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Abstract. In the spin-orbit resonances, we assume that the orbit of the secondary asteroid
around the primary is invariant, which is a reasonable assumption at first glance. Owing to
the irregularity of asteroids’ geometry and their effect on the mutual orbit, this assumption
should be revised. Therefore, we focus on a binary asteroid with a spherical primary and a
secondary with an irregular shape. When the shape of a secondary asteroid is not a sphere, the
gravitational interaction is important, and we should consider the interaction of orbit and spin.
We generate fast Lyapunov indicator (FLI) maps for both spin-orbit resonance and spin-orbit
coupling problems and investigate the effect of orbit alternation on the structure of phase space.
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1. Introduction

A spin-orbit resonance is a situation where the rotation period of a secondary aster-
oid and its motion around a primary asteroid are commensurate. When we consider a
fixed orbit for the secondary and study its spin, we call the problem spin-orbit resonance
(SOR). While, when we investigate the simultaneous alternation of orbit and spin of the
secondary due to perturbations, we call it spin-orbit coupling (SOC). In the seminal work,
Goldreich and Peale (1966) have formulated SOR in fixed eccentric orbits for planets and
satellites. Wisdom et al. (1984) have studied chaotic motion in the spin-orbit problem
through resonance overlapping criterion. Celletti and Chierchia (2000) have considered a
nearly-integrable Hamiltonian model describing the conservative spin-orbit interaction.
Nadoushan and Assadian (2016) have studied the overlap of the first- and second-order
spin-orbit resonances for different values of system parameters. Misquero and Ortega
(2020) have analytically investigated a dissipative spin-orbit problem and studied cap-
turing into the synchronous resonance. In most previous works, it was assumed that the
mutual orbit is invariable. Some recent works have considered a variable mutual orbit.
Naidu and Margot (2015) have considered coupled spin and orbital motions of binary
asteroids and showed the existence of a chaotic motion. Hou and Xin (2017) have ana-
lytically studied spin-orbit problem with a variable orbit and showed that the resonance
center changes for some values of the system parameters. Wang and Hou (2020) have
examined the rotation of the secondary in a binary asteroid system by considering the
influence of the secondary’s rotation on the mutual orbit.

Nevertheless, some questions remain. Such as how different the two approaches are,
and if the SOR model can capture dynamics of the system or essentially the SOC model
should be considered. In this work, we present a comparative study between SOC and
SOR by surfing the phase space of both models, and try to answer these questions.
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Periapsis

Figure 1. Geometry of spin-orbit coupling.

2. Equations of motion

Here, we provide a Hamiltonian of the SOC for the planar case. All the usual assump-
tions apply here as well. We utilize the gravitational potential energy function up to the
fourth-order in terms of Stokes coefficients. We assume that an ellipsoidal asteroid of
mass ms is subjected to the gravitational attraction of a homogenous spherical asteroid
with mass mp, and the center of mass of the ellipsoid moves on a variable orbit, as we
show in Figure 1. In the SOC, unlike the SOR, the mutual orbit varies. Therefore, the
periapsis varies, and we need an appropriate reference, as depicted in Figure 1.

The gravitational potential energy for SOC model is as follows (Hou et al. (2017)):

V (r, ψ) = −Gmpms

{
1

r
+

1

r3

[
−a

2
sC20

2
+
a2sC22

4
cos (2ψ)

]
+

1

r5

[
3a4sC40

8
+
a4sC42

24
cos (2ψ) +

a4sC44

192
cos (4ψ)

]}
where G is the universal gravitational constant, Cij are Stokes coefficients calculated as
follows (Balmino, 1994):
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where as, bs and cs are the semi-axes of the secondary with as ≥ bs ≥ cs. Hence, the
mass normalized Hamiltonian of the SOC model, including orbital and rotational kinetic
energies, and the above gravitational potential energy,is given below:
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where I3 is the moment of inertia, m is

mpms

mp+ms
and is called reduced mass, μ=

G(mp +ms) and ϑ, measured from the reference, is the sum of true anomaly f and
argument of periapsis ω. The first two terms describe the Keplerian motion, and the
third term represents the free rotational motion. The last term is the asphericity pertur-
bation resulting in the orbital and rotational alteration of the secondary asteroid motion.
The Hamiltonian is a conserved quantity.

