
Proceedings of the Edinburgh Mathematical Society (1997) 40, 151-166 ©

THE BOURGAIN ALGEBRA OF A NEST ALGEBRA
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In analogy with a construction from function theory, we herein define right, left, and two-sided Bourgain
algebras associated with an operator algebra A. These algebras are defined initially in Banach space terms,
using the weak-* topology on A, and our main result is to give a completely algebraic characterization of
them in the case where A is a nest algebra. Specifically, if A = algAf is a nest algebra, we show that each of
the Bourgain algebras defined has the form A + K. n 6, where B is the nest algebra corresponding to a certain
subnest of Af. We also characterize algebraically the second-order (and higher) Bourgain algebras of a nest
algebra, showing for instance that the second-order two-sided Bourgain algebra coincides with the two-sided
Bourgain algebra itself in this case.

1991 Mathematics subject classification: 47D25.

Bourgain has shown ([2]) that, if X is a subspace of a C(K) space such that a certain
set associated with X coincides with C(K), then X has the so-called Dunford-Pettis
Property (DPP). This associated set was shown to be a norm-closed algebra by Cima,
et al. ([3, 4]), who labelled it the "Bourgain algebra" of X, and has since been studied
for various spaces of functions by several authors (cf. [8, 9, 10]). In [7], this author
defined an analogue of the Bourgain algebra for algebras of operators on a Hilbert
space and computed this Bourgain algebra for certain examples of nest algebras as well
as for the algebra of analytic Toeplitz operators on the Hardy space H2 of the unit
circle.

In this paper, we give an alternative formulation of the Bourgain algebra for an
operator algebra that better reflects the non-commutativity of the operator setting and
provide complete algebraic characterizations for both the earlier and new formulations
of the Bourgain algebra of a nest algebra. In the last section, we characterize the
second-order, and higher, Bourgain algebras of a nest algebra, showing, for instance,
that the second-order (two-sided) Bourgain algebra coincides with the Bourgain algebra
itself.

The author hereby expresses his gratitude to the Department of Mathematics and
Statistics of Lancaster University, and especially S. C. Power, for their generous
hospitality during his sabbatical visit.
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1. Preliminaries

In what follows, H will denote a separable, infinite-dimensional Hilbert space while
C(H) and K. will denote the algebra of bounded linear operators on H and the ideal
of compact operators in C(H), respectively. All projections in C(H) are assumed to be
self-adjoint and all subspaces closed. For P a projection in C(7i), we denote the
orthogonal complement by PL = (1 — P). For fixed vectors x and y in H, the rank-
one operator z M (Z, y)x, for zeH, will be denoted by x<8>y'. Recall that
ll*®/ll = Ml-llyll.

The identification of C(H) with the dual space of the ideal of trace-class operators
on H induces a weak-* topology on C(H) which we use throughout. Specifically, a
sequence {7̂ } in C(H) converges to 0 in the weak-* topology if, and only if, the traces
tr(XTn) converge to 0 for every fixed trace-class operator X. If y is a fixed vector
and if {xn} is an orthonormal set, then the sequences of operators [xn<8>y'} and
{y ® xl) converge to 0 in the weak-* topology. Indeed, if X is in the trace class,
then tr(X(y <g> x*)) = (Xy, xn) -*• 0 as {xn} is an orthonormal set. Similarly,

Of particular interest below are subalgebras A of C(H) with the property that
A n K. is dense in A in the weak-* topology. In [6], such an algebra A is said to be
local, and it is shown there that, in this case, A + K is norm-closed.

The nest algebras form a special class of local subalgebras of C(H). Specifically, a
nest is a totally ordered set of projections in £(H) which contains 0 and 1 and is closed
under suprema and infima. Given a nest M, the corresponding nest algebra, algA/', is
the algebra of operators leaving all projections in Af invariant; that is,
algAf = {T e £(H): PTP = TP for all P e X).

Some other examples of local algebras are those of the form d\gV, where V is a
commutative and completely distributive lattice of projections ([12]) and the Fourier
Binest algebra introduced by Katavolos and Power ([11]). This binest algebra is defined
as the intersection of the Volterra nest algebra and the analytical nest algebra, realized
as operator algebras on the Hilbert space L2(R), and is shown to equal the weak-*
closure of the Hilbert-Schmidt bianalytic pseudo-differential operators.

We now turn to the definition of the Bourgain algebra of an operator algebra.
In [7], the Bourgain algebra of an operator algebra A c C(H) is defined by

Ab = [T e £(H) : dist(TAn, A) -> 0 whenever An -> 0 weak-* in A}.

