
7

Large Orders in Perturbation Theory

7.1 Generalities

We can use instanton methods to obtain the size of the terms in large orders of
perturbation theory. We will first consider particle quantum mechanics [21] and
then generalize to quantum field theory. The general idea concerns actions of the
form

S (φ) =

∫
ddx

(
1

2
∂μφ∂μφ+

g

(2N)!
φ2N

)
(7.1)

with N = d
d−2 . With

I(g) =
∫
Dφe−

S(φ)
� =

∑
k

Ikgk (7.2)

we have from Cauchy’s formula

Ik =
1

2πi

∮
dg

(
I(g)
gk+1

)
, (7.3)

where the integral is over a contour containing the origin. For large k we want
to perform this integral by Gaussian approximation about a critical point in φ

and g. The critical point must satisfy the equations of motion, h̄= 1,

0 =
∂

∂g

e−
S(φ,g)

�

gk
⇒ k

g
=− 1

(2N)!

∫
ddxφ2N (7.4)

and the usual equation for φ

∂μ∂
μφ=

g

(2N − 1)!
φ(2N−1). (7.5)

Changing the scale

φ→ (−g)−
1

2N−2 ψ (7.6)
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112 Large Orders in Perturbation Theory

gives
k

g
=− 1

(2N)!
(−g)−

N
N−1

∫
ddxψ2N , (7.7)

which implies

(2N)!
k∫

ddxψ2N
= (−g)−

N
N−1+1

= (−g)−
1

N−1 , (7.8)

which in turn means
− g ∼ 1

kN−1
. (7.9)

The other equation is simply

(−g)−
1

2N−2 ∂μ∂
μψ = g

ψ2N−1

(2N − 1)!
(−g)−

2N−1
2N−2 , (7.10)

which should have a solution with∫
ddxψ2N <∞. (7.11)

We find such a critical point in various examples, and then perform the integrals
by Gaussian approximation.

7.2 Particle Mechanics

In particle quantum mechanics we consider the Hamiltonian

H =
1

2

n∑
i=1

p2i +
1

2

n∑
i=1

x2i + g

(
n∑
i=1

x2i

)N

, (7.12)

which describes n anharmonic oscillators which interact with each other. Then

lim
β→∞

− 1

β
ln

(
tr
(
e−βH

)
tr(e−βH0)

)
= lim
β→∞

− 1

β
ln

(
e−βE + · · ·
e−βE0 + · · ·

)
= E −E0, (7.13)

where E and E0 are the ground-state energy of the system and the corresponding
free system. The ratio of the traces can be expressed as a path integral

tr
(
e−βH

)
tr(e−βH0)

=N
∫
periodic

D�x(τ)e−
∫ β
0 dτ

(
1
2
�̇x
2
+ 1

2
�x2+g|�x|N

)
. (7.14)

N is chosen so that the ratio is equal to 1 for g = 0. Periodic �x(τ) converts
the path integral into a trace. The term of order k is extracted via the Cauchy
theorem. This integral corresponds to the integral in Equation (7.2).

For particle quantum mechanics, however, we can actually perform the g

integration exactly,

1

2πi

∮
dg
e−g

∫ β
o dτ |�x|2N

gk+1
= (−1)k

(∫ β
0
dτ |�x|2N

)k
k!

(7.15)
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7.2 Particle Mechanics 113

thus we find

tr
(
e−βH

)
tr(e−βH0)

∣∣∣∣∣
k

=
(−1)k

k!
N

∫
periodic

Dx(τ)e−
(∫ β

0 dτ
(

1
2
�̇x
2
+ 1

2
�x2
)
−k ln

(∫ β
0 dτ |�x|2N

))
. (7.16)

To perform the path integral, we look for a critical point in �x, to the equation
of motion

�̈x= �x− 2Nk�x|�x|2(N−1)∫ β
0
dτ |�x|2N

. (7.17)

Changing the scale by �x→
√

2Nk∫ β
0 dτ |�x|2N �x yields the equation

�̈x= �x−�x|�x|2(N−1). (7.18)

The solution is easily found,

�x= �ux0 (τ − τ0) (7.19)

with |�u|2 = 1 and the function x0 given by,

(x0 (τ))
2(N−1)

=
N

cosh2 ((N − 1)τ)
, (7.20)

where x0(τ) satisfies
ẍ0 = x0−x0(x0)2(N−1). (7.21)

This is most easily verified by observing

d

dτ
x
2(N−1)
0 =

−2N(N − 1)sinh(N − 1)τ

cosh3(N − 1)τ
=−2x2(N−1)

0 (N − 1)tanh(N − 1)τ.

(7.22)
But

d

dτ
x
2(N−1)
0 = 2(N − 1)x

2(N−1)−1
0 ẋ0 (7.23)

and therefore
d

dτ
x0 =−x0 tanh(N − 1)τ. (7.24)

Finally

ẍ0 =−ẋ0 tanh(N − 1)τ +x0(N − 1)sech2(N − 1)τ

= x0 tanh
2(N − 1)τ +x0(N − 1)sech2(N − 1)τ

= x0
(
1− sech2(N − 1)τ − (N − 1)sech2(N − 1)τ

)
= x0

(
1− N

cosh2(N − 1)τ

)
= x0−x0(x0)2(N−1) (7.25)

as required. Periodicity is satisfied if we begin at τ = β
2 and end at τ = β

2 . As
β→∞ the action is calculable,

S [�ux0 (τ − τ0)] =Nk−Nk ln(2Nk)+ k(N − 1) ln(J), (7.26)
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114 Large Orders in Perturbation Theory

where

J =

∫ ∞

−∞
dτx2N0 (τ) =

N
N

N−1 2
N+1
N−1

N − 1

(
Γ
(

N
N−1

))2

Γ
(

2N
N−1

) . (7.27)