We define the unit of mass such that m= 1, and take as as the unit of length. We also
choose the unit of time such that μ= 1. Now, let us introduce the generalized coordinates
and momentums (r, pr, ϑ, pϑ, φ, pφ) where r , ϑ and φ are the generalized coordinates,
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as shown in Figure 1 and pr, pϑ and pφ are the conjugated generalized momentums.
Therefore, we can write

H =
1

2
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p2ϑ
2r2

+
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2Ī3
p2φ + V (r, φ− ϑ)

where Ī3 is the mass normalized moment of inertia. We use an F2-type generating function
F2(ϑ, φ, pψ, pϑ) = (φ− ϑ) pψ + φpϑ, for canonical transfer of the Hamiltonian (2) to
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Because the new generalized coordinate ϑ does not appear in the Hamiltonian, its con-
jugated generalized momentum pϑ is conserved. Finally, we can derive the equations of
motion from the above Hamiltonian using the canonical formulation:
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(6)

3. Cartography of Resonances

In this section, we compare the phase space of the SOC and the SOR through car-
tography of resonances. To this end, we utilize the Fast Lyapunov Indicator (FLI) maps
(Froeschlé et al. (1997)). For a regular motion, the value of FLI grows linearly, whereas,
for a chaotic motion, the value of FLI increases exponentially. Hence, by computing FLI,
we could distinguish between chaotic and regular motions. We report the FLI via a color
scale, such that the highest FLI values are shown in brown, and the lowest values are
shown in blue. We consider a set of 300x300 initial conditions placed on a regular grid
in the plane

(
φ̇
/
n, φ

)
, where normalized angular velocity ranges from 0 to 2.5, while the

angle φ ranges from 0 to π. To produce the FLI maps, we find that the proper integra-
tion time is 100 times the non-dimensional orbital period. We choose different values of
non-dimensional orbital semi-major axis, eccentricity, argument of latitude, mass ratio
of bodies, and non-dimensional semi-axes of the secondary to generate a cartographic
image of the phase space, and compare the resulting phase space for both models.

In the first case, we choose a= 5, e= 0, f + ω= 0, ms/mp = 0.75,
(
ās : b̄s : c̄s

)
=

(1 : 0.95 : 0.90), and numerically integrate the equations, including equations of spin-orbit
problems and their corresponding variational equations. As evident in Figure 2, for a cir-
cular orbit, the 1:1 resonance is the only resonance. The synchronous resonance plays
a significant role in the dynamics of both models. However, there are some differences
between the models. First, the maximum value of FLIs near separatrix of synchronous
resonance is 20 for the SOC and 7 for the SOR. That means, near separatrix, spin of
the secondary in the SOC model could be more chaotic than the SOR model. Second, an
invariant torus with high FLI values presents near 2:3 resonance in the SOC (Figure 2).

We consider an eccentric orbit with a= 10, e= 0.01, f + ω= π/4, ms/mp = 0.25,(
ās : b̄s : c̄s

)
= (1 : 0.90 : 0.45) as the second case. As can be seen from Figure 3, the values

of FLIs are in the same order. According to the value of the argument of latitude, we
expect that stable and unstable configurations of both systems are at φ= π/4, 5π/4
respectively, as demonstrated in Figure 3. In both models, the homoclinic intersection
of stable and unstable manifolds results in a chaotic layer around the synchronous reso-
nance, where the onset of chaos is. Nevertheless, in the SOR model, there is a chain of
three islands around the synchronous resonance. Also, the separatrix of 2:3 resonance is
visible in this model. It seems that in the SOR model, more initial grids have high FLIs
values. In the SOC model, there are no secondary islands and the chaotic layer around
the synchronous resonance is narrower than the other model. Instead of the 2:3 resonance
island, we see a chaotic layer.
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Figure 2. FLI maps for spin-orbit coupling (left) and spin-orbit resonance (right). The Initial
values are a= 5, e= 0, f + ω= 0, ms/mp = 0.75,

(
ās : b̄s : c̄s

)
= (1 : 0.95 : 0.90).

Figure 3. FLI maps for spin-orbit coupling (left) and spin-orbit resonance (right). The Initial
values are a= 10, e= 0.01, f + ω= π/4, ms/mp = 0.25,

(
ās : b̄s : c̄s

)
= (1 : 0.90 : 0.45).