It is straightforward to see that Ab is a norm-closed subalgebra of £(H) which contains
the algebra A. In the non-commutative setting of operator algebras, this definition is
noticeably "one-sided". In the following, Ah will be referred to as the right Bourgain
algebra of A.

Accordingly, the left Bourgain algebra of A is hereby defined by

bA = {T e C(H): dist(AnT, A) -»• 0 whenever An -» 0 weak-* in A)
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while the two-sided Bourgain algebra, or, simply, the Bourgain algebra of A is given
by

AB = AbnbA.

Again, it is not hard to show that the left Bourgain algebra, and hence the two-sided
Bourgain algebra as well, is a norm-closed subalgebra of C(H) containing the
algebra A.

As the sequence {/!„} tends to 0 weak-* in A if, and only if, the sequence of adjoints
{A'n} tends to 0 weak-* in the algebra A* = {A* : A e A), elementary considerations
show that

bA =

The proof of Lemma 2 in [7] actually enables us to establish the following stronger
result whose proof we give for the sake of completeness.

Lemma 1.1. If A and B are subalgebras of C(Ti) such that (AC\K.) is weak-* dense
in A and AQ B, then Bb is contained in the norm closure of B + JC. The same conclusion
holds for the left and two-sided Bourgain algebras ofB.

Proof. If {Rn} is a sequence in AfMC such that (1 — Rn) -*• 0 in the weak-*
topology, then, as A^B, it follows that (1 - Rn) -v 0 weak-* in B as well. For
T $ B + K, we have

dist(T(l - Rn), B) > dist(T - TRn, B + K.)

= dist(T, B + JC) > 0

for each n. Hence, T & Bb which gives the result.
Only a small modification of the above argument is needed to establish the desired

result for bB and, hence, for BB as well. •

If A is local, then applying the Lemma with B = A shows that the (right, left, or
two-sided) Bourgain algebra of A is contained in A + AC, while taking B = A + K,
shows that A + K. = {A + K.\ = b(A + K.) = {A + K)B.

More generally, if A is local and A c B c A + AC, then B + K. ^ A + K. and it follows
from the Lemma that the Bourgain algebra of B is contained in A + K..

2. The nest algebra case

For nest algebras, it was shown in [7] that both inclusions algA/" C alg7Vt and
C algW 4- K. can be proper and that both equalities algTV = algA/), and
= algAf + /C can be attained by suitable choice of the nest. In Theorem 2.4

below, we give a complete characterization, in algebraic terms, of the right, left, and

https://doi.org/10.1017/S0013091500023518 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023518


154 TIMOTHY G. FEEMAN

two-sided Bourgain algebras of a nest algebra. This characterization will, as it should
do, illuminate the earlier examples.

We first require a bit more preliminary information and terminology. For TV a nest
and P a projection in TV, define the projections P_ = sup{£ e TV : £ < P} and
P+ = inf{£ e TV : E > P}. As the nest is complete (closed under suprema and infima), it
follows that P_ and P+ are both in TV. An interval in M is a projection of the form
(F — E), where E and F are in TV and £ < F. A minimal interval is called an atom while
the term proper interval will refer to an interval (F - £), where 0 < £ < F < 1.

We will also make use of Arveson's well-known distance formula for nest algebras
([1]). Namely, for TV a nest and T in £(H),

dist(T, algTV) = s\ip{\\PLTP\\ :PeN).

Lastly, we need a basic result in the theory of nest algebras, due to Erdos ([5]), that
the rank-one operator x® y* belongs to algTV if, and only if, there is a projection P in
TV such that Px = x and (P_)xj> = y. We are now ready to proceed.

Theorem 2.1. Let TV be a nest and A = algTV. If the compact operator K belongs to
Ab, then P_ < P < P+ and (P - P_) is finite-dimensional whenever PXKP ^ 0 for
P eTV.

Proof. The result is clearly true if K e A, so assume that K e Ab\A and let P be
a projection in the nest for which R = PLKP ^ 0. Note that R = PLRP and that R is
compact. Also, as Ab is a norm-closed algebra containing A and K., it follows that Ab

contains the norm-closed algebra generated by A and K. This includes the operator
R(= KP - PKP) so that R e Ab\A.

Suppose that P+ — P and take a strictly decreasing sequence {Qn} c TV such that
Qn -»• P in the strong operator topology. Choose a unit vector x0 such that Px0 = x0

and Rxo^O. Thus, ||6^/?x0 - Rxo\\ — \\(QX - PL)Rx0\\ -+ 0, whence, there exists n0

such that | |Q^xo| | > ||Rxo||/2 for all n >n0. For each n > n0, let yn be a unit vector
satisfying (Qn - Qn+l)yn = yn and set /!„ = x0 <8> y?.

Clearly, each An belongs to A and, as [yn] is an orthonormal set, we see that the
sequence {An} tends to 0 in the weak-* topology.

