gh = fig = h for all g G G, h G H. It is
easily seen that £(SGH) is isomorphic with the lattice formed by adjoining a
zero to £(G) X £ ( / / ) . Then £(SGH) ^ £(-S//G) though of course SaH and SHG

need not be isomorphic. In particular if G is trivial, then SGH = Hx and
SHG = H°. Here 5G H is £-unitary but SH G is not.

Note however that in this example, the associated weak-isomorphism tpE

inverts the idempotents. We will show that if <pE is an isomorphism then the
property of being f-unitary is preserved. Moreover under some mild conditions,
(f>E must be an isomorphism.

For the remainder of the section $ will be a lattice isomorphism of S upon T
and the various mappings <pE, <p, %><$ and <p̂  are those defined in Section 1.
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LEMMA 3.1. If S is E-unitary and J is a nontrivial (j -class of S, then <pE is an
isomorphism on the ideal generated by J.

PROOF. By Proposition 1.12, applied to the ideal generated b y / , it is sufficient
to show that for any JX,J2 £ fy(S) such that 7, < J2 < J, then e<p <fq> for some
e G £ ( / , ) , / e E(J2).

Now since J is nontrivial so is J2. For, let j t £ / \ Ej. Since xx~x G Ej,
g < xx~x for some g €E E(J2) (as in the proof of Lemma 1.10), whence gx G Rg

C / 2 and gx =£ g since 5 is .E-unitary.
Let a €z J2\ E(J2); clearly aal and a xa are in E{J^). Again e < aa~' for

some e G £(./,) and again ea'Sle, ea ¥=e. By the comments following Lemma
1.5, there is an element y of T such that <a>4> = (y}, yy~x = (aa~l)<p and

y~xy = (a~'a)ip. Similarly <(ea)<& = <z), zz"1 = {{ea)(ea)~l)<p = «p and z~xz =
(a~lea)<p for some z E. T, nonidempotent.

But <z> = <ea>$ C £^ V <«>^> = (Es,y}, so z can be written in the form
z = hy" for some h G ET, n 7^ 0. Then e<p = zz~" < ^^y"", so either e<p <yy~x

= {aax)(p (if n > 0) or «p <y~ly = (a~la)q> (if « < 0), as required.

COROLLARY 3.2. /f,S w E-unitary and has no nontrivial fy-class, in particular if
S has a set of nonidempotent generators, then q>E is an isomorphism of Es upon ET.

PROOF. Suppose no ^-class of 5 is trivial. Let e,f G Es, e < / . Then Jj is
nontrivial and e, f lie in the ideal generated by Jy, so that «p < ftp by the lemma.

If S = {X), where X consists of nonidempotents, then every f -class of S is
below Jx for some x G S. Since each Jx is nontrivial, so is every ^-class by the
second paragraph of the proof above.

The hypotheses of this corollary are by no means necessary-for example there
are semilattices which are strongly determined by their lattices of subsemilattices
[32]. (Note, however, that from the comments early in the proof of Lemma 3.1,
in an E-unitary inverse semigroup any $• -class above a trivial ^-class (in the
poset of ^-classes) is again trivial.)

LEMMA 3.3. / / S is any inverse semigroup and A, B and A u B G £(5), then
U 54> G t(T).

PROOF. Clearly A<b u B® C (A u B)<!>.

Conversely let y G (A u 5 )$ , so that ( ; ) $ " ' C ^ u B. By Lemma 1.4,
O > $ - ' = <J> for some s G S. Either s G A or s G B, so <s> C A or <J> C 5,
that is <j> c /K& or <>>> C Z?4>. Hence >- G A$> u 2?$ and / ! $ u B<S> =
(A u B)<f> G £(7) .
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THEOREM 3.4. If S is E-unitary and <pE is an isomorphism then T is E-unitary.

PROOF. Suppose not. Then ex = e = xe for some x G T \ ET, e G ET. (If
ex = e, then xae, xf = ef for some / G ET, whence x(ef) = ef = (ef)x). By
induction ex" = e = x"e for every integer n ¥^ 0. So <e, JC) = {e} u <•*> and
e < x"x~", e < JC""X" for every integer n =£ 0. By the lemma, {e}<J>~' u <x>^"'
G £(5) . Let / = e(p\ g = {xx~l)<p~x and let 5 be a nonidempotent of 5 such
that (s) = <x>4>~', ss~l = g and s~ls = (^"'x)^"1 (see Lemma 1.5 and the
comments following). Thus {/} u <J> G £(5) . Now/s =7*=/since S is ^-unitary,
so/5 G <j>. But since e < xx"1 and <pE is an isomorphism,/ < g = &$"', so that
/ = f(ss~l) = (fs)sl G <i>. Therefore e G <x> and by the properties above e is
a zero for <x>. Thus <x> has a kernel # = //e n <x> = {e}. Since <pj' (where
^ = |^<5» is an order-isomorphism of $ -«*» upon f « 5 » (by Proposition
1.12), K$ l is the minimum ^<5>-class of <s>, that is the kernel of <.$>. But
ATO"1 = {/}, and so / is a zero for <5>. This is a contradiction as since S is
^-unitary so is <s>.

