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CAPITULATION IN CLASS FIELD EXTENSIONS OF
TYPE (p, p)

S. M. CHANG AND R. FOOTE

1. Introduction. Let K be a number field, K@ its Hilbert class field,
that is, the maximal abelian unramified extension of K, let K® be the
Hilbert class field of K, and let G = Gal(K®/K) (alternatively, for p a
prime the first and second p class fields enjoy properties analogous to
those of the respective class fields discussed in this introduction; the par-
ticulars may be found surrounding Lemma 2). Since G/G’ is the largest
abelian quotient of G, G/G’ = Gal(K®/K) and so G’ is the abelian group
Gal(K®/K®M); moreover, class field theory provides (Artin) maps g,
ok which are isomorphisms of the class groups Cx, Cx(v onto G/G’, G’
respectively. In the remarkable paper [1] E. Artin computed the com-
position Vg::

1
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where e is the homomorphism induced on the class groups by extending
ideals of K to ideals of KV, and he gave a formula for computing 17,
the now familiar transfer (Verlagerung) homomorphism, in terms of the
group G alone (see Lemma 1). In 1930 P. Furtwingler proved that ['g
is the trivial homomorphism ([4]) and consequently ¢ : Cx — Cx(v is the
trivial map or, equivalently, every ideal of K when extended to K™ be-
comes a principal ideal (capitulates) in K™,

There may, however, be intermediate fields L, K & L & K® | which
enjoy this “‘principal ideal property’’: every ideal of K becomes princi-
pal when extended to L, and any characterization of these fields would be
of interest. Artin’s argument demonstrated more generally that the inter-
mediate field L has the principal ideal property if and only if for the cor-
responding subgroup H of G, the transfer Vg : G — H/H' is the trivial
homomorphism. Thus, for example, in the case when K /K is a cyclic
extension no proper subfield of KV containing K has the principal ideal
property (see Theorem 1).

Already when Gal(KW/K) =~ Z, X Z,, for some prime p, the situa-
tion becomes more complicated, and it is this configuration on which we
focus. We are concerned chiefly with the quantitative problem: given
n € {0,1,...,p + 1} is there a number field K as above with exactly »
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of the intermediate fields Ly, ..., L,41 enjoying the principal ideal pro-
perty (such K is said to have capitulation number #)?

For p = 2 the structure of G is highly restricted and group theory
asserts that the only permissible values of # are 0,1 and 3, each of which
is realized by K = Q(K/—m), for certain m € Z* (Theorem 2).

For odd primes p and each n € {0,1,...,p» + 1} we construct p-
groups G with G/G' = Z, X Z, and with the property that if K is a
number field and Gal(K®/K) =~ G, then K has capitulation number n
(the difficult existence problem for K is not touched on). Although for
odd p there are group theoretic examples for every # € {0, ..., p + 1},
when p = 3 in addition much of the isomorphism structure of any
example G can be determined for certain values of %, and so this case
merits separate treatment in [3]. In contrast, when p = 5 the family, ¥,
of p-groups whose corresponding number fields (if they exist) have class
groups of type (p,p) and capitulation number # seems to be much more
diverse in isomorphism type: specifically, motivated by the pioneering
work of Scholz and Taussky [10] we show that group theory imposes little,
if any, restriction on the number of intermediate fields, Ly, ..., Ly,
which are of type (A) (sece Theorem 4 and its prelude for details).

The paper concludes in a positive vein with a conjecture on the ele-
ments of %, of minimal order and some field theoretic implications.

2. Preliminaries. For any finite group X and subgroup Y of X let
Vy : X — Y/Y’ be the transfer homomorphism (see Lemma 1(i)). Let G
be a p-group for p a prime and define

H(G) = {HIH £ G,|G: H| = p},
Ho(G) = {H|H € H(G), ker Vi = G},
HA(G) = {H|H € H(G), ker Iy # G}.
Recall that G is regular if and only if V x,y € G, (xy)? = xPy?c?, for
some ¢ € (x,v).
We assume familiarity of elementary p-group theory; in particular,
each H € #(G) is normal in G, hence also H' < G.