However, for each n > n0, we have

dist(RAn, algTV) > \\QiRAmQJ = \\QXRx0 ® y'J

= WQnRxoH > Pxo| | /2 > 0.

This contradicts the fact that R e Ab. We conclude that P+ > P.
Next, suppose that P_ = P and this time take {()„} to be a strictly increasing

sequence of projections in TV such that Qn -»• P in the strong operator topology. Take y
to be unit vector such that y = Py and Ry^O. The fact that \\Ry- RQny\\ =

GJyll < ll«ll IKP - O i l -»> 0 implies that RQmy / 0 for some m. Let y0 = Q*y
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and define An — y0®x'n for each n>m+\, where xn is a unit vector satisfying
xn — (Qn - Qn-\)xn- The usual calculations show that the sequence {An:n>m+l)
tends to 0 in the weak-* topology on A. Now, for each n > m + 1, we have

dist(R>L,, alg/V) > \\PLRAnP\\ = \\Ryo®x;\\

= \\Ryo\\ > 0.

This contradicts the fact that R e Ab. We conclude that P_ < P.
Finally, suppose that the projection (P — P_) is infinite-dimensional and take

{xn : n > 1} to be an orthonormal set with xn = (P — P_)xn for every n. Choose y0 such
that Py0 — y0 and Ry0 ^ 0 and set An = y0® x*. The sequence {An} tends to 0 in the
weak-* topology on A, but, again contradicting the fact that R e Ab, we have, for
each n,

dist(RXn) algAO > ||PX.RA,P|| = \\Ryo®x'J

= \\Ryo\\ > 0.

It follows that P_ < P < P+ and that (P — P_) is finite-dimensional, thus completing
the proof of the theorem. •

Corollary 2.2. For a nest algebra A = alg.A/\ we have

(i) if K e (, A D K., then P_ < P < P+ and (P+ — P) is finite-dimensional whenever
PLKP ^ Ofor P 6 TV, and

(ii) */ K e i , n / C , then P_ < P < P+ anrf (P+ - P_) « finite-dimensional for all
PeAf such that PLKP ^ 0.

Proof. To prove (i), apply the Theorem to the nest algebra A* — algA/""1", where
A/"x = {Px : P e TV}, using the relations (P1). = (P+)1, (Px)+ = (P_)\ and the fact that
QL - p 1 = p - Q. Then use the relation bA = ((A')b)'.

For the second assertion, suppose that K e ABDIC and that P^KP ^ 0 for some
P eM. As K e Ab n /C, it follows from the Theorem that P_ < P < P+ and that
(P - P_) is finite-dimensional. At the same time, we have that K e bA(MC, so it
follows from the first part of this Corollary that (P+ — P) is also finite-dimensional.
Thus, (P+ — P_) is finite-dimensional as desired. •

Remark. Let A = algW be a nest algebra. Example 2 of [7] shows that, if there is
a projection P in the nest for which P_ < P < P+ and (P - P_) is finite-dimensional,
then there exists a compact operator K e A\-^ a nd, therefore, A is properly contained
in Ab. Together with the Theorem, this implies that, for a nest algebra A, the equality
A — Ab holds if, and only if, the projection (P — P_) is infinite-dimensional whenever
P_ < P < P+ for P in the nest. In particular, this applies if the nest is continuous.

A construction similar to that of Example 2 of [7] can be given which, together with
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part (i) of Corollary 2.2, shows that, for a nest algebra A = algTV, the equality
A = b A holds if, and only if, the projection (P+ — P) is infinite-dimensional whenever
P_ < P < P+ for P e M. Again, this applies to all continuous nests.

Of course, if either Ah = A or bA = A then we will have AB = A. But, consideration
of the above results as they apply to the example M = {0, P, Q, 1}, where P and QL

are finite-dimensional while (Q — P) is infinite-dimensional, shows that, in this case,
both the right and left Bourgain algebras of algAf properly contain algA/" while their
intersection, the two-sided Bourgain algebra, coincides with algA/\

In order to establish the algebraic characterization of the Bourgain algebra of a nest
algebra, we require the examples discussed in the following proposition.

Proposition 2.3. Let M be a non-trivial nest. Each of the following four conditions
implies that (algAOt = algjV + K..

(i) M — {Pn: —oo < n < oo} U {0, 1}, where each atom (Pn+, - PJ is finite-
dimensional;

(ii) M = {Pn : n > 1} U {0, 1}, where each Pn is finite-dimensional;

(iii) M — {Pn : —oo < n < — 1} U {0, 1}, where (Pn — Pn_,) is finite-dimensional for each
n< - 1 ;

(iv) M — {P,, . . . , PM} U {0, 1}, for some natural number M, where Pk is finite-
dimensional for each k—\ M.