It remains to calculate the determinant corresponding to the Gaussian
fluctuations about this critical point. The operator coming from the second
variation of the action is

δ2

δxα (τ1)δxβ (τ2)
S (�x)

∣∣∣∣
�x=�ux0(τ)

=

((
− d2

dτ21
+1− N

cosh2 ((N − 1)τ1)

)
δαβ

− 2(N − 1)Nuαuβ

cosh2 ((N − 1)τ1)

)
δ (τ1− τ2)

+
2N

J
uαuβx

2N−1
0 (τ1)x

2N−1
0 (τ2)

=MLuαuβ +MT (δαβ −uαuβ) (7.28)

with

ML =

(
− d2

dτ21
+1− (2N − 1)N

cosh2 ((N − 1)τ1)

)
δ (τ1− τ2)+

2N

J
x2N−1
0 (τ1)x

2N−1
0 (τ2)

(7.29)
and

MT =

(
− d2

dτ21
+1− N

cosh2 ((N − 1)τ1)

)
δ (τ1− τ2) . (7.30)

For the transverse operator MT , the corresponding “quantum mechanical”
Hamiltonian is

H = p2− λ(λ+1)

cosh2(x)
, (7.31)

which is exactly solvable. The eigenfunctions are the Jacobi functions. The ratio
of the determinants is given by

det(H − z)
det(H0− z)

=
Γ
(
1+

√
−z

)
Γ
(√
−z

)
Γ
(
1+λ+

√
−z

)
Γ
(√
−z−λ

) , (7.32)

which is calculated using the Affleck Coleman method [31, 114, 36], where Γ is
the usual gamma function. For the case at hand, λ= 1

N−1 , z =− 1
(N−1)2

which
gives the transverse operator up to a factor of 1/(N −1)2. We must separate out
the zero modes. These arise because of the invariance of the original Hamiltonian
under global rotations of �x (equivalently of �u). Rotations about a direction
orthogonal to �u should all be in the transverse operator. Thus the zero mode for
MT is simply x0 (τ).

δrot. (�ux0 (τ)) = (δ�u)x0 (τ) , (7.33)

https://doi.org/10.1017/9781009291248.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.008


7.2 Particle Mechanics 115

where (δ�u) counts the number of independent rotations. To find det′(H−z)
det(H0−z) , we

must divide the ratio by the smallest eigenvalue for λ not equal to its critical
value, and then take the limit. Now

H − z =− d2

dx2
− λ(λ+1)

cosh2(x)
− z; (7.34)

however, if we scale x→ (N − 1)t, with λ= 1
N−1 , z =− 1

(N−1)2
, we get

H − z = 1

(N − 1)2

(
− d2

dt2
− N

cosh2((N − 1)t)
+1

)
. (7.35)

Then with z = − 1
(N−1)2

+ ε the zero mode becomes an eigenmode with
eigenvalue ε. Each eigenvalue of H − z is 1

(N−1)2
times the eigenvalue of

− d2

dt2
− N

cosh2((N−1)t)
+1. Thus we must divide by ε(N − 1)2 to get det′. Hence

lim
z→− 1

(N−1)2

2π(
− 1

(N−1)2
− z

)
(N − 1)2

det(H − z)
det(H0− z)

=
2π(N +1)

2(N − 1)

Γ2
(

N
N−1

)
Γ
(

2N
N−1

) (7.36)

The 2π comes from the definition of the measure in the Gaussian integral. There
are n−1-independent transverse directions, for each one we have the same det′,
to the power − 1

2 , giving the total power −n−1
2 . The Jacobian factor coming from

changing the integration variable from the zero mode “Gaussian fluctuation” to
the integration over the position gives a factor of

√∫∞
−∞ dτx20 (τ) = (k(N +1))

1
2 .

Thus the total contribution of the transverse modes is

(2π)
n
2

Γ
(
n
2

) (k(N +1))
n−1
2

⎡
⎣π(N +1)

(N − 1)

Γ2
(

N
N−1

)
Γ
(

2N
N−1

)
⎤
⎦
−n−1

2

. (7.37)

The first factor is the volume from integrating over the directions of �u. The
longitudinal operator can also be treated in a similar fashion. With

ML = M̄L+ |u〉〈u|

M̄L =− d2

dt2
+1− (2N − 1)N

cosh2((N − 1)t)
(7.38)

where |u〉〈u| projects on the mode x2N−1
0 (τ). There is one zero mode coming

from time translation invariance, dx0(τ)dτ . It is orthogonal to x2N−1
0 (τ)

∫ ∞

−∞
dτx2N−1

0 (τ)
dx0 (τ)

dτ
=

∫ ∞

−∞
dτ

d

dτ

x2N0 (τ)

2N
=
x2N0 (τ)

2N

∣∣∣∣∞
−∞

= 0 (7.39)

https://doi.org/10.1017/9781009291248.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.008


116 Large Orders in Perturbation Theory

Then with |v〉 denoting eigenstates orthogonal to |u〉

det
(
M̄L+ |u〉〈u|

)
= det

(
M̄L

)
det

(
1+ M̄−1

L |u〉〈u|
)

= det
(
M̄L

)
det

(
1+

(
|u〉〈u|+

∑
v

|v〉〈v|
)
M̄−1
L |u〉〈u|

)

= det
(
M̄L

)
det

(
1+ 〈u|M̄−1

L |u〉|u〉〈u|+
∑
v

〈v|M̄−1
L |u〉|v〉〈u|

)
= det

(
M̄L

)(
1+ 〈u|M̄−1

L |u〉
)

(7.40)

where the final equality follows because the second determinant is of a matrix
that is upper triangular. From the equation of motion

M̄L

2(1−N)
x0 = x2N−1

0 . (7.41)

Thus

〈u|M̄−1
L |u〉 =

∫∞
−∞ dτx2N−1

0 M̄−1
L x2N−1

0∫∞
−∞ dτ

(
x2N−1
0

)2
=

1

2(1−N)

