GROUP RINGS OVER Z_(p) WITH FC UNIT GROUPS

H. MERKLEN AND C. POLCINO MILIES

Introduction. Let RG denote the group ring of a group G over a commutative ring R with unity. We recall that a group is said to be an FC-group if all its conjugacy classes are finite.

In [6], S. K. Sehgal and H. Zassenhaus gave necessary and sufficient conditions for U(RG) to be an FC-group when R is either Z, the ring of rational integers, or a field of characteristic 0.

One of the authors considered this problem for group rings over infinite fields of characteristic $p \neq 2$ in [5] and G. Cliffs and S. K. Sehgal [1] completed the study for arbitrary fields. Also, group rings of finite groups over commutative rings containing $\mathbf{Z}_{(p)}$, a localization of \mathbf{Z} over a prime ideal (p) were studied in [4].

In this paper we prove the following:

THEOREM. Let $R = \mathbf{Z}_{(p)}$. Then, the group of units of RG is an FC-group if and only if one of the following conditions hold:

(i) G is abelian.

(ii) G is an FC group whose torsion subgroup T is central and the subgroup T' of torsion units whose order is not divisible by p is either finite or has the form T' = C.H where $C \cong \mathbb{Z}(q^{\infty})$ for a prime $q \neq p$, $[G, G] \subset C$ and H is finite.

Proof of necessity. Let G be a non-abelian group such that U(RG) is an FC-group. Then $U(\mathbb{Z}G)$ is also FC, thus G itself is FC and Theorem 1 of [6] together with Theorem 2 of [4] show that the torsion subgroup T of G satisfies one of the following conditions:

 (T_1) T is central in G.

 (T_2) T is abelian non central and for $x \in G$, $xtx^{-1} = x^{\delta(x)}$, $\delta(x) = \pm 1$, for all $t \in T$.

We wish to show first that in the present case T must always be central. This is a consequence of the following lemma.

LEMMA 1. Let x, t be two elements in a group G such that $xtx^{-1} = t^{-1}$, with $o(t) = n \neq 2$. Then U(RG) is not FC.

Proof. Set a = lcm(p, n) and $S = \{x \in \mathbb{Z} | x \equiv 1 \pmod{a}\}$. Then the

Received September 7, 1978.

localization $R' = S^{-1}$. **Z** is such that $R' \subset R$ and no divisor of *n* is invertible in R'; thus, the units of finite order of $R'\langle t \rangle$ are trivial (see [7]).

The element $u = 1 + at + \ldots + a^{n-1}t^{n-1}$ is a unit in $R'\langle t \rangle$ whose inverse is $u^{-1} = (1 - a^n)^{-1}(1 - at)$. Now, an easy computation shows that

$$uxu^{-1} = vx$$
 where $v = \left[\frac{1-a}{1-a^n}u - at^{n-1}\right] \in U(R'\langle t \rangle)$

Since v is not trivial, it is of infinite order. Also, it is easy to see that

 $u^m x u^{-m} = v^m x$, for all $m \in \mathbb{Z}$.

Hence, x has infinitely many conjugates in RG, thus U(RG) is not an FC-group.

To complete the proof of the necessity we shall now assume that G is not abelian. We shall denote by T' the set of all elements in T whose order is not divisible by p. We wish to show that if T' is infinite then T' = C.Hwhere $C = \mathbf{Z}(q^{\infty})$ for a prime $q \neq p$, $[G, G] \subset C$ and H is finite.

LEMMA 2. For each element $t = [x, g] \in [G, G]$, there is a finite set $H_t \subset T'$ such that for all $t' \in T'$, if $t' \notin H_t$, then $t \in \langle t' \rangle$.

Proof. Assume, by contradiction, that there exists an infinite set $B \subset T'$ such that for all $t' \in B$ we have that $t \notin \langle t' \rangle$. We define a sequence $\{t_n\}$ of elements in B inductively in such a way that

 $t_n \notin \langle t, t_1, \ldots, t_{n-1} \rangle$

and consider the idempotents

$$e_n = \frac{1}{s_n} (1 + t_n + \ldots + t_n^{s_n - 1})$$

where $s_n = 0(t_n)$.

Then, the elements $u_n = e_n x + (1 - e_n)$ are units in RG whose respective inverses are $u_n^{-1} = e_n x^{-1} + (1 - e_n)$. Now, consider the conjugates

$$g_n = u_n g u_n^{-1} = (e_n t + 1 - e_n) g.$$

It is easy to see that for i > j $g_i = g_j$ if and only if $e_i(t - 1) = e_j(t - 1)$ and this cannot happen because of the choice of the elements $\{t_n\}$. Hence g has infinitely many conjugates in U(RG), a contradiction.

Now we can finish our argument:

Since T' is central, we can always find a commutator α of prime order $q \neq p$. Applying Lemma 2 to this element it follows readily that the q'-part of T' must be finite, and the q-part infinite.

Setting $C = \{t' \in T' | \alpha \in \langle t' \rangle\}$ we see that *C* is an infinite abelian group which is torsion and indecomposable. By a result of Kulikov (see [3, 27.4]) it must be $C = \mathbb{Z}(q^{\infty})$. Also $T' = C \times H$ where *H* is finite.

Proof of sufficiency. If G satisfies (i), U(RG) is trivially an FC-group. So, we shall assume G satisfies (ii) and consider first the case where T' is infinite.