The homomorphisms Vy, for H € 3#(G), admit the following facile
formulae:

LEMMA 1. Let X be a finite group, ¥ < X, G a p-group, H ¢ S (G);
(i) forx € Xlet O, ..., O, be the orbits of x acting on theleft cosets of ¥V
by left multiplication; if |0 = m,and ¢,Y € €, 1 <1 < n, then

Vy(x) = 1:11 gi_lxm'gty'y

(i) forx € G — H, Vg(x) = xPH',
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(iii) if G = (x, H), for y € H,
Va(y) = yy*y™ ... y77" H = x?(x~'y)’H’,
(iv) of G 1s regular and G’ is of exponent p, Vy(g) = g?H', ¥V g € G.

Proof. For (i) see [6, Theorem 7.3.3]. Part (ii) and the initial assertion
of (iii) are translations of (i); the second equality of (iii) follows from (ii)
by writing y = xx~!y and using the fact Vy is a homomorphism. To
prove (iv), by (ii) we need only consider y € H. Let x € G — H so (iii)
gives Vy(y) = x?(x~'y)?H’. By the regularity of G,

xﬁ(x—ly)P = xPx—PyPc?,

for some ¢ € G’, and since G’ is assumed to have exponent p,
@y = 3,

as desired.

It is worth observing that the study of capitulation of ideal classes of
K of p-power order in subfields of K is equivalent to the study of capi-
tulation in the corresponding subfields of K, where K, (the 7th mem-
ber of the Hilbert p class field tower) is defined inductively by K,® = K,
K, is the maximal abelian unramified extension of K, =V of degree a
power of p, V¢ = 1; moreover, the same transfer correspondence
applies:

LeEMMA 2. Let K be a number field, G = Gal(K®/K), W an ideal class of
K of p-power order, G' the element ox (1) of Gal(K®V/K) (¢x the Artin
map), L any field with K C L € KW, H = Gal(K® /L), and let —
denote the natural projection G — G/0?(G), where O?(G) is the group gen-
erated by all p'-elements of G (i.e. the smallest normal subgroup of G whose
quotient s a p-group); then Gal(K,V/K) is a Sylow p-subgroup of
Gal(KW/K), Gal(K,?/K) = G, and 1 becomes principal in L < 1 be-
comes principal in L N K,V < Vg(a) = 1H'.

Proof. This follows immediately from the observation that for fields
E C F, Normpgme = d, where d is multiplication by the degree of F/E.
Alternatively, one may translate the field theory to corresponding
statements about finite groups and verify the lemma by completely
elementary group theoretic manipulations.

In light of Lemma 2, rather than assuming Gal(K®/K) is a p-group
with certain properties, we need merely hypothesize properties of the
Sylow p-subgroup of Gal(KV/K) and work with the p class field tower
in place of the general class field tower.

We say a field L with K © L € K,V has the principal p-ideal pro-
perty if, and only if, every ideal class of K of p-power order becomes
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principal in L. Define the p-capitulation number of K to be the number
of fields L with K & L & K, such that L has the principal p-ideal pro-
perty (so if Gal(K"W/K) has Sylow p-subgroups of type (p, p), this
number equals |3, (Gal(K,®/K))|).

THEOREM 1. If for a number field K Gal(K,V/K) 1s cyclic and L is a
field with K © L C K,V L has the principal p-ideal property if and only
if L = K,W,

Proof. Let G = Gal(K,"V/K) and H = Gal(K,V/L): since the p-
group Gal(K,®»/K) has commutator quotient group isomorphic to the
cyclic group G, by Burnside's Basis Theorem [6, Corollary 5.1.2]
Gal (K,®»/K) is abelian, whence K,*» = K,V and ¢ = Gal(K,®/K) =
{(x ). Moreover, by LLemma 2 every ideal class of K of p-power order he-
comes principal in L if and only if 175 (x) = 1. By Lemma 1(i),

I,/'H(x) = xlG@:H| = x1L1K|’
so the result follows.

THEOREM 2. If K is a number field with Gal (K.Y /K) = Zy X Zs, then
if KoV 5 K@ there is al most one field L with K & L & K.V which
enjoys the principal 2-ideal property; if KoV = Ko every intermediate
freld enjoys the principal 2-ideal property.