COROLLARY 3.5. The class of E-unitary inverse semigroups without trivial
f-classes is closed under lattice isomorphisms.

We will now show that Theorem 3.4 can be strengthened: when cjPg. is an
isomorphism not only must T be ^-unitary but there is a lattice isomorphism of
S/o upon T/a which, in a certain sense, commutes with $ . Two preliminary
lemmas on elementary inverse semigroups are needed.

LEMMA 3.6. If S = (a) then ar<p = (a<p)r for every integer r (¥"0) such that ar is
not in the kernel, if any, of S.

PROOF. If S is free, then <JP: S ^> T is an isomorphism [14], Theorem 2.1 so
arq> = (ayf for all r =£ 0. (In this case 5 has no kernel.)

Otherwise S has a kernel K, either a group or bicyclic. (See Section 1.)
Suppose ar £ K. Then ar is not a subgroup of S, and therefore neither is a.
Hence ar<p and a<p are defined (Proposition 1.6).

From the description of the elementary inverse semigroups given in Section 1
(and in particular the comment immediately preceding Lemma 1.5) we see that,
as in ^FfJ,, the ^-class Ja, of S contains a unique idempotent, ara~r, below aa~l

and covered by at most one idempotent of S. Moreover since q>E is an
isomorphism by Corollary 1.13, <]Pj is an order-isomorphism of j-(S) upon
by Proposition 1.12. Thus {Ja')^ is not the kernel K<f> of T. In fact Ja

J(av,y, since Ja, and J(a<py have the same depth in their respective posets
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) , each chains. (Namely, they have depth r, the depth of Jx, in
^ 5 , = <x>.) Since <pE is an isomorphism, J(aq>y thus has a unique idempotent
(ara~r)<p below (aa~')(p = (a(p)(aq>yl and covered by at most one idempotent of
T. But (a<p)r(a<p)"A also has this property in T, so

(aV)(a-r(jp) = (a V)<p =

that isar<p<3l(a<p)r.
Dually aV£(«<P)r> s o ar<p9C(a<P)'- Since J(tKp)r does not meet the kernel of T, it

has trivial subgroups. Hence ar<p = (aq))r.

LEMMA 3.7. / / S is E-unitary and x G S, suppose <x> /ias kernel K. Then
Ka = <x>a.

PROOF. (Note that strictly speaking we should perhaps be writing K* = <*>"''
where a*1 is the natural morphism of 5 upon S/a.)

From the list of elementary inverse semigroups given in Section 1, the result is
obvious if <JC> is of type (I) or (IV) (when K = < x » . Otherwise K = { / + 1 ^ >
for some n > 2, and since x" + lx'"ax, we have Ka = <x>a.

The crucial technical lemma is the following.

LEMMA 3.8. If S is E-unitary and <p£ is an isomorphism, suppose z = fx,
x,z G S \Es,f G Es. Then

PROOF. By Lemma 1.4, <z><£> = <c> and <*>$ = {a} for some c, a G T \
£ r . Since z = fx, <z) C <£ s , x ) , whence <c> C (ET,a)>. By commuting
idempotents, if necessary, we may write c = ku for some A: G ET and u = a' G
<a>, 5 ^ 0 . Then cau, so <c>o = <«>a C <a)a. We will show that <a>a =
<«>a. Now c G <£ r , t/>, so conversely, <z> C (^j,_y>, where <_y> = <«>$"'
C <x>. Similarly z = lym for some / G Es and w =̂ 0. Thus xaym.

If (i) <x) is a group, theny = xr for some /• ^ 0 and so xaxrm. Since a is the
identical relation on any subgroup of S, x = xr m G <>>> = <«>$"', that is
<a> = <«>. Hence <a)a = <w>a.

If (ii) <x) is bicyclic, then <p: <x> —» <a> is an isomorphism (Result 1.3) and
we may choose y = wcp ' = a ' f ' = (aqp1)5 = xs, so xaxim. Since <xa> is
infinite cyclic, this is possible only if sm = ± 1, so that s = ± 1. Thus u = a±1,
so <M> = <a> and <a>a = <«)o again.