∫∞
−∞ dτx2N−1

0 x0∫∞
−∞ dτ

(
x2N−1
0

)2 . (7.42)

The integrals can be done exactly, giving

det(ML) =
−1

(N − 1)
det

(
M̄L

)
(7.43)

M̄L has a negative mode, which cancels the minus sign. This is not an instability,
M̄L is just an auxilliary operator. Now we have an operator of the same form as
the transverse part before

H − z =− d2

dx2
+
λ(λ+1)

cosh2(x)
− z (7.44)

with λ= N
N−1 , and z = −1

(N−1)2
. Then the det′ is,

lim
z→ −1

(N−1)2

det′ (H − z)
det(H0− z)

∣∣∣∣
λ= N

N−1

=−2π 1
2

Γ2
(

N
N−1

)
Γ
(

2N
N−1

) (7.45)

The Jacobian from the usual change of variables in the integration is(∫ ∞

−∞
dτ

(
dx0
dτ

)2
) 1

2

= (k(N − 1))
1
2 , (7.46)

which then gives the total contribution

β

⎛
⎝ 1

N − 1
2π

1

2

Γ2
(

N
N−1

)
Γ
(

2N
N−1

)
⎞
⎠

− 1
2

(k(N − 1))
1
2 , (7.47)
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7.3 Generalization to Field Theory 117

where the β comes from the integration over the position of the instanton.
Finally, putting all the pieces together, we get the correction to the kth order in
perturbation to the energy splitting

E −E0 = (−1)k+1gk
(
2

π

) 1
2 ((N − 1))

n+1
2 k

n−1
2

Γ
(
n
2

)
2k

⎛
⎝ Γ

(
2N
N−1

)
Γ2

(
N
N−1

)
⎞
⎠
k(N−1)+n

2

× ek(N−1) ln
(

k(N−1)
e

)
(1+ o(g)) . (7.48)

7.3 Generalization to Field Theory

This result can be generalized to the case of quantum field theory; we leave this
for the reader. We should make one point, though. Generally, we do not believe
that the functional integral is an analytic function in an annulus around the
point g = 0 in the g-plane. Indeed, for g negative the Hamiltonian is not self-
adjoint for sufficiently large N . We expect that in reality I(g) is defined in the
complex plane by analytic continuation, and this analytic function has a branch
cut along the negative real axis which terminates at g=0. We must use the once
subtracted dispersion relation

I(g) =− 1

2πi

∫ R

0

dλ
1

λ+ g
(I(−λ+ iε)−I(−λ− iε))+ 1

2πi

∫
|g′|=R

I(g)
(g′− g) ,

(7.49)
which corresponds to the contour in Figure 7.1. If the second integral vanishes
as R→∞ we get

I(g) =− 1

2πi

∫ ∞

0

dλ
1

λ+ g
(discontinuity (I(−λ))) . (7.50)

For
I(g) =

∑
k

Ikgk (7.51)

we have
Ik =−(−1)k 1

2πi

∫ ∞

0

dλ
1

λk+1
(discontinuity (I(−λ))) . (7.52)

The factor 1/λk+1 becomes more and more singular at the end point λ=0; thus,
if we know how the discontinuity of I(−λ) behaves for small λ, we can find the
behaviour of Ik for large k. For an expected asymptotic behaviour

discontinuity (I(−λ))∼ 2iBe−
Sc
λ λ−α

∑
l

alλ
l (7.53)

implies directly

Ik ∼−
1

π
(−1)kB

∑
l

alΓ(k+α− l)S−(k+α−l)
c . (7.54)
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–2 –1 1 2

-2

–1

1

2

Figure 7.1. Integration contour in the complex g plane for field theory

The discontinuity of discontinuity (I(−λ)) can actually be computed using the
semi-classical methods that we have been learning about. Collins and Soper [35]
show that it has an expansion of exactly the form given in Equation (7.53). Thus
the formal calculations that we have done, not worrying about the cut in the
complex g plane, produce the same results with much less difficulty.

7.4 Instantons and Quantum Spin Tunnelling

We continue this chapter with an application to quantum spin tunnelling. This
calculation starts out as an independent tunnelling calculation that, in principle,
has nothing to do with large orders in perturbation theory. However, it turns
out that the tunnelling calculations are all attainable through large orders in
perturbation theory. We will have to understand what spin-coherent states are
and the corresponding path integral.

7.5 Spin-Coherent States and the Path Integral for Spin Systems

For a spin system, instead of the orthogonal position |x〉 and momentum |p〉
basis we define a basis of spin-coherent states [106, 100, 75, 87]. Let |s,s〉 be
the highest weight vector in a particular representation of the rotation group.
This state is taken to be an eigenstate of the operators Ŝz and Ŝ, two mutually
commuting operators:

Ŝz |s,s〉= s |s,s〉 Ŝ2 |s,s〉= s(s+1) |s,s〉 . (7.55)
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ẑ

n̂

θ

Figure 7.2. The directions of the unit vectors ẑ and n̂ on a two-sphere

The spin operators Ŝi, i= x,y,z satisfy the Lie algebra of SU(2),

[Ŝi, Ŝj ] = iεijkŜk (7.56)

where εijk is the totally antisymmetric tensor symbol and summation over
repeated indices is implied in Equation (7.56).