Proof. This is a direct computation of transfers using the fact that 2-
groups G with G/G' = Z, X Z, are either dihedral, quasidihedral or
generalized quaternion. See [8] for the details and for examples of imag-
inary quadratic number fields with 2-capitulation numbers 0, 1 and 3.

THEOREM 3. For each n < {0,1,2, 3,4} there 1s « 3-group G with
G/G' = Z3 X Zs, G' abelian such that if K is « number field with
Gal(K;3®/K) = G, then K has 3-capitulation number n.

Proof. See [3] for the proof and for further details concerning G.

3. p-capitulation numbers for » = 5. In this section p is a prime
= 5and foreachn € {0,1,...,p + 1},

%, = {G|Gis a p-group, G/G' = Z, X Z,, ' abelian and
|0(G)| = ni.

We give two separate constructions to show %, # #, for each such #.
The first construction (Lemma 5) is technically simpler but the second
(Lemma 7) has the advantage of yielding groups of smaller order when
n > 3(p + 1) and allows greater flexibility in “placing’’ the kernels of
the transfers Vy, H € J.(G).

In each of the constructions G’ will be elementary abelian, that is, an
F,G/G'-module. In order to describe these representations we introduce
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the following notation: let F be the field of p elements, 4 =< Z, X Z,
(written multiplicatively), 44, ..., 4,41 the subgroups of 4 of order p
with 41 = (o), A2 = (r), Air2 = (o'r) and let I be the ideal of FA4
generated by {a — 1lja € 4} (the augmentation ideal); for any left FA-
module V,Va € 4,v € T,

[v,a] = a®@) —v = (« — 1)y,
andvV B4, WCV,

(W, B] = Spangi(w, 8llw € W, B8 € Bj,
Cw(B) = {wlw € Wand 8(w) = w, V8 € BJ.

The first lemma ensures that once F4A-modules 1V have been construc-
ted with certain properties, a suitable extension of 7 by 4 can always be
realized.

LemMA 3. If Vs a ¢yclic FA-module with generator u and (¢ — 1)P~11 =
0 = (r — 1)P'V, then there is a p-group G with G/G' = A4,G =V, G =
(s,8), s, t] = u and s, t acting by conjugation on V induce the transfor-
mations o, T respectively, moreover, if [P~V = 0, 21,2, any elements of
Cy(4) and s1, t1 any two generators of G, such a group exists with the addi-
tional properties si* = z1, 1P = 2.

Proof. Theorem 111.22 of [12] may be used to produce G.

Alternatively, G may be constructed by letting (§), {¢{) be cyclic
groups of order p? and first forming the semi-direct product Go = V (§)
where § induces ¢ on V. Since (¢ — 1)? = ¢ — 1 annihilates V' by hy-
pothesis, §? is the identity on V. Moreover,

(Su)? = $Puc(u) ... o"Y(u) = §*
by virtue of
l14+o+...4+c"1= (¢ — 1)1 =0.

Thus since § acts (by conjugation) on a basis vy, ..., v, of V with the
same matrix as $u acting on the basis 7(v1), ..., 7(v,), the map 7" :
Go — Go defined by 7'(8) = Suand T (v) = 7(v), V v € V extends to an
automorphism of G, which fixes §?. Now form the semi-direct product
G1 = Go{t) with i inducing T on Gy: since

77(8) = Sur(u) ... Y(u) and (r— 1)1 =

T is an automorphism of G, of order p, that is, #? centralizes G,.
To complete the argument, since [$,7] = u and since for o'r7 € 4,
v €V,

(o'r) — 1)v = [5, $#7],

I*=1V is the kth term of the lower central series of G;. If I?~! = 0, G has
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class £ p and I’V £ Z = Cy(4). Thus Gi/Z has class £ p — 1
whence by (7, Corollary 12.3.1] is a regular p-group. Let $§;, {; be any
generators of G; and write §; = §#7, | = §*'. By the regularity of G,/Z,
P = §%{7%(mod Z),
P = §%i%(mod Z),

0

>

so because (§?, 7, Z) is elementary abelian and (5?,?) N\ Z = 1,
<§1p, 211)) = Zp X Zp and <§1ﬂ, 21p> M Z =1.
Finally, since (§,?,{,?) < (Z, 3§, {?) = Z(G,) we may quotient G; by

the central subgroup (§172,1, #,7z,1) (which will not collapse 1) to obtain
the desired G.

