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CAPITULATION IN CLASS FIELD EXTENSIONS OF 
TYPE (p, p) 

S. M. CHANG AND R. FOOTE 

1. Introduction. Let K be a number field, i£(1) its Hilbert class field, 
that is, the maximal abelian unramified extension of Kf let K{2) be the 
Hilbert class field of K™, and let G = Ga\(K^/K) (alternatively, for p a 
prime the first and second p class fields enjoy properties analogous to 
those of the respective class fields discussed in this introduction; the par­
ticulars may be found surrounding Lemma 2). Since G/G' is the largest 
abelian quotient of G, G/G' = Gal (K{l)/K) and so G' is the abelian group 
Gal(i£ (2)/i£ (1)); moreover, class field theory provides (Artin) maps <pK, 
(pKd) which are isomorphisms of the class groups CK, CK(o onto G/G', G' 
respectively. In the remarkable paper [1] E. Artin computed the com­
position VG'\ 

G _BI21l> G/G' - * C C, _ ! U Cx(o ^ l G\ 

where e is the homomorphism induced on the class groups by extending 
ideals of K to ideals of K(1), and he gave a formula for computing VG>, 
the now familiar transfer (Verlagerung) homomorphism, in terms of the 
group G alone (see Lemma 1). In 1930 P. Furtwàngler proved that VG> 
is the trivial homomorphism ([4]) and consequently e : CK —» CK(i) is the 
trivial map or, equivalently, every ideal of K when extended to K(l) be­
comes a principal ideal (capitulates) in K(l). 

There may, however, be intermediate fields L, K £ L £ K{1\ which 
enjoy this "principal ideal property": every ideal of K becomes princi­
pal when extended to L, and any characterization of these fields would be 
of interest. Artin's argument demonstrated more generally that the inter­
mediate field L has the principal ideal property if and only if for the cor­
responding subgroup H of G, the transfer VH : G —• H/H' is the trivial 
homomorphism. Thus, for example, in the case when K(1)/K is a cyclic 
extension no proper subfield of K{1) containing K has the principal ideal 
property (see Theorem 1). 

Already when Gal(i£ ( 1 ) /^) ~ Zp X ZPJ for some prime p, the situa­
tion becomes more complicated, and it is this configuration on which we 
focus. We are concerned chiefly with the quantitative problem: given 
n (i {0,1, ..., p + 1} is there a number field K as above with exactly n 
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of the intermediate fields Lh ..., Lp+Ï enjoying the principal ideal pro­
perty (such K is said to have capitulation number n)} 

For p = 2 the structure of G is highly restricted and group theory 
asserts that the only permissible values of n are 0,1 and 3, each of which 
is realized by K = Q(\/ — m),ior certain m £ Z + (Theorem 2). 

For odd primes p and each n £ {0, 1, ..., p + 1} we construct p-
groups G with G/G' ~ Zp X Zp and with the property that if K is a 
number field and Gal(K{2)/K) == G, then K has capitulation number n 
(the difficult existence problem for K is not touched on). Although for 
odd p there are group theoretic examples for every n £ {0, . . . , £ + l j , 
when p = 3 in addition much of the isomorphism structure of any 
example G can be determined for certain values of n, and so this case 
merits separate treatment in [3]. In contrast, when p ^ 5 the family, &n, 
of ^-groups whose corresponding number fields (if they exist) have class 
groups of type (p,p) and capitulation number n seems to be much more 
diverse in isomorphism type: specifically, motivated by the pioneering 
work of Scholz and Taussky [10] we show that group theory imposes little, 
if any, restriction on the number of intermediate fields, Li, ..., LP+i, 
which are of type (A) (see Theorem 4 and its prelude for details). 

The paper concludes in a positive vein with a conjecture on the ele­
ments of &n of minimal order and some field theoretic implications. 

2. Pre l iminar ies . For any finite group X and subgroup Y of X let 
Vy : X —•> Y/Y' be the transfer homomorphism (see Lemma l( i)) . Let G 
be a ^-group for p a prime and define 

Jt(G) = {H\H ^ G,\G: H\ = p), 

je0(G) = {H\H e Jf(G), ker VH = G}, 

Jtx(G) = {H\H £ je(G)} ker VH * G). 

Recall that G is regular if and only if V #, y ë G, (xy)p = xpypcp, for 
some cG (x, y )'. 

We assume familiarity of elementary p-group theory; in particular, 
each H Ç Jrff(G) is normal in G, hence also H' <3 G. 