Proof. The first assertion is established in Example 1 of [7] but we give the
argument again here for the sake of completeness. The proofs of the other cases mainly
involve modifications of this first proof.

(i) Let J\f — {Pn : —oo < n < oo} U {0, 1} and, for simplicity, assume that each atom
(Pn — Pn_,) is one-dimensional with range spanned by the unit vector en. Thus, the set
{en : —oo < n < oo} is an orthonormal basis for H. As (algA/")6 is a norm-closed
subalgebra of algA/" + /C, it suffices to show that each of the rank-one operators
en ® em> for integers m and n, belongs to (algTV),,. For this, choose integers m and n and
set R = en <8> e'm. If m > n, then R e algJV c (algA/")t whilst, if m < n and T e algTV,
then, using Arveson's distance formula, we have

dist(KT, algAO = sup
-oo<;<oo

Finally, if the operators {7J}in algTV converge to 0 in the weak-* topology, then, for
each k with m < k < n — 1, we have lim^^, \{Ttek, em)\ = 0. As there are only finitely
many such k to consider, it follows that lim^oodist^TJ, algAO = 0 and, hence, that
R 6 (algAO,, as desired.

The argument requires only slight modification if the atoms (Pn - Pn_,) are assumed
merely to be finite-dimensional.
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(ii) Consider now the case where M — {Pn : n > 1} U {0, 1}, where each Pk is finite-
dimensional. Again, the argument is simplified if we assume that each atom (Pn — ?„_,)
(where we take Po = 0) is one-dimensional with range spanned by the unit vector en.
Thus, {en : n > 1} is an orthonormal basis for H. As in the proof of the first assertion,
let R = en <g> e'm. If m > n then R e algA/" so assume that m < n. For T e algAf we then
have

as before. The rest of the proof that R e (algAOi, proceeds as above.
(iii) Let M = {Pn : —oo < n < — 1} U {0, 1}, where, for simplicity again, we assume

that each atom (Pn — Pn_,) is one-dimensional with range spanned by the unit vector en.
Thus, {en:n<— 1} is an orthonormal basis for the range of P_,. The previous
arguments show that en <g> e'm e (alg7V")t for all negative integers m and n.

Next, observe that, if R = x<g>y*, where x is arbitrary and y = (1 — P_,)y, then
RPk = 0 for all k < - 1 so that R e algTV c (algA^),,.

Finally, suppose that R = x<g>e'm, where x = (1 - P_,)x and m < — 1. Then, for
T e algA/\ we have

\ 1 / 2

dist(RT, algA^) = | |P_ , r e J | = f 52 \(Tek, em)\2\ .

As before, if the sequence {7̂ } converges to 0 weak-* in algTV, then it follows
that dist(RTj, algTV) -» 0 so that R e (algA/")t. Again, as (algW)6 is a norm-closed
algebra, we conclude that (a\gAf)b contains /C and, hence, that the desired equality
holds.

(iv) The argument is a simple modification of the ones just given above. This
completes the proof. •

In what follows, let TV be a nest of projections with A — algW. Define three
additional nests, Mr,Mh and A/^, like so.

Mr = Af\{P e M : P_ < P < P + and dim(P - P_) < oo}

TV, = M\[P e M : P_ < P < P + and dim(P+ - P) < oo}

A/^ = A/"\{P e AT : P_ < P < P + and dim(P+ - P_) < cx>}.

Observe that each of these is a complete nest as no strong limit P of A/" can satisfy
P_ < P < P+. Let >L. A- and A^ be the corresponding nest algebras. A moment's
reflection shows that NrUAf, = A/^ c M and, therefore, that ArCtAi — Ax, 2 A.

We now give our main result.
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Theorem 2.4. Let A,Ar,Al and Ax be as in the preceding paragraph. Then

(i) Ab = (A + lC)nAr = A + (Arn)C),

(ii) bA = (A + )C)nAl = A + (Al + K), and

(iii) AB = (A + JC)nA00 = A + (AoonK).

Proof. It is straightforward to show that (A + K) D B = A + (B n K) for any
subalgebra B of C(H) which contains A. To establish the first assertion, let
T eAb^A +)C and write T = A + K with A e A and K e K.. As A c A , it follows
that K e A - Theorem 2.1 then implies that P^KP = 0 for all P e Afr; that is, K e A-
This shows that ^ c ^ + ^ n K).