The coherent state is defined as [100, 87, 75, 127, 49, 48]

|n̂〉= eiθm̂·Ŝ |s,s〉=
s∑

m=−s
Ms(n̂)ms |s,m〉 , (7.57)

where |n̂〉 is an element of the 2s+1-dimensional Hilbert (representation) space
for the spin states, n̂=(cosφsinθ,sinφsinθ,cosθ) is a unit vector, i.e. n̂2 =1 and
m̂= (n̂× ẑ)/|n̂× ẑ| is a unit vector orthogonal to n̂ and ẑ. ẑ is the quantization
axis pointing from the origin to the north pole of a unit sphere and n̂ · ẑ = cosθ

as shown in Figure 7.2. Rotating the unit vector n̂ counterclockwise about the m̂
direction by the angle θ brings it exactly to the unit vector ẑ. |n̂〉 corresponds to
a rotation of an eigenstate of Ŝz, i.e |s,s〉, to an eigenstate with a quantization
axis along n̂ on a two-dimensional sphere S2 = SU(2)/U(1). It turns out that
the matrices Ms(n̂) satisfy a non-trivial relation

Ms(n̂1)Ms(n̂2) =Ms(n̂3)e
iG(n̂1,n̂2,n̂3)Ŝz (7.58)

where G(n̂1, n̂2, n̂3) is the area of a spherical triangle with vertices n̂1, n̂2, n̂3. Note
that Equation (7.58) is not a group multiplication, thus the matrices Ms(n̂) do
not form a group representation and G(n̂1, n̂2, n̂3) is called a co-cycle, which
represents the obstruction that the matrices Ms(n̂) exhibit to forming a true
representation of the rotation group.

Unlike normal position and momentum eigenstates, the inner product of two
coherent states is not orthogonal:

〈n̂|n̂′〉= eisG(n̂,n̂
′,ẑ)[

1

2
(1+ n̂ · n̂′)]s (7.59)
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120 Large Orders in Perturbation Theory

It has the following property:

n̂ · Ŝ |n̂〉= s |n̂〉⇒ 〈n̂|Ŝ|n̂〉= sn̂ (7.60)

while the resolution of identity is given by

Î =
2s+1

4π

∫
d3n̂δ(n̂2− 1) |n̂〉〈n̂| , (7.61)

where Î is a (2s+1)× (2s+1) identity matrix, and the delta function ensures
that n̂2 = 1. Using the expression in Equations (7.59) and (7.61) we can express
the imaginary time transition amplitude between |n̂i〉 and |n̂f 〉 as a path integral,
which for the spin system is given by [48, 127]

〈n̂f |e−βĤ(Ŝ)|n̂i〉=
∫
Dn̂e−SE [n̂], (7.62)

where
SE [n̂] = isSWZ +

∫
dτU(n̂(τ)), U(n̂(τ)) = 〈n̂|Ĥ|n̂〉 (7.63)

and SWZ arises because of the additional phase eisG(n̂,n̂
′,ẑ) in Equation (7.59).

We have set �= 1 in the path integral.
The Wess–Zumino (WZ) action, SWZ in the coordinate independent formal-

ism, is given by1 [97, 122, 120, 49, 48]

SWZ =

∫
1
2S2

dτdξ n̂(τ,ξ) · [∂τ n̂(τ,ξ)×∂ξn̂(τ,ξ)], (7.64)

where n̂(τ) has been extended over a topological half-sphere 1
2S2 in the variables

τ,ξ. We call this the coordinate independent expression since no system of
coordinates is specified for the unit vector n̂. In the topological half-sphere we
define n̂ with the boundary conditions

n̂(τ,0) = n̂(τ), n̂(τ,1) = ẑ (7.65)

so that the original configuration lies at the equator and the point ξ = 1

is topologically compactified by the boundary condition. This can be easily
obtained by imagining that the original closed loop n̂(τ) at ξ=0 is simply pushed
up along the meridians to n̂(τ) = ẑ at ξ = 1. The WZ term originates from the
non-orthogonality of spin-coherent states in Equation (7.59). Geometrically, it
defines the area of the closed loop on the spin space, defined by the nominally
periodic, original configuration n̂(τ). It is crucial to note that there is an
ambiguity of modulo 4π, since different ways of pushing the original configuration
up to the north pole can give different values for the area enclosed by the closed
loop as we can imagine that the closed loop englobes the whole two sphere any
integer number of times, but this ambiguity has no physical significance since

1 An alternative way of deriving this equation can be found in [16].
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eiN4πs = 1 for integer and half-odd integer s. The action, Equation (7.63), is
valid for a semi-classical spin system whose phase space is S2. It is the starting
point for studying macroscopic quantum spin tunnelling between the minima of
the energy U(n̂).

7.6 Coordinate-Independent Formalism

In the coordinate independent formalism, the spin is represented by a unit vector
n̂(τ) but no parametrization of the unit vector is assumed. It is best to exemplify
the coordinate independent analysis through an explicit system.

We will study the simplest biaxial single-molecule magnet whose spin
Hamiltonian is given by

H =−KzŜ
2
z +KyŜ

2
y , Kz�Ky > 0. (7.66)

The above Hamiltonian possesses an easy-axis in the z-direction and a hard-axis
in the y-direction. When Ky = 0, the spin is localized along the z-axis, which
is usually parameterized by the variable θ = 0,π and possesses two degenerate
minima localized at the north and the south poles of the two-sphere of phase
space. Addition of small Ky �=0 introduces dynamics into the system and causes
tunnelling. The real tunnelling variable is expected to be θ in the easy-axis
direction.

The Hamiltonian defined above has been studied in the presence of a magnetic
field by many authors [28, 27, 53]. However, the quantum-phase interference for
this model has not been computed, due to the subtlety involved in computing the
action for the instanton. Since the relation Ŝ2 = Ŝ2

x+ Ŝ
2
y+ Ŝ

2
z = s(s+1) holds for

any spin system, it is evident that any biaxial single-molecule magnet is related
to any other either by rescaling the anisotropy constant or by rotation of axes.
For instance, the Hamiltonian studied by Enz and Schilling [43]:

H =−AŜ2
x+BŜ

2
z , (h= 0), (7.67)

possesses an easy x-axis and a hard z-axis. This model in the conven-
tional spherical parametrization in terms of the phase space variables, n̂ =

(sinθ cosφ,sinθ sinφ,cosθ) is exactly our Hamiltonian Equation (2.15) in the
unconventional spherical parametrization n̂ = (sinθ sinφ,cosθ,sinθ cosφ) with
Kz =A and Ky =B.