The homomorphisms VH, for H £ Jtif(G), admit the following facile 
formulae: 

LEMMA 1. Let X be a finite group, Y ^ X, G a p-group, H £ J^f(G); 
(i) for x £ X let Ûi, ... , ©n. be the orbits of x acting on the left cosets of Y 

by left multiplication; if \©{\ = mt and gfY £ 0u 1 ^ i S n, then 

vY(x) = n «rV-^F', 

(i\) for x e G - H, VH{x) = xpHf, 
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(in) if G = (x}H)ffory G H, 

VH(y) = yyxyx2 . . . yxP~l Hf = xp(x~lyYHf, 

(iv) if G is regular and G' is of exponent p, VH(g) — gpH', V g € G. 

Proof. For (i) see [6, Theorem 7.3.3]. Part (ii) and the initial assertion 
of (iii) are translations of (i) ; the second equality of (iii) follows from (ii) 
by writing y = xx~ly and using the fact VH is a homomorphism. To 
prove (iv), by (ii) we need only consider y Ç H. Let x £ G — H so (iii) 
gives VH{y) = xp(x~ly)pH'. By the regularity of G, 

xp(x~1y)p = xpx~pypcp, 

for some c £ Gf, and since G' is assumed to have exponent p, 

xp(x~1y)p = yp, 

as desired. 

It is worth observing that the study of capitulation of ideal classes of 
K of p-power order in subfields of K(1) is equivalent to the study of capi­
tulation in the corresponding subfields of Kp

(1) where Kp
(i) (theith mem­

ber of the Hilbert p class field tower) is defined inductively by Kp
(0) = K, 

Kp
(i) is the maximal abelian unramihed extension of Kp

{i~l) of degree a 
power of p, \/i = 1; moreover, the same transfer correspondence 
applies: 

LEMMA 2. Let K be a number field, G = Ga\(K(2)/K), U an ideal class of 
K of p-power order, G the element (pK(Vi) of Ga\(K(1)/K) (<pK the Artin 
map), L any field with K C L C K™, H = Ga\(K™/L), and let -
denote the natural projection G —» G/Op(G), where 0P(G) is the group gen­
erated by all pf-elements of G (i.e. the smallest normal subgroup of G whose 
quotient is a p-group); then Gal(i£p

(1)/K) is a Sylow p-subgroup of 
Ga\(K^/K), Ga\(Kp^/K) ^ G, and U becomes principal in L <=> U be­
comes principal in L C\ Kp

(1) t=> Vu(a) = \Hf. 

Proof. This follows immediately from the observation that for fields 
E Ç F, NormF/i?oe = d, where d is multiplication by the degree of F/E. 
Alternatively, one may translate the field theory to corresponding 
statements about finite groups and verify the lemma by completely 
elementary group theoretic manipulations. 

In light of Lemma 2, rather than assuming G&\(K{1)/K) is a £-group 
with certain properties, we need merely hypothesize properties of the 
Sylow ^-subgroup of Gal(i£ ( 1 ) /^) and work with the p class field tower 
in place of the general class field tower. 

We say a field L with K Ç L C Kp
(1) has the principal p-ideal pro­

perty if, and only if, every ideal class of K of p-power order becomes 
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principal in L. Define the p-capitulation number of K to be the number 
of fields L with K Ç^ L ^ KP

{1) such that L has the principal £>-ideal pro­
perty (so if Gd\(K{l) /K) has Sylow ^-subgroups of type (p,p), this 
number equals \3^0(Ga\(Kp^/K))\). 

THEOREM 1. If for a number field K Gd\(Kp
{l) /K) is cyclic and L is a 

field with K Ç L C Kp
il\ L has the principal p-ideal property if and only 

if L = Kpw. 

Proof. Let G = GB\(KP^/K) and H = Ga\ (Kp™/L): since the p-
group Ga\(Kp

(2)/K) has commutator quotient group isomorphic to the 
cyclic group G, by Burnside's Basis Theorem [6, Corollary 5.1.2] 
Ga\(Kp^/K) is abelian, whence Kp™ = Kp™ and G = Gal (Kp™/K) = 
(x ). Moreover, by Lemma 2 every ideal class of K of p-power order be­
comes principal in L if and only if VH(x) = 1. By Lemma l(i) , 

VH(x) = x\°--H\ = x^K\ 

so the result follows. 

THEOREM 2. If K is a number field with Gal(i£2
(1)/K) = Z2 X Z2, then 

if i£2
(1) 7e- i£2

(2) there is at most one field L with K Ç L £ X2
(1) which 

enjoys the principal 2-ideal property; if K2
{1) = K2

{2\ every intermediate 
field enjoys the principal 2-ideal property. 

Proof. This is a direct computation of transfers using the fact that 2-
groups G with G/G = Z2 X Z2 are either dihedral, quasidihedral or 
generalized quaternion. See [8] for the details and for examples of imag­
inary quadratic number fields with 2-capitulation numbers 0, 1 and 3. 