If (iii)^"1 is not in the kernel (if any) of <x> (so that <x> is neither a group
nor bicyclic), then neither is>>, and hence u is not in the kernel of <a>. We may
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therefore choosey = utp~K By Lemma 3.6 (applied to %>'*),)> = u<p~l = a*<p~' =
(atp^Y = xs. Hence xaxsm again. If sm ¥= 1, then x'm~l e E (since 5 is E-
unitary), and so <x> has a kernel, which must contain (xiSm~')jc = xsm = y,
contradicting the assumption. Hence sm = 1 and, as in (ii), <(t/)a = {a)a .

If (iv) <(x> is not a group that>>m is in a subgroup of <x), that is in the kernel
K of <x>, then <JC> is of type (III) (see Section 1) and K = <X"+ IJC""> for som
n > 2. But xn+lx-"axaym, in the subgroup K, so y m = x n + I x-" . Thus z =
/(x"+1x"") and using (i) « z > $ ) o = ( O " + 1;c-"><!>) a = (K®)o. As in the proof of
Lemma 3.6, <p̂  is an order-isomorphism of ^ « x » upon ^«x>4>), so A"<I> is the
kernel of <x>3> = <a>. By Lemma 3.7, ( A ^ a = (a>a, so <c>a = <a>a.

If, finally, (v) <x> is not bicyclic but _ym is in a bicyclic kernel AT of <x> (so
<x> is of type (V)) then since z = lym we have, applying (ii), (c}o = ((z}<b)o =
(<sy

m')<l>)o. Now as in (iv) K<t> is the kernel (again bicyclic) of <a>. Further
<fr\£(K) is induced by the isomorphism <p: K-+ KQ>. Now Â  is generated by

x"+ix-n o r x-("+Dx'" (each right r egUia r ) for some n > 2. Similarly A"$ is
generated by ap+ia~p or a^(p+1)a/' for somep > 2. If A" is generated by xn + 1x"n ,
then (xn+lx-n)<p = ap + 1a " or fl-<' + V . But ym (E K and ymaxax'1+1x-n, so
ymq>o(x''+ix~")(poa±1. Hence <_ym<p>a = <a)a. A similar result is obtained if
K = <x-(/I + 1)xn>. Thus (a)a = ((ym)<P)o C «>->$)a = < H > , and so <a>a =

In every case, then, <a>a = <«>a, so that ({z}<^)a = <c>a = <w)a

COROLLARY 3.9. If S is E-unitary and<pE is an isomorphism, let x,y E. S. Then

<x>a = (y)a if and only if((x}3>)o

PROOF. Suppose <x>a = <>>>a. Then xaw for some w e <>»>, and therefore
fx = fw = z, say, for some / G £ 5 . If z G £ s , then since S is .E-unitary,
x, w E. Es. Clearly in this case <JC>$, <y>4> C ET and « x > $ ) a =
Otherwise Lemma 3.8 applied and

The converse inclusion follows similarly and so «
The converse implication follows similarly (for by Theorem 3.4, T is also

.E-unitary).

Recall from [15], Lemma 5.5, that in an £-unitary inverse semigroup S, the
natural morphism o* of S upon S/a induces a lattice morphism 2 S of
the lattice of full inverse subsemigroups of S, upon £(S/o).
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THEOREM 3.10. If S is E-unitary and <p£ is an isomorphism then there is a lattice
isomorphism ^f of S/a upon T/a such that the following diagram commutes.

t(S/a) X t(T/a)

PROOF. By Theorem 3.4, T is is-unitary and so S r is a morphism. For
convenience, put G = S/a, H = T/a.

If AT £ £(G), define

(where, of course, Ka'x = {s G S: sa G A:}). If L G £(//), define

L0 = (La ' ' )$Ss

(where, now La"1 = {t G T: /a G L}, the symbol a standing for as or a r as
required).

In order that (A"*)0 = K, we require [ (ATa" '^^^ 1 = (A"a"')0>, that is
?a G ((ACT ')4>)a implies ? G (A"a"')$. (In other words we require that (Ko~l)$
be unitary.)

So let r G T be such that fro for some v G (A"a"')<I>. Then </>$"' = <̂ > and
<u>$"' = <«> for some s, u G 5. By Corollary 3.9, applied to $"', <s>a =
<w>a C (A:a"')a = K. Thus <s> C Ka~\ whence / G </> C (A"a"')4>, as re-
quired.