Since T is abelian, the p-Sylow subgroup of T, which we shall denote by T_p , is a direct factor. Writing $T = T_p \times T'$ we have that RT = ST'where $S = RT_p$. We remark that S is a commutative ring and, by the theorem in [2], it contains no non-trivial idempotents.

We wish to show that each conjugate class in U(RG) is finite. Let Σ be a transversal of T in G, which we may choose such that if $x \in \Sigma$ then $x^{-1} \in \Sigma$. Since T is central, it will be enough to prove that conjugate classes of elements in Σ are finite.

For each positive integer m we shall denote by Q_m the subgroup of C of order q^m , so that $Q_m \times H$ is an increasing chain of subgroups, whose union is T'.

As in [6, Lemma 2.4] we see that any unit v in RG can be written in the form:

$$v = \sum_{h} \alpha(h)h$$
 with $\alpha(h) \in ST', h \in \Sigma$

where $\alpha(h)\alpha(h') = 0$ whenever $h \neq h'$.

Given v, we pick m such that $Q_m \times H$ contains the supports of all $\alpha(h)$ in the above expression of v (note that, since $\alpha(h) \in ST'$ we consider supp $(\alpha(h)) \subset T'$). Let $\{e_i\}$ be a complete set of primitive orthogonal idempotents in $\mathbf{Q}(Q_m \times H)$. Since $p \nmid |Q_m \times H|$ all these idempotents belong to $R(Q_m \times H)$.

Writing v^{-1} in the form $v^{-1} = \sum \beta(h)h^{-1}$ we obtain

$$\sum_{h} \alpha(h)\beta(h) = 1 \text{ and } e_{i}\alpha(h) = e_{i}\alpha(h)^{2}\beta(h).$$

If we choose $h \in \Sigma$ such that $e_i \alpha(h) \neq 0$ it is easy to see that the element $e_i \alpha(h) \beta(h)$ is an idempotent in $S(Q_m \times H) e_i$. Since this ring contains no non-trivial idempotents, it follows that

$$e = \alpha(h)\beta(h) = e_i$$

and, for each *i*, there is only one element $h_i \in \Sigma$ such that $e_i \alpha(h_i) \neq 0$. Hence, setting $\alpha_i = e_i \alpha(h_i)$, we have

$$v = \sum_{i} \alpha_{i} h_{i}, v^{-1} = \sum_{i} \alpha_{i}^{-1} h_{i}^{-1} \text{ and } \alpha_{i} \alpha_{i}^{-1} = e_{i}.$$

Since G is an FC-group, the set of all commutators of the form $[h, g], h \in G$, g fixed in G, is finite; thus we may find a finite group Q in C such that Q contains all these commutators.

For a given unit $v = \sum \alpha(h)h$ in RG, we may now choose a finite subgroup $Q_v \times H$ of T which contains both Q_m and Q. If we consider $\mathbf{Q}Q$ as included in $\mathbf{Q}(Q_v)$, it is easy to see that

 $\mathbf{Q}Q_v \cong \mathbf{Q}Q \oplus (\bigoplus_i K_i)$

where each K_i is a cyclotomic extension of **Q**. Also if we denote by f_i the idempotents such that $K_i = (\mathbf{Q}Q_v)f_i$ and set

$$e = \left(\sum_{x \in Q} x\right) / |Q|$$

for all f_i we have that $ef_i = f_i$.

This means that we may index the idempotents of $Q(Q_v \times H)$ in such a way that

$$e_i e = e_i \text{ if } 1 \leq i \leq t$$

$$e_i e = 0 \text{ if } t + 1 \leq i \leq r$$

where e_{t+1}, \ldots, e_r are fixed, independently of v.

Now, we are ready to complete the proof. We have:

$$[v,g] = \sum_{i} [h_{i},g]e_{i} = \sum_{i=1}^{t} [h_{i},g]ee_{i} + \sum_{i=t+1}^{t} [h_{i},g]e_{i}.$$

Since $[h_i, g] \in Q$, we see that $[h_i, g]e = e$, and so

$$[v, g] = e + \sum_{i=t+1}^{r} [h_i, g] e_i.$$

Consequently, the set of commutators [v, g], $v \in U(RG)$, is finite.

Finally, we note that in the case where T' is finite the previous argument may be repeated in a much simpler form, because it is possible to use a fixed family of idempotents.

References

- 1. G. Cliff and S. K. Sehgal, Group rings whose units form an FC-group, to appear.
- 2. D. B. Coleman, Idempotents in group rings, Proc. Amer. Math. Soc. 17 (1966), 962.
- 3. L. Fuchs, Infinite abelian groups, Vol. I (Academic Press, New York, 1970).
- 4. M. M. Parmenter and C. Polcino Milies, *Group rings whose units form a nilpotent or* FC-group, Proc. Amerc. Math. Soc., to appear.
- 5. C. Polcino Milies, Group rings whose units form an FC-group, Archiv der Math., to appear.
- S. K. Sehgal and H. J. Zassenhaus, Group rings whose units form an FC-group, Math. Z. 153 (1977), 29-35.
- 7. H. J. Zassenhaus, On the torsion units of finite group rings, in Studies in Mathematics (in honor of A. Almeida Costa), Instituto de Alta Cultura, Lisboa (1974).

Universidade de São Paulo, São Paulo, Brasil