THEOREM 3. For each n G JO, 1,2, 3, 4} there is a Z-group G with 
G/G' = Z3 X Z3, G abelian such that if K is a number field with 
Ga\(Kz{2)/K) ~ G, then K has ^-capitulation number n. 

Proof. See [3] for the proof and for further details concerning G. 

3. ^-capitulation numbers for p ^ 5. In this section ^ is a prime 
^ 5 and for each w(5 {0, 1, . . . , £ + 1}, 

rSn = \G\G is a ^-group, G/G ~ Zp X Zp, G abelian and 
pTo (G) I =n\. 

We give two separate constructions to showT ^ 'n 5̂  0, for each such n. 
The first construction (Lemma 5) is technically simpler but the second 
(Lemma 7) has the advantage of yielding groups of smaller order when 
n > \{p + \) and allows greater flexibility in "placing" the kernels of 
the transfers VH, H G J^X(G). 

In each of the constructions G' will be elementary abelian, that is, an 
FVG/G-module. In order to describe these representations we introduce 
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the following notat ion: let F be the field of p elements, A == Zp X Zp 

(written multiplicatively), A1} . . . , Ap+i the subgroups of A of order p 
with A1 = (a), A2 = ( r ) , ̂ + 2 = (<r*r ) and let I be the ideal of FA 
generated by {a — l |a Ç 4̂ } (the augmentat ion ideal); for any left / v l -
module V}\/ a £ A, v £ V, 

[v, a] = a(v) — v = (a — 1)^, 

and \ / 5 ^ A W C F, 

[W,J3] = SpanF | [w,/3] |w Ç IF, 0 G B), 
CW(B) = {u>|^ 6 W a n d 0(w) = w, V 0 £ 5 } . 

The first lemma ensures tha t once FA -modules V have been construc­
ted with certain properties, a suitable extension of V by A can always be 
realized. 

LEMMA 3. If Vis a cyclic FA-module with generator u and (a — l)p~l V = 
0 = (T - l)p~lV, then there is a p-group G with G/G' ^ A} G = V, G = 
(s, t), [s, t] = u and s, t acting by conjugation on V induce the transfor­

mations a, T respectively; moreover, if Iv~lV = 0, 21,22 any elements of 
CV(A) and si} t\ any two generators of G, such a group exists with the addi­
tional properties Sip = z\, tiv = z2. 

Proof. Theorem 111.22 of [12] may be used to produce G. 
Alternatively, G may be constructed by letting (s ), (t ) be cyclic 

groups of order p2 and first forming the semi-direct product G0 = V (s) 
where s induces a on V. Since (a — l)p = ap — 1 annihilates V by hy­
pothesis, sp is the identi ty on V. Moreover, 

{su)p = SPU<J(U) . . . ap~l(u) = sp 

by vir tue of 

1 + 0- + . . . + ap~l = (a - I)*"1 = 0. 

Thus since s acts (by conjugation) on a basis vi, . . . , vn of V with the 
same matrix as su acting on the basis T(VI), . . . , T(VU), the map T : 

Go —• Go defined by T(s) = su and T(v) = T(V), V v G V extends to an 
automorphism of Go which fixes sp. Now form the semi-direct product 
Gi = Go(t) with t inducing T on G0: since 

Tp(s) = SUT(U) . . . Tp~l(u) and (r - l)p~l = 0, 

T is an automorphism of Go of order p, t ha t is, tp centralizes Go. 
T o complete the argument , since [sy t] — u and since for aiTj Ç A, 

v e v, 

Ik~lV is the &th term of the lower central series of G\. If Ip~l = 0, G\ has 
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class ^ p and F~2V ^ Z = CV(A). T h u s G i / Z has class S P - 1 
whence by [7, Corollary 12.3.1] is a regular £-group. Let Si, h be any 
generators of Gi and write Si = sHj, t = 5*K By the regulari ty of G i /Z , 

5 I P = sipPp(mod Z), 

lxv = ^ | i p ( m o d Z ) , 

so because (sp, £p, Z ) is elementary abelian and (sp, lp ) C\ Z = 1, 

<sA />> ^ Z P X Z P and <$i*, *V> H Z = 1. 

Finally, since (sip, tx
p ) ^ (Z,sp,lp) = Z ( d ) we may quot ient Gi by 

the central subgroup (sipZi~l, t\pz2~
l) (which will not collapse V) to obtain 

the desired G. 