For the reverse inclusion, observe that, as A c A and A is an algebra, it suffices
to show that (A n /C) c A- For this, let K e A n /C and take 4 e i . As X-4 e A . we
have £X/C£ = 0 for all £ e Mr. Thus,

dist(/C/l, .4) = sup{||£x/C4£|| : £ 6 A/o},

where Af0 = {̂  e M : P_ < P < P+ and dim(P - P_) < oo}.
Now, for each E e A/"o, there exist projections P and g in Mr such that P < E < Q

and (<2 — P) is an atom of the nest hfr. (Take P = sup{F 6 Mr : F < E) and
Q = inf{F e Mr : F > E}. Then no F in Nr can satisfy P < F < Q.) For such £, P and
Q, we have PLKAP = <2XX^2 = 0 and, thus, E^KAE = EL(Q - P)KA(Q - P)E.
Moreover, (Q - P)K = (g - P)KPX and A(Q - P) = QA(Q - P) so that

ELKAE = EL[(Q - P)K(Q - P)][(Q ~ PMQ - P)]E

- P)K(Q - P)][(6 - P)A(Q -

Consider now the nest M = (Q — P)M with corresponding nest algebra A defined on
the Hilbert space {Q — P)H. Because there are no strong limit points of M
strictly between P and Q and no infinite-dimensional proper subintervals of (Q — P),
the nest H is either trivial or it satisfies one of the four conditions in the statement
of Proposition 2.3. In the former case, we have Q = P+ in A/" so that
(Q — P)K[Q — P) e A^. Ab while, in the latter case, we have, from Proposition 2.3,
that (A)b = A + (Q - P)K.{Q - P) which again implies that (Q - P)K(Q - P) e Ab. In
either case, therefore, if An -*• 0 weak-* in A, then (Q — P)An(Q — P) -> 0 weak-* in
A and l im^^ sup{||£xK^nF.|| : E e Af0, P < E < Q] = 0.

We have just seen that, if K e ^ n / C , ( 2 - P ) is an atom in A/"r> and {An} is a
weak-* null sequence in A, then limn^oosup{||£x/CylnF.|| : E e Af0, P < E < Q] - 0. If
there are only finitely many such atoms, say (Qt - P,) (Qm - Pm), then, given
e > 0, we may choose, for each k=\ m, a natural number nk such that
sup{||£x/C/ln£|| : £ 6 Af0, Pk < £ < Qk) < e for all n > nk. With N = max{«,,..., nj,
we have ||£x/C/4n£|| <e for all n > N and all £ e A/"o from which it follows that
dist(KAn, A) < e for all n> N. Therefore, K e Ab as desired.
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Suppose, instead, that there are infinitely many such atoms, say {(g, — Pf) : i e Z).
As the sequence {An} is weak-* null, the set of norms {||J4J|} is bounded, say
by M. Because K is compact, there exists, for a given e > 0, a natural number m
such that ||(g, - P,)K|| < e/M whenever \i\ > m. Thus, if \i\ >m and Pt < E < Q{

for EeAf0, then \\ELKAnE\\ < \\(Qt-P^KA^-PJW < (e/M) • M = e. Next, as in
the previous paragraph, we may choose a natural number N such that
supiWE^ KAnE\\ : E e Mo, Pf < £ < ft} < e for all n > N and all i with \i\ < m. We
thus have that \\ElKAnE\\ < e for all £e^V0 and all n>N. Hence,
limn_oodist(K/l,I, .4) = 0 so that K e Ab as desired. This completes the proof that
Ar n K. c Ab and the first assertion of the Theorem now follows.

To prove the second assertion requires only the obvious modifications of the
arguments just given while the third assertion follows immediately from the first two
as soon as one recalls that AB = Ab n bA and that Ax = A, D A,. The proof of the
Theorem is now complete. •

Corollary 2.5. Let A = algW be a nest algebra. Then

(i) Ab — A if, and only if, the projection (P — P_) is infinite-dimensional whenever
F_ <P <P+for PeAf,

(ii) bA = A if, and only if, the projection (P+ — P) is infinite-dimensional whenever
P_ < P < P+for Pe N, and

(iii) AB = A if, and only if, the projection (P+ — P_) is infinite-dimensional whenever
P_ < P < P+for PeM.

Proof. The Theorem implies that the stated equalities occur if, and only if,
Ar = A, A, = A, and Ax = A, respectively. These, in turn, occur if, and only if,
Nr = M, M, = TV, and M^ — M, respectively. The Corollary now follows. •

An alternative proof of the first two assertions of Corollary 2.5 was discussed in
the remarks following Corollary 2.2. Similarly, for the third assertion, it follows from
Theorem 2.1 that the condition that (P+ — P-) is infinite-dimensional whenever
P_ < P < P+ for P e TV implies that AB = A. Conversely, if there is a projection P in
N such that P_ < P < P+ and (P+ — P_) is finite-dimensional, then one can show
directly that any operator R satisfying R — (P+ — P)R(P — P_) belongs to AB and,
hence, that AB y£ A.