LEMMA 4. For each n € {1,2,...,p — 1} there 1is a cyclic FA-module
V of dimension §(n + 1)n with the properties:
(1) I"V =0,

(i1) dimpCy(4) = n,
(i) dimg[V, 4] N Cy(A) =n — 1,1 £ 7 = p + 1, and

(iv) for any distinct iy, . .., 1,€{1,2,. .., p+ 1}, Nj=1 [V, 4,1 =0
Proof. Let 1V be a vector space over F of dimension in(n + 1) with
basis {ult=1,...,n,7=1,...,1} and define an action of 4 on 1" by

o) = Uy + g1, 1S n,1<j7=1—1,
7'(”:']‘) = Uy + Uiy, 2= 1 n,1 <5 = 1—1,

o) = 7(1) =y, 1 24 = nm

A 1A

First of all, clearly ¢, 7 commute in their action on 17; furthermore,
(0 — 1)1 — 1)y = uy,

whence (¢ — 1)1V =0= (r — 1)"V,s0asn < p — 1 g, 7 induce auto-
morphisms of order p on [” and, moreover, 1" is visibly a cyclic F4-
module with generator u,;.

Notice for any a € A4, the coefficient of u,, in the expansion of
(@ — 1)u,; with respect to the given basis is zero unless r < 7, s = j and
at least one of these inequalities is strict. This easily means (i) holds.

Now let Z = Spang{uyi, ..., iy} so certainly Z C Cy(4); and, con-
versely, v € Cy,(4) implies the coefficient of #,; in v is zero unless 1 = 7,
whereupon Z = C,(4) so (ii) is established.

To prove (iii) and (iv) letu; = #;, 1 £ 1 = n,and W = Spang{uy1l
1 <4< n—1}.Since Nj=1 [V, 4] is an FA-submodule of V, it will be
zero if and only if its intersection with Cy(4) = Z is zero. For each
a€ A4, only the terms (¢ — 1)u 4, contribute to (@ — 1)1 M Z, whence

la—DNVNZ=(a—1)WNZ=(a—1W.
Recall 4, = (o), Aiyo = {(o'7), 0 =1 = p — 1, so set Z, = [W, 4.
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Thus
Zy = Spang{us, us, ..., u,} and
Z;=Spang{u; + (1 — u,1|1 £7=n—1}, 2=5i=p+ 1.

Thus each Z; is codimension 1 in Z, which, incidentally, verifies (iii).
The one dimensional spaces Z/Z,, Z/Z; have bases u, + Z,, u, + Z;,
2 =1 =p+1, respectively and since for 2= 2, u; = (2 — 1)u,; 1
(mod Z,), u; = (2 — i)"u,(mod Z,). Define ¢ : Z— [[%E1 (Z/Z;) by

o) = (@), ..., 7)),

w,: Z — Z/Z,; being the natural projection. With respect to the u; basis
of Z and the above described basis of each Z/Z; the matrix of ¢ is the
(p + 1) X n array

10 _ _ _ _ _ 00
E={00 _ - _ _ _ 0 1]
- o

Any n distinct rows of E are linearly independent because the square
matrix formed by n such rows consists of possibly one or both of the first
two rows of E together with a Vandermonde matrix, whence it will have

non-zero determinant. This means for any distinct 4;,...,12, €
{1,2,...,p + 1} the map

Z—(Z/Z;) X ...X (Z/Z,,)
given by

v (my (©), ..., 74, ©))

is non-singular. Thus the kernel of this map, which is Nj=1 Z4,, is zero,
as desired for (iv).

LEMMA 5. For eachm € {0,1,...,p —3,p+ 1}, G, #= 0.

Proof. Consider first when m # 0, p + 1,set » = m + 1 and let V be
the FA-module described by Lemma 4. By (ii), (iii) and (iv),
MNi=2 [V, 4] N Cy(4) is one dimensional with basis, say, z. Let G be
the group supplied by Lemma 3 such that s? = z, # = 1. Again, I*V is
the (B + 1) member of the lower central series of G, so Lemma 4(i)
asserts G hasclass = #n + 1 £ p — 1, whence G is a regular p-group by
[7, Corollary 12.3.1]. Since G’ is elementary abelian, 8,(G) = (|x € G)
= (z), so by Lemma 1(iv) for H € #°(G), Vy = lif and onlyif z € H'.
Since G’ is abelian, if H = (G’, s%’), then

H =[G, st = (¢'7? = 1) V.