L E M M A 4. For each n d {1, 2, . . . , p — 1} /Aere is a c^c/ic FA-module 
V of dimension \(n + l ) n m/fe /fee properties: 

(i) J* F = 0, 
(ii) dimFCF(^4) = n, 

(iii) d i m F [ F , At] H CV(4) = w - 1, 1 g i g £ + 1, and 
(iv) /or an;y distinct ix, . . . , in£ {1, 2, . . . , £> + 1} , H^=i [F , A tj] = 0 

Proof. Let F be a vector space over T7 of dimension \n(n + 1) with 
basis {Uij\i = 1, . . . , n,j = 1, . . . , i } and define an action of 4̂ on F by 

o-(w^) = w^ + uij+l, l ^ i ^ n , l ^ j ^ i - l , 

T(UIJ) = utj + Wi-ij, 2 ^ i ^ n, l S j S i — 1, 

o-(wzz) = r(WfO = z^-, 1 ^ i ^ n. 

First of all, clearly a, r commute in their action on F ; furthermore, 

(a - 1 ) > - * ( T - l ) n -%m = utj 

whence (a — 1)WF = 0 = (r — 1)WF, so as /z ^ £> — 1 o-, r induce auto­
morphisms of order p on F and, moreover, F is visibly a cyclic i v l -
module with generator unX. 

Notice for any a £ A, the coefficient of urs in the expansion of 
(a — \)uij with respect to the given basis is zero unless r S i, s ^ j and 
a t least one of these inequalities is strict. This easily means (i) holds. 

Now let Z = S p a n F { ^ n , . . . , unn\ so certainly Z Ç CV(A); and, con­
versely, v Ç CV(A) implies the coefficient of utj in v is zero unless i = j , 
whereupon Z = Cy(^4) so (ii) is established. 

T o prove (iii) and (iv) let ut = uu, 1 ^ i ^ n, and W = Spa.nF{ui+u\ 
1 ^ i S n - 1}. Since p|*=i [F , ,4 i ;] is an /v l - submodule of F, it will be 
zero if and only if its intersection with CF(^4) = Z is zero. For each 
a G A, only the terms (a — l)ui+u contr ibute to (a — 1)V C\ Z, whence 

(a - i)v r\ z = (a - i)w r\z = (« - i)w. 
Recall 4x = (d) , ^ { + 2 = (crV), 0 ^ i ^ £ - 1, so set Zt = [W,Ail 
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Thus 

Zi = SpaLnF{u2, Uz, . . . , un) and 
Zi = SpanF{«, + (i - 2)uj+l\l ûj^n-1], 2 S i ^ P + 1. 

Thus each Zz is codimension 1 in Z, which, incidentally, verifies (iii). 
The one dimensional spaces Z/Zi, Z/Zt have bases u\ + Zi, un + Zz, 
2 ^ i ^ p + 1, respectively and since for i ^ 2, u5 = (2 — i)uj+i 
(mod Z,), ^ = (2 - i )w-X(mod Z*). Define ^ : Z -> f ^ i î (Z/Z,) by 

<p(u) = (7ri(y), . . . , T T P + I ( ^ ) ) , 

7Tj : Z —» Z/Z* being the natural projection. With respect to the ut basis 
of Z and the above described basis of each Z/Zi the matrix of <p is the 
(p + 1) X n array 

/ i o _ _ _ _ _ o o 
£ = l 0 0 _ _ _ _ _ 0 1 

\ (2-7-rz' 
Any ?z distinct rows of E are linearly independent because the square 
matrix formed by n such rows consists of possibly one or both of the first 
two rows of E together with a Vandermonde matrix, whence it will have 
non-zero determinant. This means for any distinct ii, . . . , in Ç 
{1, 2, . . . , p + 1} the map 

Z-+(Z/ZU) X . . . X (Z/ZJ 

given by 

v^ (iraiv), . . . , 7rin(v)) 

is non-singular. Thus the kernel of this map, which is Pl"=i Ztj, is zero, 
as desired for (iv). 

LEMMA 5. For each m £ {0, 1, . . . , p - 3, p + 1}, &m ^ 0. 

Proof. Consider first when m ^ O , p + 1, set n = m + I and let F be 
the FA -module described by Lemma 4. By (ii), (iii) and (iv), 
n"=2 [V, Af] f~\ CV(A) is one dimensional with basis, say, z. Let G be 

the group supplied by Lemma 3 such that sp = z, tv — 1. Again, IkV is 
the (k + l ) s t member of the lower central series of G, so Lemma 4(i) 
asserts G has class ^ w + l ^ p — 1, whence G is a regular £-group by 
[7, Corollary 12.3.1]. Since Gf is elementary abelian, cu(G) = (a*|* G G ) 
= (s ), so by Lemma 1 (iv) for H G J?(G), VH = 1 if and only if z £ # ' . 
Since G' is abelian, if H = (G', 5 V ), then 

if' = [G',sV] = (<rV - 1)7. 