Hence (AT*)0 = A: for all A" G £(G). Similarly (L8)^ = L for all L G
t(H). Therefore © = *"'.

If AT,, A"2 G t(G), A", C A"2, then clearly A",* C A"2 .̂ So * and similarly 0
are order-preserving, that is ^ is an order-isomorphism (lattice isomorphism) of
£(G) upon £(//).

To show the diagram commutes, let A G t^(S). Now /I c (Aa)a~x =
(AZs)a \ so

^ $ 2 T C ( (^S^a- ' ^Sy . = (/12S)*.

Conversely, let h G (^2s)a"1$27-, that is h = to for some f G (A2,s)o~]<&. Let
' = <•«>, so that 5 G (v4S5)a"'. Then saa for som a G A. By Corollary 3.9,
a = «a><&)a C (^$)a and so h G </>a C A^11T. Therefore
and the diagram commutes.

We now apply this theorem to the class of quasi-free inverse semigroups.
Recall [29], p. 71, that an inverse semigroup is called quasi-free if it is isomorphic
to the quotient of a free inverse semigroup by an idempotent-determined con-
gruence (that is, a congruence which ([8]) identifies no nonidempotent with an
idempotent).
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RESULT 3.11 [29], Theorem 5.3. Every quasi-free inverse semigroup is E-unitary.
An inverse semigroup S is quasi-free if and only if (a) S/a is a free group and (b)
S has a set M of generators such that a"|A/ is injective and Ma* generates S/a
freely.

More precisely, if Q = 9%/p for some idempotent-determined congruence
p, then M = Xp" is a generating set satisfying (b), and A/a" generates Q/a ĉ
^@x freely. We call |.Y| the rank of Q. Note that M consists of nonidempotents.

The importance of quasi-free inverse semigroups stems from the fact ([29],
Theorem 5.3) that every inverse semigroup is an idempotent-separating image of
such a semigroup.

THEOREM 3.12. The class of quasi-free inverse semigroups of given rank is closed
under lattice isomorphisms.

PROOF. Let Q be quasi-free of rank x, say, and let 4> be a lattice isomorphism
of Q upon an inverse semigroup T.

Let M be a generating set of the above kind, so that M consists of non-
idempotents. By Corollary 3.2, <pE is an isomorphism. Hence by Theorem 3.4, T
is is-unitary and by Theorem 3.10, there is an isomorphism ty of £,(Q/a) upon
t(T/a) such that AQI.T = A^Q^ for each A G t<5{Q). Since Q/a is free on x

generators so is T/a, by a theorem of Sadovskii [30]. In fact if x ^ U ^ is
induced by an isomorphism \p of Q/a upon T/a.

For each m G M, let <m>4> = <(w') for some m' £ T, and put M' = {m'\
m G M). Then A/' generates f . I f m e M, then (EQ, w> G t^(Q) and so

« £ e , m}<S>)ZT = «EQ, m>2 e )* = «m V ) * = <mo*}*,

that is (m'o*) = (ET, /n'>2r = «£ G , m)"!))^ = {ma^.
If X = 1, that is Q is elementary, then so is T and by Result 3.11, T is clearly

quasi-free.
If X ^ 1, then <W'CT"> = <wa">i// = <(/wa*)»//>, where ^ induces 3>. But r / o ,

being free, is certainly torsion-free, so m'o* = (/woty)*1 for all w in A/. Since
A/a" generates Q/a freely, (A/a")^ generates T/a freely. Hence A/'a" generates
T/a freely. (See, for example, [9], Chapter 7.) If mja" = m'2a^, m,, w2 G A/, then
(m,flV = [(""2'VP1. that is w,a" = (w2a")±l. Since A/a" generates £?/a
freely, m,a" = /MjO11, and since a"|A/' is injective, m, = m2. Thus a"|A/' is
injective.

Hence by Result 3.11, T is quasi-free of rank x-
Some quasi-free inverse semigroups, for example free inverse semigroups [14],

free groups [30] and the bicyclic semigroup [17], are in fact determined (in most
cases strongly) by their lattices of inverse subsemigroups. The author conjectures
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that the same is true for all quasi-free inverse semigroups. It is, however, possible
for two ^-unitary inverse semigroups to have isomorphic semilattices and
isomorphic maximum group images without being isomorphic. (See [20], Theo-
rem 1.3.)

4. Free products of groups

If G and H are groups then following [21] we will denote by G inv H their free
product in the category of inverse semigroups, and by G gp H their free product
in the category of groups. The inverse semigroup G inv H and the group G gp H
are characterized by the usual universal properties in their respective categories.