By Lemma 4 (iv) and the choice of 2, 2 € H' if and only if H = (G’, s't),
0 i< n — 2, which shows that G € ¥,_, = 9,..
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For the remaining values let G be a non-abelian group of order p?* and
let G be of exponent p, if m = p 4+ 1 and not of exponent p, if m = 0.
Thus G is again regular and 0,(G) = 1, Z(G) respectively. Since each
maximal subgroup of G is abelian, by Lemma 1(iv) G € %, in each
case.

In fact, with slightly more effort the case m = p — 2 could also be
dealt with in Lemma 5 (even though G may not be regular); however,
since this value will be treated in more detail shortly, it does not seem
worthwhile to do so.

We now provide another construction which focuses on the subgroups
in ', rather than those in ., (by constructing G with |#,(G)| = m):

LEMMA 6. For each m € {1,2,...,p — 2| there exists « cyclic FA-
module V of dimension sm(m + 3) with the properties:
(i) IV =0,
(ii) dimpGy(4) = m,
(iil) dimg[V, A N G A) =m — 1, 1 £1 £ m,
(iv) Ni=1[V,4] =0, and
(V) CV(A) ciV,4y) m4+1=:1=p+1

Proof. Let U be a vector space of dimension 4m (m — 1) over F with basis
fugli =1,2,...,m—1,7=1,2,...,1};foreach i € {1,2,..., m}
let ¥, be a 2 dimensional vector space over F with basis {y;, z;} and let
V=V0V.®...® V,. Nowput "= U @ 7, and set

Z = Spangi{zi, ..., 2%.}.

Define an action of 4 on 17 by
o) = Ui+ Uy, 1S1=m—1,157j=17—1,
a(y1) = ¥,

c(y) =yi+ 2, 2=1=m,

o(z)) =2;, 1=1=m,

T(Uy) =g+ iy, 25 1=m—1,1=2j=1—1,
() =yi— (@ —2)z, 1=1=m,

T(zi> =Z‘Zy 1§l§m3
and forl1 £71 < m — 1,

Il

1y + Zl (@ipy; + ci25),
=

m

(W) = wiy + 21 (biy; + digzg),
-

o(uqy)

where a;;, by, ¢4y, di; are elements of F to be specified.

Notice first that for each 7 € {1,...,m}, ¥V, is an FA-module on
which the elements of 4, induce the identity transformation and the
elements of A — 4, are not the identity. Thus if j ## 7, [V, 4;] is one
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dimensional, hence is the unique one dimensional FA-submodule of
Y,: Y.\ Z Moreover, as in the proof of Lemma 4, I"~1(V/V) = V/V
and clearly I*Y = 0, whence I™"'V = 0, which is (i). Specifically,
(¢ = 1)™1V =0 = (r — 1)™'V, so because m + 1 < p, ¢ and 7 in-
duce transformations of order p on V.

Clearly, or(u;;) = 70(uy), 1 S j <1 — 2,1
=70(y), YV y € Y. One computes that for ¢ =
if and only if

1 = m — 1, and o7(y)
y ot (o) = 1o (itii)

(6.1) A5 = bij and Ci—1j; = (i«”', 2 é 1< m— 1, 1 _S_j § m.

Similarly, for 7 = 1, e7(u;) = 7o(u;;) if and only if

(6.2) ay = 0 an(l blj = (2 _j)(lijv 1 é l -§ m — 1, 2 é j é m.
One sees that (6.1) together with (6.2) is equivalent to

(6.3) (i) ay—1y = 0,
(1) aj—y; =0y and c¢iq;=dy, 2215=m—1,1 27 = m,
P

m
(111) Am—rj = (2 - ]‘)k—l(l'm,—ljy 1 é ] é m, ‘ é k é m — 1.

Thus the specified action makes 1”7 into an FF4-module if and only if (6.3)
holds.

Continuing to work with indeterminate coefficients we find conditions
under which assertion (iii) of the lemma is satisfied. For this, the follow-
ing formula which the reader may verify by induction on k will be useful:

"

Z; Q452

j=2

12+:=m—1.