By Lemma 4(iv) and the choice of z, z Ç H' if and only if H = (G', s1/ ), 
0 g i g » - 2, which shows that G £ ®Vi = ^TO. 

M=3, 
1 = 1 . . . n -4 -1 
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For the remaining values let G be a non-abelian group of order p* and 
let G be of exponent p, if m = p + 1 and not of exponent p, if m = 0. 
T h u s G is again regular and l5i(G) = 1, Z(G) respectively. Since each 
maximal subgroup of G is abelian, by Lemma l ( i v ) G £ ^m in each 
case. 

In fact, with slightly more effort the case m — p — 2 could also be 
dealt with in Lemma 5 (even though G may not be regular) ; however, 
since this value will be t reated in more detail shortly, it does not seem 
worthwhile to do so. 

We now provide another construction which focuses on the subgroups 

in 3fx ra ther than those in J ^ 0 (by constructing G with \Jti?x(G)\ = m)\ 

L E M M A 6. For each m £ {1, 2, . . . , p — 2} there exists a cyclic FA-
module V of dimension \m{m + 3) with the properties: 

(i) im+iy = 0, 
(ii) dimFCv(A) = m, 

(iii) dimF[V, Ai\ ^ CV(A) = m - 1, 1 ^ i = m, 
(iv) n l i [ F ^ J = 0, and 
(v) C v ( 4 ) C [F , 4 J , m + 1 = i g £ + 1. 

Proof. Let £/ be a vector space of dimension \m (m — 1) over F with basis 
{w^|i = 1, 2, . . . , m — 1,7 = 1, 2, . . . , i) ; for each i G {1, 2, . . . , m J 
let Y i be a 2 dimensional vector space over F with basis \yu zt) and let 
Y = F : 0 F 2 0 . . . 0 Ym. Now pu t F = U ® Y, and set 

Z = SpanF{zi , . . . , zm). 

Define an action of A on V by 
(j{uij) = Uij + uij+i, 1 ^ i -^ m — 1,1 S j S i — 1, 

<K:yi) = ?i , 
^(^f) = y* + s<, 2 = i ^ w, 
o-(^) = sz-, 1 ^ i ^ m, 

T ( W ^ ) = Uij + Mi-i^, 2 ^ i ^ w - 1, 1 ^ j g i - 1, 
r(;y*) = Ji — ii — 2)zu I ^ i S ni, 
r{Zi) = zu 1 S i ^ m, 

and for 1 ^ i ^ m — 1, 

( j ( ^ ) = uu + X) (^ i^ - + cijzj), 
3=1 

m 
T(UU) = uu + J2 (Pi0i + dijZj), 

3=1 

where aih bijy ctj, dtj are elements of F to be specified. 
Notice first t ha t for each i ^_ {1, . . . , ra}, Yi is an FA -module on 

which the elements of A t induce the ident i ty t ransformation and the 
elements of A — A t are not the identi ty. T h u s if j ^ i, [Yi} A J is one 
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dimensional, hence is the unique one dimensional FA -submodule of 
Yi : YiC\Z. Moreover, as in the proof of Lemma 4, Im-l(V/Y) = Y/Y 
and clearly PY = 0, whence Im+lV = 0, which is (i). Specifically, 
0 - l)m+W = 0 = (r - l)m+1V, so because m + 1 < p, a and r in­
duce transformations of order £ on F. 

Clearly, driUij) = ra(uij), 1 ^ j ^ i — 2, 1 ^ i ^ m — 1, and or(;y) 
= ro-(y), V y G K One computes tha t for i ^ 2, o-r(^ZÎ_i) = Ta(uu-i) 
if and only if 

(6.1) a^-ij = 60- and d-ij = d^-, 2 ^ i ^ t n — 1, l ^ j ^ m . 

Similarly, for i ^ 1, <JT(UU) = T<T(UH) if and only if 

(6.2) a a = 0 and bi3- = (2 — j)a 0 - , 1 ^ i ^ m — 1 , 2 ^ ; ^ m. 

One sees t ha t (6.1) together with (6.2) is equivalent to 

(6.3) (i) a m _ n = 0, 

(ii) a<_i^ = bij and c<_ij = d0-, 2 ^ i â w - 1, 1 ^ j ^ w, 

(iii) aOT_^ = (2 - j ) * " ^ ^ ^ - , 1 ^ 7 g w, z ^ fc ^ m - 1. 

T h u s the specified action makes V into an FA -module if and only if (6.3) 
holds. 