It was proved by Sadovskii [31] that G gp H is determined by its lattice of
subgroups when G and H are nontrivial. (If one group is trivial then G gp H is
isomorphic with the other.) In fact Holmes [10] and Arsinov [1] proved that each
lattice isomorphism of G gp H upon a group K is induced by a unique
isomorphism of G gp H upon K.

We now apply the results of Section 3 to show that for any groups G and H, G
inv H is determined by its lattice of inverse subsemigroups. Whether G inv H is
strongly determined by £(G inv H) is not known.

Explicit descriptions of G inv H were given independently by McAlister [21]
and by Knox [21] to which the reader is referred for all details. We present a
brief summary of the relevant results. (For properties of G gp H, see [9].)

RESULT 4.1. Let G and H be groups. Then
(i) G inv H is completely semisimple, and so ty = f,
(ii) G inv H is fundamental, except when G and H are finite and either G or H

{but not both) is trivial,
(iii) G inv H is E-unitary and (G inv H)/a ^ G gp H.

This result gives the global properties of G inv H. To exhibit the fine structure
some definitions are required.

A word in G and H is said to reduced if no two adjacent letters are in the same
group G or H and no letter is idempotent. The empty word is defined to be
reduced.

Then G gp H has as its set of elements the reduced words in G and H [9] with
the empty word as identity.

If w = w, • • • wn is a reduced word, the expression is unique and n is the
length of w, denoted by l(w).
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For n > 2, let pre(w) = {w,, wxw2, . . . , wi • • • wn_l}; let pre(>v) = 0 if w E
G u f f . (We are considering G and / / to be subsets of G gp //-both l c and lw

are identified with the identity 1 of G gp H.) A finite nonempty subset X of G gp
His a. filter ([2\], p. 12) if

(i) w E A" implies pre(w) C A", and
(ii) I n G ^ 0 a n d I n / / ^ 0 imply I e X.

(This definition is slightly different from, but equivalent to McAlister's.) For
example, if w is a nonempty reduced word then pre(vv) u {w} is a filter; if
l(w) > 2, so is pre(H>) itself.

Denote the set of filters by %. Put <$ = 5, U {<?,/}, where e = ec, f = eH,
and define

e > A" i f A - n G ^ 0
/ > A" UX n H ¥=0 and

A- > y ificyj.yef,.

Then ([21], Lemma 2.5) f is a semilattice having f, as an ideal. If X e §,, let
e(Ar) = n^e^xe/x"1. Since G inv / / is generated by G and H, e(X) is an element,
in fact an idempotent of G inv H. (Again we consider G and H to be subsets of
G inv H. Each nonempty reduced word w, • • • wn can then be considered an
element of G inv / / in the obvious way.)

RESULT 4.2. Let G and H be groups. Then
(i) every idempotent of G inv H can be expressed uniquely in one of the forms e, f

or e{X), where X is a filter, and
(ii) '$ ~ E(G inv H), the isomorphism taking e to e, f to f and the filter X to

e(X).
Further ifX,Y^^x, then
(iii) e(A")6De(y) // and only if X = wY for some reduced word w. In that case

For example if w is a nonempty reduced word in G and H, then wefw'1

corresponds to the filter pre(>v) u {w}. (So if g e G, gefg'1 corresponds to {g}
and (ge/g"')(e/) to {1, g}.) Since ?F =± E(G inv H) we may write D̂ again for the
equivalence on ̂  induced by the restriction of D̂ to the idempotents of G inv
H. Then Xtf) Y if and only if X = wY for some reduced word w.

Now put S = G inv / / and for the remainder of the section let $ be a lattice
isomorphism of £{S) upon £(T) for some inverse semigroup T. Since G and H
generate S, G® and //4> generate T (and G $ and / / $ are groups). If both G
and H are trivial, then G inv H is the semilattice {e,f, ef), e\\f, which by Result
1.1 is determined by its lattice of inverse subsemigroups. From now on G or H,
but not both, may be trivial.
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From Result 4.2 it is readily seen that E(Jef) = {aefa'x: a G G u H) and
that the correspondences g —> gefg'\ g G G, and h —> hefh~\ h G / / are each
one-to-one. Moreover 7 < / c / for all J G $-(S), / T ^ ^ , Jf (since if X G 15r, then
x G A\ by (i) of the definition, whence e(X) < e({x}) = xefx~lfef). By Lemma
3.1 the weak isomorphism rpE is therefore an isomorphism on E(S \ G u # ) •
But e||/, so «p||/<p and (ef)q> = (ecp)(/<)p). Thus y(e/)<f, < J^, Jf<p and so <pj is an
order-isomorphism of ^(S1) upon 5-(r). By Proposition 1.12, <p£ is therefore an
isomorphism. We have proved the first part of the following.