(6‘4) ‘Tk(uii) =u,;+k Zl ((liiyj + Cijzj) + %k(k - 1)

Thus (6.4) yields V & = 0,

m

(6.5) UkT(un) =uy+ 2—:1 {(ka; + bi)y; + (key; + dij)z5)

+ 2 1k — Dkayy + kbylz;, 1S15m— L.
2

2

As in Lemma 4, since N, [V, 4,] is an FFA-submodule of 17, it will
be zero if and only if its intersection with G (4) is zero. We will eventually
decide that G,(4) = Z so assume this equality holds for the moment. To
have (iii) it will then certainly be necessary that ZZ [/, 4,],1 < j < m.
In fact, we have already shown

(V,4])=(ViNZ2)®...0 (Yo NZ)® YVuNZ)e...
® (Y, N 2Z),

which is codimension one in Z, 1 £ j < m, so assuming G,(4) = Z if we
could demonstrate [V, 4,] 2 Z, (iii) would be proven (observe that if
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G(A) = Z, since Z = [V, 4], for m <j<p+1, (v) will be valid
also). In fact, we find conditions under which [V, 4,;,] N ¥V, = 0, for
then [V, 4,] N Z will equal [V, 4;] N\ Z from which the above direct
sum decomposition will yield (iv) as well. Since only the terms [#;;, 4]
contribute to [V, 4;] M Y, the latter equality will be valid provided

[#43, Aj] < kG?l Yy,

kg
and a direct computation using (6.5) shows this will indeed be true if

(6.6) (i) an =0,
(i) ¢ = 0,
(iii) (j — 2)ay; + b, =0, and
(i) 3G —2)G = 3)ay; = G—2)bi;+ (G—2)ei; +diy =
1=71=m—-1,2 j

IIA
~
IN <
3

Substituting (6.6) (iii) in (6.6) (iv) gives

6.7) —30G -G —2)ay+ (G—2)ci; +diy =0,
1Sism—12=2j<m.

Thus in order that (6.6) and (6.3) hold simultaneously we may express
a;; in terms of a,_1; d;; in terms of ¢,_;; and solve (6.7) recursively to
obtain the following formula which may be proved directly by induction
on k:

(6.8) coiy = 3(=1)k = 1)G — DG — 2)"au-y,
+ (_1)k(] - Q)k—lcmr—ljy 2 é k § m — ly 2 é] § m.

Conversely, (6.8) captures the relation between the ¢;;'s so we obtain in
summary:

(6.9) 1V is an FA-module of dimension im(m 4+ 3) and assuming
Cy(4) = Z, assertions (i)—(v) of the lemma will hold whenever
@ijy bijy €1y dij are elements of F subject to:
(1) ap_11 = 0,
(ii) Cn—11 = 0,
({i1) tper; = 2 — N apry;, 1 =27=m 2=k

I\
3
|

(iV)l)U=(li_1]-, 2§i§m—1,1§j§m,
(V) Cn—kj = %("—l)k(] - 1)(] - z)k—lam—lf
+ (_l)k(J - Q)k_lcm—ljr 1 é] é m, 2 é k é m — 11
dij=¢icyy, 2=21=m—1,1=j=m.
Thus once the free parameters «,—1j, Cu—1;, 2 = j = m and dy;, b,; are

specified, (6.9) determines the remaining coefficients.
To ensure that 17is also a cyclic F4-module (with generator u = u,,_1)
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first observe that as in Lemma 4 every u,; is an FA multiple of #, viz.
u;; = (r — 1)"1=(g — 1)~ lu;

furthermore, z; is an FA multiple of y;,, 1 =17 < m. Thus 1V will be
cyclic provided each y, is an F4 multiple of u. For this to happen it suf-

fices thatif W = Spang{ui, ..., tyim_1}, then (¢ — D)W 4+ (r — )W
contains a coset representative of each coset of Z in V: because then for
each7 € {1,2,...,m} 3¢, € Zsuch that y; + t; = Nu, for some \; €