Continuing to work with indeterminate coefficients we find conditions 
under which assertion (iii) of the lemma is satisfied. For this, the follow­
ing formula which the reader may verify by induction on k will be useful: 

m m 

(6.4) <Tk(Uii) = Un + k J2 (aijyj + CiJZj) + hk{k — 1) ]T dtjZj, 
3=1 J=2 

1 ^ i fg m — 1. 
T h u s (6.4) yields V ^ O , 

m 

(6.5) <rkT(uu) = uu + £ ) i (kaij + bijhj + (kctj + dt^zj} 

m 

i=2 

As in Lemma 4, since H7=i [ ^ ^A 1S a n ^ - s u b m o d u l e of F, it will 
be zero if and only if its intersection with CV(A ) is zero. We will eventually 
decide t ha t CV(A) = Z so assume this equali ty holds for the moment . To 
have (iii) it will then certainly be necessary tha t Z £ [F , A J , 1 ^ j S m. 
In fact, we have already shown 

[F, A,] = (Fi n z) ® ... e (YH1 r\ z) ® (Fi+1 n z) ® ... 
e (Ymnz), 

which is codimension one in Z, 1 ^ 7 ^ m, so assuming CF(^4) = Z if we 
could demonst ra te [F , 4̂ J 2 2» (iii) would be proven (observe tha t if 
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CV(A) = Z, since Z = [F, A,], for m < j S p + 1, (v) will be valid 
also). In fact, we find conditions under which [V, A3] C\ Yj = 0, for 
then [V, Aj] C\ Z will equal [F, 4̂ J H Z from which the above direct 
sum decomposition will yield (iv) as well. Since only the terms [uii} A ,] 
contribute to [V, A j] Pi F, the latter equality will be valid provided 

m 

\uiuAj\ci® Yk, 

and a direct computation using (6.5) shows this will indeed be true if 

(6.6) (i) aa = 0, 

(ii) ca = 0, 
(iii) (j - 2)a{j + btj = 0, and 

(iv) i(j - 2)(j - Z)atJ = (j - 2)btJ + (j - 2)ctJ + dtj = 0, 
1 ^ i ^ m — 1, 2 ^ j ^ m. 

Substituting (6.6) (iii) in (6.6) (iv) gives 

(6.7) - i ( j - 1)0' " 2)a„ + (j - 2)c„ + dtj = 0, 

Thus in order that (6.6) and (6.3) hold simultaneously we may express 
ciij in terms of am-\h dtj in terms of CÎ_IJ and solve (6.7) recursively to 
obtain the following formula which may be proved directly by induction 
on k: 

(6.8) cm.kJ = H-Dk(k - D ( i - D(J - 2 ) ^ a m _ x , 

+ ( - l ) * ( j ~ 2)*-1cTO_ii, 2 S k S m - 1, 2 ^ j ^ m. 

Conversely, (6.8) captures the relation between the c*/s so we obtain in 
summary: 

(6.9) V is an /vl-module of dimension \m(m + 3) and assuming 
CV(A) = Z, assertions (i)-(v) of the lemma will hold whenever 
(lij, bij, Cijj dij are elements of F subject to: 

(i) am-u = 0, 
(ii) cm-n = 0, 

(iii) am-kj = (2 - jy-hi^j, l ^ j ^ w , 2 ^ fe ^ w - 1, 

(iv) &i-j = a<_ij, 2 -^ i tk m — 1,1 ^ j ^ m, 

(v) cm_„ = H-D*C7 - DO" - 2)*-1aro_1, 
+ ( - l ) * ( j ~ 2)*-1cm_ii, 1 ^ j ^ w, 2 g fe g m - 1, 
d -̂ = Ci-ij, 2 ^ i ^ m — 1,1 ^ j ^ m. 

Thus once the free parameters am_i^, cm_ij, 2 ^ j ^ m and d^, 6^ are 
specified, (6.9) determines the remaining coefficients. 

To ensure that Fis also acyclic FA -module (with generator u = um-n) 
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first observe that as in Lemma 4 every ui3- is an FA multiple of u, viz. 

utj = (r - l ) * - 1 - ' ^ - 1 ) ^ ; 

furthermore, zt is an FA multiple of yt, 1 ^ i ̂  m. Thus V will be 
cyclic provided each yt is an FA multiple of u. For this to happen it suf­
fices that if W — SpanF{wn, . . . , um-im-i}, then (a — \)W + (r — \)W 
contains a coset representative of each coset of Z in Y: because then for 
each i £ {1, 2, . . . , m ) 3 U ê Z such that 3>z + ̂  = Xtw, for some X* Ç 
7̂ 4 ; then since r — 1 and er — 1 are zero on Z, z\ — (r — l)Xi^, sf = 
(o- — l)X*w, 2 ^ i ̂  m, so every element of Z is an FA multiple of u, 
whence the differences yt = \tu — tt are also. Consider the transforma­
tion (a — 1) : W —» Y/Z by w >-» o-(w) — w + Z. With respect to the 
bases \uu), {yt + Z}, this map has matrix *(a7;). Assuming (6.9) (i)-
(vi) are in effect, 