We calculate the FLI map for a= 15, e= 0.05, f + ω= π/2, ms/mp = 0.10,(
ās : b̄s : c̄s

)
= (1 : 0.80 : 0.60). Figure 4 shows the resulting FLI maps. The eccentric orbit

of the secondary causes the appearance of other resonances, of which some are overlap-
ping. However, the synchronous resonance has sizeable resonant islands and still prevails
in the phase space. The overlapping of nearby resonances with the synchronous reso-
nance leads to a thick chaotic layer around it. The 3:1 secondary resonance exists in both
models, although its separatrix begins to be destroyed. In Figure 4, it is quite obvious
that in the SOR model compared with the SOC model, more initial grids have high FLIs
values. Three persistence islands in the thick chaotic layer in the SOC model versus four
islands in the SOR model is another difference. Also, in the left panel of Figure 4, the
7:4 resonance is evident.

If we consider a= 20, e= 0.15, f + ω= π, ms/mp = 0.05,
(
ās : b̄s : c̄s

)
= (1 : 0.70 : 0.35)

we can see the resulting maps are dramatically different, as indicated in Figure 5. While
the islands of 2:1 and 2:3 resonances are persevering for the SOC model, the rotation of
the secondary is chaotic for the normalized rotation rate of 2 in the SOR model.

Now we take a= 50, e= 0.25, f + ω= 5π/4, ms/mp = 0.01,
(
ās : b̄s : c̄s

)
=

(1 : 0.50 : 0.50) and generate FLI maps (see Figure 6). In this case, although the
phase space portraits are dissimilar, we face widespread chaos in both models. We can
see a considerable regular region for the rotation of the secondary with a low normalized

https://doi.org/10.1017/S1743921321001344 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921321001344


162 M. J. Nadoushan

Figure 4. FLI maps for spin-orbit coupling (left) and spin-orbit resonance (right). The Initial
values are a= 15, e= 0.05, f + ω= π/2, ms/mp = 0.10,

(
ās : b̄s : c̄s

)
= (1 : 0.80 : 0.60).

Figure 5. FLI maps for spin-orbit coupling (left) and spin-orbit resonance (right). The Initial
values are a= 20, e= 0.15, f + ω= π, ms/mp = 0.05,

(
ās : b̄s : c̄s

)
= (1 : 0.70 : 0.35).

Figure 6. FLI maps for spin-orbit coupling (left) and spin-orbit resonance (right). The Initial
values are a= 50, e= 0.25, f + ω= 5π/4, ms/mp = 0.01,

(
ās : b̄s : c̄s

)
= (1 : 0.50 : 0.50).

rotation rate in the SOC model. Comparingly, a tiny island, in the vicinity of 2:3
resonance, surrounded by the chaotic sea, is noticeable in the SOR model.

Since it may be inferred that the large chaotic region in Figure 6 is because of the high
asphericity of the secondary, we consider the previous case with a different semi-axis, i.e.,(
ās : b̄s : c̄s

)
= (1 : 0.90 : 0.90). It is evident that the phase space is occupied with a large
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Figure 7. FLI maps for spin-orbit coupling (left) and spin-orbit resonance (right). The Initial
values are a= 50, e= 0.25, f + ω= 5π/4, ms/mp = 0.01,

(
ās : b̄s : c̄s

)
= (1 : 0.90 : 0.90).

Figure 8. FLI maps for spin-orbit coupling (left) and spin-orbit resonance (right). The Initial
values are a= 20, e= 0.15, f + ω= 0, ms/mp = 0.01,

(
ās : b̄s : c̄s

)
= (1 : 0.95 : 0.90).

chaotic region (Figure 7). However, there is a major difference between the two models.
While the 2:1 resonance island exists in the phase space of the SOC model, and rotation
of the secondary for a low normalized rotation rate is regular, the 1:2 resonances region is
preserved in the phase space of the SOR model. In addition, the high normalized rotation
rate of the secondary is regular in the SOR model.

There may be some systems where using both models have the same phase space
portrait. For instance, we consider a system with a= 20, e= 0.15, f + ω= 0, ms/mp =
0.01,

(
ās : b̄s : c̄s

)
= (1 : 0.95 : 0.90). The FLI maps are depicted in Figure 8. There is no

difference between them, though more initial grids still have high FLIs values in the SOR
model.

4. Conclusion

We explore the phase space of spin-orbit problem in both models of SOC and SOR.
The comparison of phase space structures shows noticeable differences in the models.
That is to say, the SOR model cannot correctly capture the dynamics of the system, and
the SOC model is more appropriate. However, this depends on the orbital and physical
properties of the system. Because there may be some systems that show same results in
both models, the question of which model is suitable should be examined in each case.
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