7.6.1 Coordinate-Dependent Analysis

To demonstrate the technique for investigating the quantum-phase interference
in the z-easy-axis model, we will first keep to the conventional, coordinate-
dependent spherical parametrization, n̂ = (sinθ cosφ,sinθ sinφ,cosθ). It was
shown [52] that perturbation theory in the Ky term for integer spin leads
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to an energy-splitting proportional to (Ky)
s while for half-odd integer spin,

the splitting vanishes in accordance with Kramers’ theorem. We will recover
this result using the spin-coherent state path integral, and we will explicitly
demonstrate in all detail that the result can be obtained without recourse to a
coordinate-dependent parametrization.

The transition amplitude in the spin-coherent state path integral, in the
coordinate-dependent formalism, is given by [75]

〈θf ,φf |e−βH |θi,φi〉=
∫
D [cosθ]D [φ]e−SE/� (7.68)

where the Euclidean action is

SE =

∫
dτ

[
isφ̇(1− cosθ)+E(θ,φ)

]
(7.69)

where the first term is the WZ term in the coordinate dependent formalism and
the classical anisotropy energy Equation (2.15) is

E(θ,φ) = (Kz +Ky sin
2φ)sin2 θ. (7.70)

We note that the WZ term, being first-order in time derivatives, remains
imaginary upon analytic continuation to Euclidean time. This has important
ramifications for the putative instanton solutions: they too must have non-trivial
imaginary parts. The classical degenerate ground states correspond to φ = 0,
θ=0,π, that is the spin is pointing in the north or south pole of the two-sphere.
The classical equations of motion obtained by varying the action with respect to
θ and φ, respectively, are

isφ̇sinθ =−∂E (θ,φ)

∂θ
(7.71)

isθ̇ sinθ =
∂E (θ,φ)

∂φ
. (7.72)

It is evident from these two equations, because of the explicit i, that one variable
has to be imaginary for the equations to be consistent. The only appropriate
choice is to take real θ and imaginary φ, since the real tunnelling coordinate
(z-easy-axis) is θ. This comes out naturally from the conservation of energy,
which follows by multiplying Equation (7.72) by φ̇ and Equation (7.71) by θ̇ and
subtracting the two:

dE (θ,φ)

dτ
= 0 i.e, E (θ,φ) = const.= 0, (7.73)

the normalization coming from the value at θ = 0. Thus,

E(θ,φ) = (Kz +Ky sin
2φ)sin2 θ = 0. (7.74)

Since sin2 θ �= 0, as it must vary from 0 to π, it follows that,

sinφ=±i
√
Kz

Ky
, (7.75)
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therefore φ is imaginary and constant. Let φ = φR + iφI , then sinφ =

sinφR coshφI + icosφR sinhφI . We must take φR = nπ so that sinφR = 0 as
the right-hand side of Equation (7.75) is imaginary. Hence

(−1)n sinhφI =±
√
Kz

Ky
, (7.76)

as cosφR = (−1)n. There are four solutions of this equation: n= 0, φ= iφI and
n=1, φ= π− iφI for the positive sign and n=0, φ=−iφI and n=1, φ= π+ iφI
for the negative sign, where φI is the same in both cases. Taking into account
that Kz�Ky > 0, we have φI = arcsinh

(√
Kz
Ky

)
≈ 1

2 ln
(

4Kz
Ky

)
.

The classical equation of motion (7.72) simplifies to

is
θ̇

sinθ
=Ky sin2φ= iKy sinh2φI (7.77)

The solution is easily found as

θ (τ) = 2arctan[exp(ω(τ − τ0))], (7.78)

where ω =
Ky

s sinh2φI . This corresponds to the tunnelling of the state |↑〉 from
θ (τ) = 0 at τ = −∞ to the state |↓〉, θ (τ) = π at τ =∞. The two solutions
φ= iφI and φ= π+ iφI in the upper-half plane of complex φ correspond to the
instanton, (θ̇ > 0) while the solutions φ=−iφI and φ= π− iφI in the lower-half
plane of complex φ correspond to the anti-instanton, (θ̇ < 0).

Since the energy, E(θ,φ), in the action Equation (7.69) is conserved and
therefore always remains zero along this trajectory, the action for this path is
determined only by the WZ term which is given by

SE = SWZ = is

∫ ∞

−∞
dτ φ̇(1− cosθ) = is

∫ φf

φi

dφ(1− cosθ). (7.79)

Naively, one can use the fact that φ is constant and hence φ̇ = 0, which seems
to give SWZ = 0; however, care must be taken when computing the action. A
non-zero Euclidean action is found by realizing, as in [99], that we must take into
account the fact that φ must be translated from φ = 0 to φ = nπ+ iφI before
the instanton can occur and then back to φ=0 after the instanton has occurred.
Since the action is linear in time derivative of φ, the actual path taken does
not matter, only the boundary values matter. In the present problem, we have
two solutions for φ, i.e. φ= iφI and φ= π+ iφI corresponding to two instanton
paths, call them I and II. The full action is then

SIE = is

∫ π+iφI

0

dφ(1− cosθ)|θ=0+ is

∫ 0

π+iφI

dφ(1− cosθ)|θ=π

=−2πis+2sφI (7.80)
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and

SIIE = is

∫ iφI

0

dφ(1− cosθ)|θ=0 (7.81)