FA; then since 7 — 1 and ¢ — 1 are zeroon Z, z; = (r — 1)\u, 3; =
(¢ — )N, 2 = 1 < m, so every element of Z is an FA multiple of u,
whence the differences y; = M;u — ¢, are also. Consider the transforma-
tion (¢ —1): W—Y/Z by w— o(w) — w + Z. With respect to the
bases {u;;}, {y: + Z}, this map has matrix ‘(a;;). Assuming (6.9)(i)-
(vi) are in effect,

0

Apm—12

o0 - - - - - - - _
0o0 - - - - - - - - _ _

10 O

Ap—13

t(ui’-, =

Am—1m

where E = (e;;) is the square matrix of degree m — 2,

€ij = (_j)m—i—l(’m—ljJr?'
Thus
E = (liag(dm—l,liy ceey (Lm*lm)‘ (fij)Y

where f;; = (—j)™ 1L If we denote by *(a;;)’ the (m — 1) X (m — 1)
matrix obtained from ‘(«;;) by deleting its first row, then

m

det “(a;;)" = B am-y - det (f3;).

Since (fy;) is Vandermonde, ‘(a;;) has rank m — 1 if and only if

Am—12y - - - y Ap_1y are all non-zero. Now notice that the image of W under
o — 1 is contained in the m — 1 dimensional space spanned by y, +
Z,...,yn + Z and further, if b1; % 0, 7(#11) — %11 + Z is not in this

space. This proves
(6.10) 1V is a cyclic F4-module if conditions (6.9)(i)-(vi) hold and

bi1, Am—12, . . . , Gm—1n, are all non-zero elements of F.

As a consequence of assuming @,—_12, . - . , dp—1,, are non-zero, a(u;) #*
ui;, 1 £1 = m — 1, sono element of G, (¢) may have a non-zero term in
1
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1y, V1,7 — in particular, Gy(4) € V, whence Cy(4) = Cy(4) = Z,
as hypothesized in (6.9).

Since (6.9) and (6.10) may certainly be satisfied simultaneously, the
lemma is proven.

As before, we now use Lemma 3 to form the extension VA. The argu-
ments concerning the position of the kernels could be simplified were we
to ignore the case n = 3 in which the p-group we construct has class p
and may therefore be irregular.

LEMMA 7. For each n € {3,4,...,p}, G, # O; moreover, given n, ¢
10,1,...,p+1—n}3G€ Y, such that
[{H|H ¢ #(G) and kerVy = H}| = n,.

Proof. Set m = p + 1 — n and let 1" be a cyclic /4 -module with gen-
erator u satisfying the conclusions of Lemma 6. Let Z = G,(4) and for
1 <1< m,let

Zi = ﬂ [VyAJJm Z,
f

by (ii), (iii) and (iv) Z; is a one dimensional space with basis, say, z,.

Define

(71) ¢=e1+z+az+ ... +2,
5221—23—224'—...— (nn—2)z,,n+6zg,

where
__Jo, itm >0, 6_10, it g > 1,
"7 1, ifne =0, T, afne <1

Let G be the group provided by Lemma 3 (written multiplicatively)
with the additional property (using Lemma 6(i))
(12) (P = g7 (7 =

Now set ay =5, a; = s, 2 <12 p+1 and put H;, = (¢;,G') =
(a;, V), so H € #(G) and H/ = [G, a,].

We now compute Vg, 1 =1 = p + 1: if © > m, we may pick «;,, «
with 1, 7, k distinct; then by Lemma 1(ii)

Vgi(a;) = af(mod H/) and Vg, (ax) = ¢;,’(mod H/).

But since a?, ¢’ € Z (one way to see this is by noting G/Z has class
< p — 1, whence is regular, and «,?, a,,* € Z) and by Lemma 6(v)
Z £ H/, we have G = {(a,, ay) < ker Vy,, as desired. Now for 1 < m
observe that since m < p — 2, a,, a,41 ¢ H;, so by Lemma 1(ii)

Vi (ay) = a,?(mod HY) and Vg, (apy1) = ap1®(mod H/).
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By definition of a,, a,41
(7.3) a1 = apy1a,"(mod G'),
a; = ppila,'~(mod G'), 2=j=p+ 1

Computing Vy,; by using (7.3) and the fact that Vy, is a homomor-
phism whose kernel contains G’ gives:

(7.4) Vy;(a1) = ¢(mod H/),
Vaila;) = 2% (mod H/), 2=2j=<p+ 1
Recall that
HINZ=2Z1X ... X Zix X Zisx X oo X Zom,
so by (7.1) ¢ # 1(mod H/) unless + = 1 and n, > 0, in which case
Vii(as) = & # 1(mod H/).