0 0 
0 am-i2 

t(('a 

E 

@"m—lm t 

where E = (ei;) is the square matrix of degree m — 2, 

eij = (~J)m~l~lam-lj+2' 

Thus 

E = diag(aOT_i,3, . . . , am_i,J. (/<,), 

where /^ = (-j)m~*"1. If we denote by <(a0)' the (w - 1) X (w - 1) 
matrix obtained from '(a*,) by deleting its first row, then 

m 

det '(a**)' = f i am-ik ' det (/^). 

Since (ftj) is Vandermonde, '(a*,) has rank m — 1 if and only if 
ttm_i2, . . . , am_im are all non-zero. Now notice that the image of W under 
a — 1 is contained in the m — 1 dimensional space spanned by y2 + 
Z, . . . , y m + Z and further, if 6 n ^ 0, r(wn) — Uu + Z is not in this 
space. This proves 

(6.10) V is a cyclic FA -module if conditions (6.9) (i)-(vi) hold and 
bn, am-n, . . . , am_im are all non-zero elements of F. 

As a consequence of assuming aw_i2, . . . , am-im are non-zero, <r(uu) 9e 

Un, 1 ^ i ̂  m — I, so no element of Cv(a) may have a non-zero term in 
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Un, Vi,j — in particular, CV(A) C F, whence CV(A) = CY(A) = Z, 
as hypothesized in (6.9). 

Since (6.9) and (6.10) may certainly be satisfied simultaneously, the 
lemma is proven. 

As before, we now use Lemma 3 to form the extension VA. The argu­
ments concerning the position of the kernels could be simplified were we 
to ignore the case n = 3 in which the p-group we construct has class p 
and may therefore be irregular. 

LEMMA 7. For each n Ç {3, 4, . . . , p], ^n ^ 0; moreover, given no (: 
JO, 1, . . . , p + 1 - n) 3 G G @n such that 

| [H\H 6 Jf?(G) and kerF* = H}\ = n0. 

Proof. Set m = £ + 1 — n and let F be a cyclic FA -module with gen­
erator u satisfying the conclusions of Lemma 6. Let Z = CV(A) and for 
1 ^ i ^ m, let 

z< = n [M i inz ; 

by (ii), (iii) and (iv) Z* is a one dimensional space with basis, say, zt. 
Define 

(7.1) f = CZi + 22 + 23 + . . . + Zw., 

J = si — z3 — 2̂ 4 — . . . — (n0 — 2)zm + ôz2, 

where 

= (0, if no > 0, / 0 , if n0 > 1, 
6 (1, if n0 = 0, \ l , if n0 ^ 1. 

Let G be the group provided by Lemma 3 (written multiplicatively) 
with the additional property (using Lemma 6(i)) 

(7.2) (s*-ny = jr2 , (^-10p = «r1. 
Now set ai = 5, af = s*"2/, 2 ^ i ^ p + 1 and put i/< = (au G' ) = 
{au F ) , so H G ^ ( G ) and H/ = [G, a J . 

We now compute F^T, 1 ^ i ^ p + 1: if i > m, we may pick a7-, ak 

with i, j , & distinct; then by Lemma l(ii) 

VHl(aj) = a / ( m o d i / / ) and 7*. (ak) = ak
p(modH/). 

But since a / , a / £ Z (one way to see this is by noting G/Z has class 
^ p — 1, whence is regular, and a / , ap+ip Ç Z) and by Lemma 6(v) 
Z ^ # / , we have G = (a7, a*) S ker F# t , as desired. Now for i ^ w 
observe that since m ^ p — 2, aPl ap+i $ i7f, so by Lemma l(ii) 

VHx(ap) = ap
p(modH/) and F^ t(ap+1) = ap+l

p(mod H/). 
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By definition of ap, ap+i 

(7.3) « i = cip+idp-1 (mod G')> 

aj = ap+iW-'imod G'), 2 £ j ^ p + 1. 

Computing VHi by using (7.3) and the fact that VHi is a homomor-
phism whose kernel contains G' gives: 

(7.4) VHM) ^ r ( m o d ^ / ) , 

VuAcij) = M (mod H/), 2£j £p + l. 