+is

∫ 0

iφI

dφ(1− cosθ)|θ=π = 2sφI ,

where it is clear that the total derivative term dφ contributes nothing as the two
contributions cancel in the round trip, while the dφcosθ gives all the answer,
since cosθ=1 initially, before the instanton has occurred, while cosθ=−1 after.
The action for the corresponding anti-instantons is identical. The amplitude for
the transition from θ = 0 to θ = π, as usual, is calculated by summing over a
sequence of one instanton followed by an anti-instanton with an odd total number
of instantons and anti-instantons [31], but we must add the two exponentials of
the actions SIE and SIIE for both instanton and anti-instanton. We note

eS
I
E + eS

II
E = e−2sφI

(
1+ e2πis

)
= e−2sφI (1+cos2πs) , (7.82)

where the last factor vanishes for half-odd integer spin. Then we get that the
expression for the amplitude is given by

〈π|e−βĤ |0〉=N sinh
(
κβ(1+cos(2πs))e−2sφI

)
(7.83)

where κ is the properly normalized square root of the determinant of the operator
governing the second-order fluctuations without the zero mode, which we have
not computed, and N is the usual normalization factor. The energy splitting can
be read off from this expression

ΔE = κ(1+cos(2πs))e−2sφI . (7.84)

For half-odd integer spin the splitting vanishes, while for integer spin we have

ΔE = 4κ

(
Ky

4Kz

)s
(7.85)

which agrees with the result found by perturbation theory [52].

7.6.2 Coordinate-Independent Analysis

Now we wish to see that the spherical-polar coordinate-dependent parametriza-
tion of the unit vector n̂ is not at all necessary. Then the action for the
Hamiltonian in Equation (7.66) can be written as

SE =

∫
dτLE =

∫
dτ

[
−Kz(n̂ · ẑ)2+Ky(n̂ · ŷ)2

]
+is

∫
dτdξ [n̂ · (∂τ n̂×∂ξn̂)] . (7.86)
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The first term is the anisotropy energy while the second term is the WZ term
written in a coordinate-independent form. The WZ term is integrated over a two
manifold whose boundary is physical, Euclidean time τ . Thus the configuration
in τ is extended into a second dimension with coordinate ξ. The equations of
motion arise from variation with respect to n̂. However, n̂ is a unit vector, hence
its variation is not arbitrary, indeed, n̂ · δn̂= 0. Thus, to obtain the equations of
motion, we vary n̂ as if it is not constrained, but then we must project on to the
transverse part of the variation:

δn̂SE = 0 ⇒
∫
dτ(δn̂LE) · δn̂= 0 ⇒ n̂× (δn̂LE) = 0. (7.87)

Taking the cross-product of the resulting equation one more time with n̂ does
no harm, and this process yields the equations of motion

is∂τ n̂− 2Kz(n̂ · ẑ)(n̂× ẑ)+2Ky(n̂ · ŷ)(n̂× ŷ) = 0. (7.88)

Taking the cross-product of this equation with ∂τ n̂, the first term vanishes as
the vectors are parallel, yielding

− 2Kz(n̂ · ẑ)∂τ n̂× (n̂× ẑ)+2Ky(n̂ · ŷ)∂τ n̂× (n̂× ŷ) = 0. (7.89)

Simplifying the triple vector product, using ∂τ n̂ · n̂=0, and then taking the scalar
product of the subsequent equation with n̂ gives

∂τ
(
−Kz(n̂ · ẑ)2+Ky(n̂ · ŷ)2

)
= 0, (7.90)

which is the conservation of energy. The initial value of n̂= ẑ says that the energy
must equal (

−Kz(n̂ · ẑ)2+Ky(n̂ · ŷ)2
)
=−Kz. (7.91)

From this equation and because n̂ is a unit vector we find

n̂ · ŷ =±
√
Kz

Ky
((n̂ · ẑ)2− 1) =±i

√
Kz

Ky
(1− (n̂ · ẑ)2)

n̂ · x̂=±
√
Ky+Kz

Ky
(1− (n̂ · ẑ)2), (7.92)

where the ± signs are not correlated. Then

n̂ · ŷ
n̂ · x̂ =±i

√
Kz

Ky+Kz
= tanφ; (7.93)

hence, we recover the result immediately that φ is a complex constant, just as
before. Taking the scalar product of Equation (7.88) with ẑ yields

is∂τ (n̂ · ẑ)+2Ky(n̂ · ŷ)(n̂ · x̂) = 0 (7.94)
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and replacing from Equation (7.92) gives

is∂τ (n̂ · ẑ)± 2i
√
Kz(Ky+Kz)(1− (n̂ · ẑ)2) = 0 (7.95)

Notice that the i’s neatly cancel leaving a trivial, real differential equation for
n̂ · ẑ, which we can write as

∂τ (n̂ · ẑ)
1− (n̂ · ẑ) +

∂τ (n̂ · ẑ)
1+ (n̂ · ẑ) =±4

s

√
Kz(Ky+Kz). (7.96)

This integrates as

ln
1+ (n̂ · ẑ)
1− (n̂ · ẑ) =±4

s

√
Kz(Ky+Kz)(τ − τ0). (7.97)

Exponentiating and solving for n̂ · ẑ gives

n̂ · ẑ =±tanh

(
2

s

√
Kz(Ky+Kz)(τ − τ0)

)
, (7.98)

which is exactly the same as the solution found for θ in Equation (7.78). The
instanton (upper sign) interpolates from nz = 1 to nz =−1 as τ →±∞.