Corollary 2.6. Let N be a non-trivial nest of projections and A = algTV. The
following statements hold.

(i) Ab = A + tC if and only if, all proper intervals in M as well as the projection
0+ = inf{£ e M : E > 0} are finite-dimensional;

(ii) bA = A + K. if, and only if, all proper intervals in M as well as the projection
(l_)x are finite-dimensional;
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(iii) AB — A + K. if, and only if, every proper interval in Af is finite-dimensional and
both 0+ and (l_)x are finite-dimensional.

Proof. To establish the first assertion, observe that, if all proper intervals in Af as
well as the projection 0+ = inf{£ e Af : E > 0} are finite-dimensional, then Af, — {0, 1}
so that A = A ^ ) . The Theorem then implies that Ab = A + KC\ £(H) = A + IC.
Conversely, if Ab = A + JC, then, by the Theorem, we must have 7Vr = {0, 1}. This
implies that P_ < P < P+ and that {P - P_) is finite-dimensional for all non-trivial P
in Af. Consequently, either 0+ = 0 or 0 < 0+ < 1 (here we use the assumption that the
nest is non-trivial) in which case 0 = (0+)_. In either case, 0+ is finite-dimensional.
Moreover, as all strong limits of Af are in Afr, it follows that, if (F — E) is a proper
interval in Af, then there can be only finitely many elements of Af between £ and F.
That is, we have 0 < £ = £, < . . . < £m = F < 1 where each interval (£t+, — Ek) for
k = 1 , . . . , m — 1 is an atom in Af. The hypotheses imply that (£t+1 — Ek) is finite-
dimensional for each k = 1, . . . , m — 1 from which it follows that (£ — £) is finite-
dimensional as well.

The second assertion follows from the usual modifications of the above
arguments while the third statement follows from the first two together with the
fact, obvious from the definition and Lemma 1.1, that AB = A + IC if, and only if,

C. •

As an alternative, one can prove Corollary 2.6 by showing that the condition that
all proper intervals in Af together with 0+ are finite-dimensional implies that Af has
one of the four forms given in Proposition 2.3 (according to whether or not 0 and 1
are strong limits in A/"). This implies that Ab = A + fC. Then use Example 3 of [7] to
show that, if the nest contains projections P and Q with 0 < P < Q < 1 and with
(Q — P) of infinite rank, then Ab is properly contained in A + IC. A similar construction
shows that A + KL will properly contain Ab if 0+ is infinite-dimensional. Thus, the
equality Ab = A + K. holds precisely when the nest is of one of the four types given in
Proposition 2.3.

Along the same lines, we see that the equality AB — A + IC occurs exactly when the
nest Af is of one of the following types.

(i) TV = {Pn : n e Z) U {0, 1}, with dim(Pn+1 - Pn) < oo for all n:

(ii) Af = {Pn : n > 1} u {0, 1}, with each Pn finite-dimensional;

(iii) Af = {Pn : n < -1} U {0, 1}, with dim(Pn - Pn_,) < oo for all n and
dim(l — P_,) < oo;

(iv) Af — {P|, . . . , PM} U {0, 1}, for some natural number M, with each Pk finite-
dimensional and (PM)X finite-dimensional (so that algAf is a finite-dimensional
algebra of block upper-triangular matrices).
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3. Higher order Bourgain algebras

For a subalgebra A of C(H), we can define higher order (two-sided) Bourgain
algebras of A by

(A)BM = ((AB)...)„. (" times),

for n > 1. Similarly we can define the nth order right and left Bourgain algebras,
(A)fa) and ^(A), respectively. Higher order "mixed" Bourgain algebras can be defined
as well. In general, as each of these is again a norm-closed subalgebra of C(Ji), we have
that every (n + l)-st order (two-sided, right, left, or mixed) Bourgain algebra of A
contains every nth order (two-sided, right, left, or mixed) Bourgain algebra of A and
each of these contains A itself.

In the case that the algebra A is local, that is, A n K. is weak-* dense in A, then more
can be said. Indeed, for any subalgebra B of C{H) satisfying i c f i , it is then an
immediate consequence of Lemma 1.1 that every higher order (two-sided, right, left, or
mixed) Bourgain algebra of B is contained in B + fC. If, in addition, B c A + fC, then
every higher order Bourgain algebra of B is contained in A + K.

Returning now to the nest algebra case, let TV be a nest and A = algA/" the
corresponding nest algebra. Let A/"r, A/",, Mx, A,, Ah and A^ be as defined in the
previous section.