PROPOSITION 4.3. The map <pE of Es upon ET is an isomorphism. Therefore
(i) T is E-unitary.

Further
(ii) T is completely semisimple and
(iii) T is fundamental.

PROOF, (i) follows from Theorem 3.4, (ii) from Result 1.2 and (iii) from
Theorem 1.15, each applied to Result 4.1.

At this stage we can, using Theorem 3.10, deduce also that t(S/a) c^ t(T/a)
whence by the results quoted earlier, there is an isomorphism of S/a upon T/a
inducing the lattice isomorphism of £ ( 5 / a ) upon £ (T /a ) . Hence T/a ^ G gp
H. There seems, however, little progress to be made by pursuing this approach
further and we will therefore use alternative techniques to achieve our goal.

We now show that the properties of Jep given above, are preserved in
J(e/)<P = (•/<-/)<Pj- F o r convenience put k = (e/)<p = («p)(/<p). Then E(Jk) =

From the description of G inv H as a "/"-semigroup" in [21], Theorem 4.3 it is
easily seen that Jej has trivial subgroups. Thus the same is true of Jk. If
a G G $ u H®, then aka~X(^k, for a \aka~l)a = (ala)k = k. If aka~l = k,

then ak%k so ak = k and a G {ap, fq>) since T is f-umtary. Thus if a, b G G $
and aka'1 = bkb~x, so that (fe~la)/c(6~'a)~1 = k, then a = b. Hence the map
a —> aka~\ a G G<1> is an injection, taking e<p to k. There is a similar injection
b -> bkb~x of //4> into E(Jk), taking/<p to fc.

Let «i G £•(£>*), </ ¥= k. Thus </ = bkb ' for some 6 G T\ET. Since 71 =
<G$, / / $ > we may write b = bl • • • bn, where each bt G G4> u / / $ and
alternate fe,'s are in different subgroups G<J> or 7 /$ . Suppose n > 2, and without
loss of generality bx G G$ , 62

 e ^ * . s o t n a t ^i(e(P) = bx and (f(p)b2 = 62.
Then

= bxeyf<pb2 • • • bnkbx = 6/tfe"
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So bxkb\* > bkb~x = d and bxkb\x, d G E(Jk) whence by complete semisimplic-
ity ofT,d= bxkb\\

Thus E{Jk) = {aka~l: a G G4> u / / $ } . It is now apparent that the composite
map

where gi^g^1 = (g<?/g~')<p ,̂ is a bijection of G upon G3> taking e to «p. A
bijection 0H: h -^ / / , of H upon //<£ is defined similarly.

A technical lemma is now required.

LEMMA 4.4. For all g £ G , <g>3> = <£i>. Further g and g, /wue the same
order.

PROOF. Let g G G, and (gefg~')<p = g^gf1- Since <gi> is a cyclic group, so is
<gi>^~'» generated by a, say, a G G. Consider the inverse subsemigroup
<g1( k} of r . Every idempotent of <g,, Â> has the form etp or
(gp/cgp"1) • • • (g^gi""") f° r some integers a,, 1 < / < n (n > 1). As above, each
g*kg\a' G E(Jk) and no product of distinct idempotents of Jk is again in Jk.
Hence

: «GZ} .

Similarly, E(a, ef} n 7e/ = {apefa~p: ji G Z}, in S. But, recalling that <pE is
£-preserving,

(£"<«, e/> n Jef)<pE = E(a,f}<pE n /*

= £<a, e/>4> n Jk

= E(gl,k}nJk,

so {a^efa'13: /? G Z}ip£ = {gf^gp: a G Z}. Since the correspondences a" H^
a^efa'P and g" i-» g,afcg^a are one-to-one,

that is a and g, have the same order.
By definition gefg~l = (gxkg^)^1 and so gefg~l = amefa m, that is g = am,

for some m G Z, w =̂ 0. Therefore <g> C <a> and <g>4> C <a>^> = <g,>.
Conversely, < g ) $ = <^> for some b G G4>. By similar arguments g, = b"

for some « G Z, n ^ O and so <g,> C <fe> = <g>4>. Hence <g>$ = <g!>.
Since therefore (g> = <a>, g and g, have the same order.