Thus it is important to know that the equations of motion can be solved
without recourse to a specific choice for the coordinates. We will now evaluate
the tunnelling amplitude and the quantum interference directly in terms of the
coordinate-independent variables. Since the energy remains constant along the
instanton trajectory, the action is determined entirely from the WZ term

SWZ = is

∫
dτ

∫ 1

0

dξ [n̂ · (∂τ n̂×∂ξn̂)] . (7.99)

The integration over ξ can be done explicitly by writing the unit vector as

n̂(τ,ξ) = f(τ,ξ)nz(τ)ẑ+ g(τ,ξ)[nx(τ)x̂+ny(τ)ŷ] (7.100)

with the boundary conditions n̂(τ,ξ = 0) = n̂(τ) and n̂(τ,ξ = 1) = ẑ, where we
write nz for n̂(τ) · ẑ, etc. Using the expression in Equations (7.100) and the
condition that n̂ · n̂= 1, one obtains

g2 =
1− f2n2z
1−n2z

(7.101)

These functions obey the boundary conditions

f(τ,ξ = 0) = 1,f(τ,ξ = 1) =
1

nz(τ)
,

g(τ,ξ = 0) = 1,g(τ,ξ = 1) = 0 (7.102)

The integrand of Equation (7.99) can now be written in terms of the
functions defined in Equation (7.100). After a straightforward, but rather tedious,
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calculation we obtain

n̂ · (∂τ n̂×∂ξn̂) = nz(g
2f ′− fgg′)(nxṅy−nyṅx)

=
nzf

′

1−n2z
(nxṅy−nyṅx), (7.103)

where f ′≡∂ξf , ṅx,y≡∂τnx,y. The second equality follows from Equation (7.101).
Replacing Equation (7.103) into the WZ term, the ξ integration in
Equation (7.99) can be done explicitly which yields

SWZ = is

∫
dτ

(nxṅy−nyṅx)
1+nz

. (7.104)

This expression defines the WZ term in the coordinate-independent form as a
function of time alone. We can always make recourse to any specific coordinates,
taking the z-easy-axis system, with the spherical parameterization we recover the
usual form of the WZ term in condensed matter physics, i.e. Equation (7.79).
Multiplying the top and the bottom of the integrand in Equation (7.104) by
(1−nz), the resulting integrand simplifies to

SWZ = is

∫
d(ny/nx)

1+ (ny/nx)2
(1−nz)

= is

∫
d[arctan(ny/nx)](1−nz)

= is

∫
dφ(1−nz), (7.105)

which is rather analogous to the coordinate-dependent expression in
Equation (7.79).

It was already noted from Equation (7.93) that φ has to be imaginary.
To recover the quantum-phase interference in the coordinate-independent
formalism, φ must be translated from the initial point, say φ = 0, to the final
point, φ= nπ+ iφI , n= 0,1 before and after the instanton occurs [99]. The two
contributions to the action from these paths are given by

SIWZ = is

∫ π+iφI

0

dφ(1−nz)|nz=1+ is

∫ 0

π+iφI

dφ(1−nz)|nz=−1

=−2πis+2sφI (7.106)

and

SIIWZ = is

∫ iφI

0

dφ(1−nz)|nz=1 (7.107)

+is

∫ 0

iφI

dφ(1−nz)|nz=−1 = 2sφI

which are exactly the expressions as before. Then the previous evaluation
quantum interference goes through unchanged.
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7.7 Instantons in the Spin Exchange Model

We will study a second example where instantons give rise to quantum tunnelling
in spin systems and breaks the degeneracy, the case of two large, coupled,
quantum spins in the presence of a large, simple, easy-axis anisotropy, interacting
with each other through a standard spin–spin exchange coupling, corresponding
to the Hamiltonian

H =−K(S2
1z +S

2
2z)+λ

�S1 · �S2. (7.108)

We will take K > 0 and the case of equal spins �S1 = �S2 = �S. λ> 0 gives an anti-
ferromagnetic coupling while λ < 0 sign corresponds to ferromagnetic coupling.
The first term gives rise to the anisotropy, favouring an easy-axis, the z-axis,
the first term’s contribution to the energy is obviously minimized if the spin
is pointing along the z-direction and is as large as possible. The second term is
called the Heisenberg exchange energy interaction. The spins �Si could correspond
to quantum spins of macroscopic multi-atomic molecules [113, 116, 90], or the
quantum spins of macroscopic ferromagnetic grains [28, 27], or the average spin
of each of the two staggered Neél sub-lattices in a quantum anti-ferromagnet
[116, 91, 92].

A Néel lattice is simply a spin system where adjacent spins are maximal and
point in opposite directions. It is the epitome of anti-ferromagnetic order. We
will be exclusively looking at one dimension, thus what are called spin chains.
As the spins on a lattice are distinguishable, one choice starting at a given spin
of up, down, up, down, · · · is a different configuration from down, up, down, up,
· · · , starting from the same spin. This twofold degeneracy is akin to the two-
fold degeneracy of a ferromagnetic system, where all spins could point up or all
spins could point down. The direction of the up and down is determined by the
anisotropy, which picks out a favoured direction for the spins. In this section, we
will only consider two spins, but in the next section we will generalize our results
to a spin chain.

The non-interacting system of our Hamiltonian is defined by λ= 0, here the
spin eigenstates of Siz, notationally |s,s1z〉 ⊗ |s,s2z〉 ≡ |s1z,s2z〉, are obviously
exact eigenstates. The ground state is fourfold degenerate, corresponding to the
states |s,s〉, |− s,−s〉, |s,−s〉 and |− s,s〉, which we will write as |↑,↑〉, |↓,↓〉, |↑,↓
〉, |↓,↑〉, each with energy E =−2Ks2. The first excited state, which is eightfold
degenerate, is split from the ground state by energy ΔE =K(2s− 1).