It is readily apparent that (A/^,^ = A/^. Indeed, no projection P in Mx can
satisfy the conditions P_ < P < P+ and dim(P+ — P_) < oo within the nest Mx

as these conditions would then have to have been satisfied by P within the nest TV
itself.

The situation is not quite so tidy for the nests (AOr and (TV,),- For example, if
A/" = {0, Q, 1} U {Pn : n > 1}, where Q is finite-rank and where the projections Pn are
decreasing strongly to Q with finite-dimensional atoms (Pn — Pn+I), then Q e Mr\(Mr)r.
However, the nest Mr cannot contain two adjacent finite-dimensional atoms (P — E)
and (F - P) as this would imply both P_ < P < P+ and dim(P - P_) < co in N. From
this it follows that ((AO,) = (K)r- To see this, suppose that (P - E) and (F - P) are
adjacent atoms in (AOr with dim(P - E) < oo. As Afr cannot contain adjacent finite-
dimensional atoms, we have that E — P_ in the nest Mr. But P € (Nr)r, so we must have
P = P+ in Mr. This implies that the gap in Mr between F and P fits either description
(i) or (iii) of Proposition 2.3. This, however, implies the existence of infinitely many
pairs of adjacent finite-dimensional atoms in Mr, an impossibility. We conclude that
such a projection P cannot exist in (AO,; that is, ((AO,) = (Nr)r. Similar statements
apply to the nests (Af/), and ((A^,),).

We are now able to characterize all nine possible second-order (right, left, two-sided,
and mixed) Bourgain algebras of a nest algebra.

Theorem 3.1. Let M be a nest with corresponding nest algebra A = algAf. Then the
following statements hold.
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(0 (Aa)b=(A

(ii) b(AB) = (A

(iv) (A), =(•* + £) n (A),
(v)

(vi)

(vii)

(viii)

(ix)

Proof. First observe that each of the statements (iii), (vi) and (ix) follows from
the two preceding it. The proofs of the other statements are all similar so we herewith
give the proof of (iv) as being typical. As usual, statements involving left-sided
Bourgain algebras are established from the right-sided case by switching to adjoints
and using the relation (bA)* = (A*)b.

To establish the inclusion (Ab\ c (.4 + A:) n(A), , let T e (A), be given and write
T = A + K with Ae A and K e JC. If P e AC satisfies PLTP ^ 0, then PXKP ^ 0 as
well and, setting R = P^KP, we have that R e ( A \ n £• Now follow the proof of
Theorem 2.1 to the letter, but working in AC instead of in TV, to see that P_ < P < P+

in AC and that dim(P — P_) < oo; in other words, K e (A), n^C as desired. We use
the characterization of A given in Theorem 2.4 in two places here - first to tell us that
dist(RAn, Ab) > dist(RAn, A,), which we need to establish the contradictions, and,
second, to tell us that the operators An defined in the third step (showing that
dim(P — P_) < oo) are in A because they are in A n £• (Note that, because (P - P_)
is now only an atom in M,, these operators need not be in A.)

For the reverse inclusion, it suffices to show that (A)r n/C c (Ab)b. For this, first
set

7V0 = {P e K : P_ < P < P+ in Mr and dim(P - P_) < oo}

so that (AC), = AC\AV Observe that, if P e Mo, then dim(P+ - P) = oo (as MT cannot
contain adjacent finite-dimensional atoms) and that each atom of (AOr can contain at
most one element of No. Indeed, if (g - P) is an atom in (AO, and if E and F in N~Q

satisfy P < E < F < Q, then dim(F - E) = oo. Therefore, working in Afr, we have
P < E < . . . < F2< F, < F < g , where F, = F_, Ft+1 = (FJ_, and dim(Ft - £) = oo for
all fc > 1. Thus, there is a strong limit point of Afr lying strictly between P and Q,
contradicting the fact that (Q — P) is an atom in (AOr.

Suppose, then, that J\f0 = {£, : i e Z] and that {(<2, - Pf): i G Z} is the corresponding
set of atoms in (A/"r), (so P* < £, < Q, for all i). Note that P, = (Ei)_ in AC and,
therefore, that dim(F., - P,) < oo. Now, given K e (A)r
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ieZ

We have K ' e ( A ) , n/C and (K - K') e A, n 1C £ Ab. Therefore, dist(/C, Ab) < \\K-
(K - K')\\ = \\K'\\. At the same time, if R is an arbitrary element of Ab = A 4- (A n K),
then Ej-RE, = 0 for all integers i so that (g, - £,)(K - R)(£, - Pf) = (g, - £,-)*(£,• - Pi)
for all i. It follows that

\\K - A|| > sup IKfi,- - E,)K(E, - P,)|| = IIK'H

for all such R. Thus, dist(K, Ab) = inf{||K - K|| : R e A ) > 11*1 as well. We conclude
that

dist(K, A ) = ll^'ll

for all K in (A), n AT.
Let the sequence [Sn] c A converge weak-* to 0. Then, for each n, we have

KSn e (A), n A: so that

= sup IKQ, - E,)K(E, - P,)Sn(£, - F,)||.