PROPOSITION 4.5. The maps 6G and 0H are isomorphisms of G upon G4>, H upon
, inducing the lattice isomorphisms 3>|£(G), 4>|£(//) respectively.
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PROOF. Again denoting gOG by g, (g E G) we show first that g^1 = (g~!),.
Clearly we may assume g ¥= e. Let gj~' = u, for some u G G. (So (uefu'l)<p =
gf'Ag,; we must show u = g"1.) Now in T,

that is (ef-uefu~l6l)gefg~l-ef)<p. Since qĵ  and qp̂ 1 are <!)-preserving, in S we
have e/- uefu~l6i)gefg~x • ef, or in terms of filters {1, u}6!) {1, g) , whence (1, w} =
x{\, g] for some reduced word x, using Result 4.2 and the comments im-
mediately following it.

If x = u, then ug = 1, that is M = g~', as required. Otherwise x = 1 and
M = g. In that case g\l = g,, so that g2 = 1. By the lemma g also has order 2,
and so w = g = g"' again.

Now let a, b G G. If a or & is idempotent clearly a,fc, = {ab)v so suppose
a,bE.G\ {e}, and put a,Z>, = t>, for some v G G. (So (oe/tr1)^ = a^W^'aj"1:
we must show v = a6.) If v = e, then a,fe, = «p and a, = b\x = (6~1),, by the
above, whence a = b'1 and afe = e = v.

Assume then, that v ¥= e. By methods similar to those used above,

that is
(ef- aefa~l • vefv>-x)<p&i(a'xefa • ef- bkb'l)q>,

yielding ef- aefa'1 • vefv~l6ila~lefa • ef- bkb~l, in S. In terms of filters, then

{1, a, v} = y{a~l, 1, b) for some reduced word^.

If (a)y = 1, then {a, v) = {a"1, b). If v = b, then a,fc, = u, = 6,, a contradic-
tion since a ¥= 1. Otherwise a = b and t> = a"1. Then a^ = a,6, = u, = aj~\ that
is a] = 1. By the lemma, a3 = 1, and v = a~x = a2 = aft.

If (b) .y = a, then t> = ab.
If (c).y = t>, then (1, a) = {t>a~\ vb). If t>a~' = 1, that is v = a, then a = aZ>,

a contradiction. Otherwise va1 = a and cfc = 1. Consider the situation a = b
first. Clearly t> = a2, that is af = a,fe, = u, = (a2), (and since this is the last
case to consider in this situation, a2 = (a2), for all a G G). In the general case,
then, v = a2 implies a,Z>, = t>, = (a2), = a2, whence a, = bx, a = b and v = ab
as required.

In every case, therefore, a,6, = (a6)t. Thus 0G is an isomorphism of G upon
>. That 0 # is an isomorphism follows similarly.

Using Lemma 4.4 in conjunction with Lemma 3.3 of [17], 9G and 0H induce
and $ | £ ( / / ) respectively.

By the universal properties of 5 ( = G inv H), there is a unique morphism 9 of
upon T extending 9G and 0H. For all a G G u H, (aefa~l)9 = (a9)(ef)(a9yl
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In fact we will prove 6\ES = q>E. Let a = 9y]^\Es. Then a: Es —> Es and for
all d G Es, dO = (da)<p. Since <p£ is an isomorphism of Es upon £ r and since 6
is a morphism, a is a well-defined surjective endomorphism of Es. Moreover a is
^ -preserving (since <pE

l is).

PROPOSITION 4.6. The endomorphism a of Es is in fact the identity. Thus
u | E§ = <p£.

PROOF. Clearly a induces a surjective endomorphism, which we may again call
a, of (SX, the semilattice of filters. We show Xa = X for every filter X, by
induction on |X|.

If |X| = 1, that is X = {a} for some a G G U H, then as above {aefa~x)B =
(aefa'l)(p, or (aefa~x)a = aefa~x. In 5 , , then, {a}a = {a}.

Suppose now that n > 2 and that Xa = X for all filters X with less than n
elements. Let X be a filter with n elements.

Since for all words w G X, pre(w) C X, we have X = U uSxPTe(w) U (w}>
where each set pre(w) u {*>} G 5, . If |pre(vv) U {w}| < n for every w G X then
by the hypothesis (pre(w) u {w})a = pre(vv) U {H-} for each w G X. Thus Xa
= X, since a is a morphism. So we may assume X = pre(w) U {vv} for
some reduced word w of length n. Let w = wt • • • wn: thus X =

Now wf'X = {1, vv2, . . . , vv2 • • • wn), again a filter, and X^w^'X, so
Xa6D(wf'X)a. But by hypothesis again, (wJ"1X)a = wj"'X, since w\xX = {1} u
(vv2, . . . , w2 • • • wn), so Xa^Dwf'X^DX. Thus |Xa| = |X|. Moreover since
pre(w) is a filter contained in X and |pre(w)| = n — 1, then pre(w) = pre(w)a C
Xa. Thus Xa = pre(w) u {y} for some reduced word y. It remains to show
y = w.