Thus for 1 £ ¢ £ m, Vy, is not the trivial homomorphism.
We demonstrate ker Vg, = H;, 1 < 1 < n,: for this it suffices to show

Vgi(a;) = 1(mod H/).
If 2 =1, (7.1) and (7.4) ensure this. If 2 < 7 = n,,
Vai(a) = (22722372 .. 2,72 (e85 . . L 2" Y) (mod H{),
= 1(mod H/),
as desired.
Finally, it remains to see that for ny < 7 £ m, ker Vy, % H;:if 1 = 1,
we must have ny = 0 whence
Vg, (a1) = ¢ = z:* = z1(mod Hy');
if © = 2, we must have ny < 1, whence
Vo (a2) = & = 2% = zo(mod Hy');
if 2 2 3, since z; appears to the zero power in £,
Va:(a;) = 7% = z,/72(mod H/).
This completes the proof of the lemma.

Before summarizing the field theoretic consequences of Lemmas 5 and
7 we repeat a definition from [11]: if K is a number field, Il a subgroup of
order p (p any prime) in the ideal class group of K, H the subgroup of
Gal(K®/K) given by U under the Artin map ¢x, and L the fixed field of
H,say Il (and H) are of type (4) if every ideal in Il becomes principal in
L. In light of Lemma 2 this may be interpreted as follows: let G =
Gal(K,®/K) and let Hy = Gal(K,®/L); then H (or Hy) is of type (4)
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if and only if the kernel of the transfer G — H/H,' contains Hy. In this
terminology Lemma 5 and Lemma 7 immediately yield

THEOREM 4. If p is a prime = 5, then for each n € {0,1,...,p + 1}
there 1s a p-group G with G/G' = Z, X Z,, G' abelian such that if K is a
number field with Gal(K,'®/K) = G, then K has p-capitulation number n;
moreover, if n = 3, for any no € {0,1,...,p + 1 — n} such G exists
with the additional property thatif Gal(K,®/K) = G, then of thep + 1 — n
intermediate fields L, K & L; & K,V, which do not have the principal
p-ideal property, exactly ng are of type (A).

4. A conjecture and some implications. Let » be a prime =5,
n€ {0,1,...,p+ 1},24, = {K|K is a number field with Gal(K,®/K)
€ 9,}. Although there are infinitely many fields with Gal(K,V/K) of
type (p, p) (see [5]), little is understood of the individual 24, and, in
particular, how = affects [K,® : K]. The insight accrued from the proofs
in Section 3 and from an examination of the p-groups of small order
motivate us to conjecture

(C1) form€ {0,1,...,p+ 1} and K € X,
(K,® : K,V zZz min{s(n + 1)(n +2),3(p +1—n)(p + 4 —n)l.

The advantage of having such a result in hand would be that the size of
[K,® : K,V] could be forced to be ‘“‘large’ if its p-capitulation number
were ‘‘close to (p + 1)/2"; moreover, access to the p-capitulation num-
ber of K can be achieved by a knowledge of the degree p extensions of K
without going to the degree p? extension K,V.

A similar statement to (C1) which, instead of |Gal(K,®»/K,™)| as-
serts a lower bound for the rank of Gal(X,®/K,™) could also be formu-
lated but the value is more uncertain; the conjectured value for [K,® :
K,V] may be too large. If some lower bound, d,, for this rank could be
established, one could, for example, apply a Golod-Shafarevich type
theorem to K,V [2, Chapter 1X, Theorem 3], to show if K € 2/, and
[K: Q] < ((d, — 2)/2p)?, then K has an infinite p class field tower
(whose first stage has degree only p?). A similar idea has been success-
fully exploited in [9].

Finally, if one were able, by other techniques, to decide 2¢, = 0, for
somen € {0,1,...,p + 1}, this would force the existence of a counter-
example to the conjecture that every p group is isomorphic to

Gal(L,"™/L),

for some m = 0 and some number field L.
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