The set of norms {||SJ|} is bounded, say by M, and K is compact, so, given e > 0, there
exists a natural number N such that ||(g, — E^)K{E{ — Pj)\\ < t/M for all integers i with
|i| > JV. Moreover, as (£, - P,) is finite-dimensional for each i and Sn ->• 0 weak-*, it
follows that lim,,.^ ||(£, — P()SB(£i — Pi)\\ = 0 for each i. Thus, for each integer i, choose
a natural number n, such that ||(£, - P,)Sn(£, - P,) II <£/II ̂ 11 for all n > n,. With
m = max{n, : | j | < N], we then have ||(KSn)'|| < e for all n > m. It follows that K 6 (A)6

as claimed. •

We observed above that (A/"^ = Nx, whence, (AJ , , = -̂ oo- Comparison of
Theorems 2.4 and 3.1 then yields the following corollary.

Corollary 3.2. Let A = algTV be the nest algebra corresponding to the nest N. Then

(As). = AB.

A simpler proof of this Corollary on its own is obtained by first using an argument
similar to that given in the first part of the proof of Theorem 3.1 to show that
(A))s Q(A + IC)r\ (Ao)^ a n d then applying the observation that (Ao)^ = A^ to
conclude that (AB)B Q (A + /C) n A» — -A.B. The reverse inclusion is automatic from the
definitions.

While we can have (A)6 i1 A (and b(bA)^bA), the next result shows that the
inequality can go no farther.
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Proposition 3.3. For A = algAf a nest algebra, we have

(i) (A)^, = (-4)fc<2) and

(ii) ^(.4) =& {A).

Proof. For the first assertion, an argument similar to that of Theorem 2.1 and the
first part of the proof of Theorem 3.1 shows that (A\<3) c (.4 + K) n ((A)r) • But, as
we observed earlier, ((A)r)r = (A), frorn which it follows, using Theorem 3.l'(iv), that
(A)K3> Q {-A)yL2y T n e r e v e r s e inclusion is automatic.

The proof of the second assertion is similar. •

Example 3.4. We conclude with an example for which all nine second-order
Bourgain algebras are different and yet which is still reasonably manageable. Consider
the nest

M = {0, 1} U {Qn : n > 1} U {{/f"+1) : n > 0}},

where the projections Qn decrease strongly to 0 with dim(Q2n_, — Q2n) < oo and
^ - Q2n+]) = oo for all n > 1 and dim(l - g,) = oo, and where {Pf"+3)} =
) / £ > ! } is a n increasing sequence of projections between g4n+3 and Q4n+2 with

dim(Pi4
+73) - Pi4n+3)) < oo for all k, dim(P(,4"+3) - (24n+3) = oo and P ^ -> Q*n+1 in the

strong operator topology as k ->• oo, and where {P^n+l)} = [Pli*n+[) : k > 1} is a
decreasing sequence of projections between QAn+l and g4n with d\m(Pl*n+') — P^+t^) < oo
for all k, dim(g4n — p(,4n+l)) = oo and P^"+l) -+ Q4n+, in the strong operator topology as
k —> oo. (We interpret Qo as 1). Thus, A/" has order type • • • © Z_ © 1 © Z + © 1 ® Z_.

Careful consideration shows that, in this example,

K = {0, 1} U {Qn : n + 4k + 3} U {P<4"+3)}.

M = {0, 1} U {Qn : H # 4fc} U {Pi4n+I)}, and

Further examination then shows that

O, = {0, l}U{e2n:«>l}U{P(,4"+3)},

(K), = {0, 1} U {Q4n+,} U {&„} U {P(,4"+3)}, and

Moreover,
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«), = {0,1} u {Q4n+2} u {24n+3} u {P(,4n+1)},

Finally, we have

(Mx,), = {0- 1} U iQin+t) U {P^+l)}, and

The results above seem quite dependent on the nature of nests and nest algebras as
we have used both the linear ordering and the distance formula heavily. Yet Lemma
1.1 applies to any local subalgebra of C(H). It would be interesting to compute the
Bourgain algebra(s) for other examples of local algebras (for instance, S. C. Power has
found a nice argument showing that the Fourier Binest algebra coincides with its
Bourgain algebra) and, more generally, to characterize algebraically the Bourgain
algebras of other classes of algebras such as those with invariant subspace lattice given
by the tensor product of two nests or some more general class of completely
distributive CSL algebras.
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