By similar arguments we have

x u {i}6D>v;-1(x u {l}) = H-f'x u {wr1},

again a filter, and so

Xa u {l}6D(H>r'X)a u {>V}a = wj-'X U { V } .

(Note that since |Xa u {
reduced word

X

If z = 1, then
Otherwise

wr1 • • • w f 1 .

If j< n, )

z, therefore

ra u {1} =

Xa = X.
1 = ZW| • •

r« = (w/1 •

i)l

• •

= |X

Uw,, .

Vj for

u { i } |

. . ,w,

some

and 1 £ ^

• - • * j , • •

j , 1 < j

(, 1 ^

. , w , -

< n.

Xa

In

• •

also.)

».}

that

For some

case z =

However,
this is impossible, for vv, and wJ+l lie in different subgroups G and H, so that
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Xa n G ^ 0 and Xa n H ^ 0 yet 1 g A'a, contradicting the defining prop-
erty (ii) of filters.

Ify = n, that is z = w~* • • • wj"1, then

{w,, . . . , w, • • • wn_,,y} = A'a = {wn' • • • w-\ wn' • • • n-21, . . . . w;1}.

By comparing lengths of words

and

_y = (w;1 • • • w^wf 1 = (w, • • • wn_,)wn = w.

Therefore A'a = A" and the result follows by induction.

Since <pE is an isomorphism, 9 is therefore idempotent-separating.
Hence if neither G nor H is trivial, 0 is an isomorphism of G inv H upon 7,

for by Result 4.1, G inv H is in this case fundamental and so admits no
nontrivial idempotent-separating congruences.

Suppose H (or similarly G) is trivial. Then since S (= G inv {/} here) is
generated by G and /, every element s of S can be written in the form dg for
some d G Es and g 6 G. If stf £ ET, that is (d9)(gO) G £ r , then g0 G ET,
since Tis ^-unitary. But 9\G = 0C, an isomorphism, s o g = e and J G Es. Thus
0 is idempotent-determined, that is ET9~l = £ s . But then 99 l C a, whence
0 0 - 1 C a n 9 C C a n < 3 l (since 0 is idempotent-separating). But 5 is £-unitary
and so 09 ~l = i, that is 0 is an isomorphism. (Note-in this case if the non-trivial
subgroup is infinite G inv H is in fact again fundamental. Otherwise, G inv H
has a kernel isomorphic with G gp H.)

This completes the proof of our main theorem:

THEOREM 4.7. / / G and H are any groups, then G inv H is determined up to
isomorphism by its lattice of inverse subsemigroups.

The author does not know whether G inv H need in general be strongly
determined by £(G inv H). If, however, G and H are torsion-free this is the case,
as we now show.

COROLLARY 4.8. / / G and H are torsion-free groups, then every lattice isomor-
phism of G inv H upon an inverse semigroup T is induced by a unique isomorphism
of G inv H upon T.

PROOF. Let $ : £(G inv H) —> t(T) be an isomorphism. When G and H are
torsion-free, the subgroups G and H of S (= G inv H) are the only nontrivial
% -classes [21], Corollary 4.6, whence G<& and H$> are the only nontrivial
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% -classes of T. The partial one-to-one map <p defined in Corollary 1.7 is
therefore a bijection of S \ (G u H) upon T \ ( G $ u H<&). But 9\ES = <pE =
<p| £, so for all s e G U H,

Thus sfflllscp and similarly .y0£.s<p. Since Hsff is trivial, $0 = sxp. By Proposition
1.6, therefore < J > $ = JS for all J G 5, i ? G u H. But from Proposition 4.5
the same is true if j G G or 5 £ W. By Lemma 3.3 of [17], the isomorphism
induces 4>.

If \p is any isomorphism inducing 4>, let g G. G. Then

(se/g-1)^ = (gefg-l)q> = (ge/g-')0,

by Corollary 1.7, that is (g^)k(g^yl = {g9)k{g9yl (where A; = (e/)<p), whence
by the arguments preceding Lemma 4.4, gi/' = g9. Hence ip\G = 9G and similarly
\p\H = 0W. But ^ extends 0C and ^w uniquely, so 9 = \j/.

The arguments of the last paragraph hold in general so // $ is induced by an
isomorphism it is induced by a unique one.
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