Recall that 

H/ r\ z = zx x . . . x z*_! x z i+1 x . . . x zWf 

so by (7.1) f p̂  l(mod # / ) unless i = 1 and w0 > 0, in which case 

VHi(a2) = £ ^ 1 (mod 137). 

Thus for 1 ^ i ^ m, VHi is not the trivial homomorphism. 
We demonstrate ker VHi — Hu 1 ^ i ^ no: for this it suffices to show 

VBi(at) = 1 (mod 137). 

If i = 1, (7.1) and (7.4) ensure this. If 2 ^ i ^ w0, 

^ • ( a , ) = (22*-%3*-2 . . . s^K*!* 1*,- 1 • • • ^0- (n°-2))(mod 137), 
= 1 (mod HI), 

as desired. 
Finally, it remains to see that for n0 < i S. m, ker VHi 7e Ht: if i = 1, 

we must have ?z0 = 0 whence 

VHi(ai) = f = *ic = 2a (mod 137) ; 

if i = 2, we must have n0 rg 1, whence 

TV2(a2) = £ == z2
8 = Z2(modff2'); 

if i è 3, since 2* appears to the zero power in £, 

W < * 0 ^ f « ^ z ^ - 2 ( m o d i J / ) . 

This completes the proof of the lemma. 

Before summarizing the field theoretic consequences of Lemmas 5 and 
7 we repeat a definition from [11]: if K is a number field, U a subgroup of 
order £ (p any prime) in the ideal class group of K, H the subgroup of 
Gal(K(1)/K) given by U under the Artin map <pK, and L the fixed field of 
H, say U (and H) are of type {A ) if every ideal in U becomes principal in 
L. In light of Lemma 2 this may be interpreted as follows: let G = 
GsA(Kp™/K) and let H0 = Gsl(Kp^/L); then H (or H0) is of type (A) 
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if and only if the kernel of the transfer G —> Ho/Ho' contains Ho. In this 
terminology Lemma 5 and Lemma 7 immediately yield 

THEOREM 4. If p is a prime ^ 5, then for each n £ {0, 1, . . . , p + 1} 
there is a p-group G with G/G' ~ Zp X Zp, G abelian such that if K is a 
number field with Ga\{Kp

{2)/K) ~ G, then K has p-capitulation number n; 
moreover, if n ^ 3, for any n0 (E {0, 1, . . . , p + 1 — n) such G exists 
with the additional property that if Gd\{Kp

{2)/K) ~ G, then of thep + 1 — n 
intermediate fields Lu K ^ Lt ^ Kp

il\ which do not have the principal 
p-ideal property, exactly no are of type (A). 

4. A conjecture and some implications. Let p be a prime ^ 5 , 
ne {0, 1, . . . ,p + l} , J f„ = {K\K is a number field with Gal (Kp™/K) 
6 ^ „ } . Although there are infinitely many fields with Gs\{Kp

{1)/K) of 
type (p, p) (see [5]), little is understood of the individual J^n , and, in 
particular, how n affects [Kp

i2) : K]. The insight accrued from the proofs 
in Section 3 and from an examination of the ^-groups of small order 
motivate us to conjecture 

(CI) forn 6 {0, 1, . . . , p + 1 ! and K G Jf„, 

[Kp™ :KP™]^ mm{Un + 1) (n + 2), | ( £ + 1 - n) (p + 4 - n)|. 

The advantage of having such a result in hand would be that the size of 
[Kp

{2) : KP
{1)] could be forced to be "large" if its ^-capitulation number 

were "close to (p + l ) / 2 " ; moreover, access to the ^-capitulation num­
ber of K can be achieved by a knowledge of the degree p extensions of K 
without going to the degree p2 extension Kp

{1). 
A similar statement to (CI) which, instead of \Gd\{Kp

{2) / Kp^
l))\ as­

serts a lower bound for the rank of Ga\{Kp
(2)/Kp

il)) could also be formu­
lated but the value is more uncertain; the conjectured value for [KP

i2) : 
Kp

{1)] may be too large. If some lower bound, dn, for this rank could be 
established, one could, for example, apply a Golod-Shafarevich type 
theorem to KP

{1) [2, Chapter IX, Theorem 3], to show if K Ç J^n and 
[K : 0 ] < {{dn — 2)/2p)2, then K has an infinite p class field tower 
(whose first stage has degree only p2). A similar idea has been success­
fully exploited in [9]. 

Finally, if one were able, by other techniques, to decide J^ n = 0, for 
some n (z {0, 1, . . . , £ + 1}, this would force the existence of a counter­
example to the conjecture that every p group is isomorphic to 

Gal(ZV->/L), 

for some m ^ 0 and some number field L. 
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