In the weak coupling limit, λ/K→ 0, an interesting question to ask is what is
the ground state and the first few excited states of the system for large spin �S.
For spin 1/2, the exact eigenstates are trivially found; for spin 1, the problem
is a 9× 9 matrix, which again can be diagonalized, but for the general case we
must diagonalize a (2s+1)2× (2s+1)2 matrix, although that is rather sparse.
For weak coupling the anisotropic potential continues to align or anti-align the
spins along the z-axis in the ground state.
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As the non-interacting ground state is fourfold degenerate, in first-order
degenerate perturbation theory, we should diagonalize the exchange interaction
in the degenerate subspace. However, it turns out to be already diagonal in that
subspace. The full Hamiltonian can be alternatively written as

H =−K(S2
1z +S

2
2z)+λ

(
S1zS2z +

1

2
(S+

1 S
−
2 +S−

1 S
+
2 )

)
, (7.109)

where S±
i = Six ± iSiy for i = 1,2. S±

i act as raising and lowering operators
for Siz, and hence they must annihilate the states |↑,↑〉, |↓,↓〉. Thus the two
states |↑,↑〉, |↓,↓〉 are actually exact eigenstates of the full Hamiltonian with
exact energy eigenvalue (−2K+λ)s2. These two states do not mix with the two
states |↑,↓〉, |↓,↑〉 as the eigenvalue of S1z+S2z, which is conserved, is +2s, −2s
for the two ferromagnetic states and 0 for the two anti-ferromagnetic states. The
perturbation, apart from the diagonal term λS1zS2z, acting on the two states |↑,↓
〉, |↓,↑〉 takes them out of the degenerate subspace, thus this part does not give any
correction to the energy. The action of the diagonal term on either of these states
is equal to−λs2. Thus the perturbation corresponds to the identity matrix within
the degenerate subspace of the two states |↑,↑〉, |↓,↓〉, with eigenvalue −λs2 for the
two anti-ferromagnetic states. This yields, in first-order degenerate perturbation
theory, the perturbed energy eigenvalue of (−2K − λ)s2 for the two states |↑
,↓〉, |↓,↑〉. Thus the following picture emerges of the first four levels in first-
order degenerate perturbation theory. For the λ < 0 (ferromagnetic coupling),
the states |↑,↑〉, |↓,↓〉 are the exact, degenerate ground states of the theory, with
energy eigenvalue (−2K+λ)s2 = (−2K−|λ|)s2. The first excited states are also
degenerate, but only within first-order degenerate perturbation theory. They are
given by |↑,↓〉, |↓,↑〉, with energy eigenvalue (−2K − λ)s2 = (−2K + |λ|)s2. For
the λ> 0 (anti-ferromagnetic coupling), the roles are exactly reversed. The states
|↑,↓〉, |↓,↑〉 give the degenerate ground state with energy (−2K−λ)s2 in first-order
degenerate perturbation, while the states |↑,↑〉, |↓,↓〉 give the exact, first (doubly
degenerate) excited level with energy (−2K + λ)s2. Thus the Hamiltonian in
first-order degenerate perturbation theory is simply diagonal

〈H〉=

⎛
⎜⎜⎜⎝

−2K+λ 0 0 0

0 −2K+λ 0 0

0 0 −2K−λ 0

0 0 0 −2K−λ

⎞
⎟⎟⎟⎠s2 (7.110)

in the ordered basis {|↑,↑〉, |↓,↓〉, |↑,↓〉, |↓,↑〉}. The two ferromagnetic states are
the exact degenerate ground states for λ < 0, while the two anti-ferromagnetic
states are the approximate ground states for λ > 0.

However, we do not expect this result to stand in higher orders. We will
show that, in fact, the states |±〉 = 1√

2
(|↑,↓〉 ± |↓↑〉) are the appropriate linear

combinations implied by higher orders in degenerate perturbation theory, for the
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ground state in the anti-ferromagnetic case, and they are the second and third
excited states in the ferromagnetic case. We will also show that the states |±〉
are no longer degenerate. The perturbing Hamiltonian links the state | ± s,∓s〉
only to the state | ± s∓ 1,∓s± 1〉. To reach the state | ∓ s,±s〉 from the state
| ± s,∓s〉 requires one to go to 2sth order in perturbation, and s is assumed to
be large. Indeed, we find our results via macroscopic quantum tunnelling using
the spin-coherent state path integral. Using the path integral to determine large
orders in perturbation theory has already been studied in field theory [35, 128].

Our two-spin system, in Minkowski time, is governed by an action S =
∫
dtL

where,

L=

∫
dxsn̂1 · (∂xn̂1×∂tn̂1)−V1(n̂1)

+

∫
dxsn̂2 · (∂xn̂2×∂tn̂2)−V2(n̂2)−λn̂1 · n̂2, (7.111)

where now n̂i= (sinθi cosφi,sinθi sinφi,cosθi) , i=1,2 are two different 3-vectors
of unit norm, representing semi-classically the quantum spin [28, 27] and s is the
value of each spin. We use the coordinate-dependent spherical-polar coordinate
to describe the spins and the Lagrangian takes the form

L=−sφ̇1(1− cosθ1)−V1(θ1,φ1)
−sφ̇2(1− cosθ2)−V2(θ2,φ2)
−λ(sinθ1 sinθ2 cos(φ1−φ2)+ cosθ1 cosθ2) . (7.112)

Our analysis is valid if we restrict our attention to any external potential with
easy-axis, azimuthal symmetry, with a reflection symmetry (along the azimuthal
axis), as in [68], Vi(θi,φi) ≡ V (θi) = V (π− θi), i = 1,2. The potential is further
assumed to have a minimum at the north pole and the south pole, at θi =0, and
π. We will treat the special simple case of the potential given by

V (n̂i)≡ V (θi,φi) =K sin2 θi. (7.113)

corresponding exactly to our Hamiltonian Equation (7.108). It was shown in
[68], for uncoupled spins, that quantum tunnelling between the spin up and
down states of each spin separately is actually absent because of conservation
of the z-component of each spin. With the exchange interaction, only the
total z-component is conserved, allowing transitions |↑,↓〉 ←→ |↓,↑〉. In general,
tunnelling exists if there is an equipotential path that links the beginning and end
points. We will see that such an equipotential path exists, but through complex
values of the phase space variables.

We must find the critical points of the Euclidean action with t→−iτ , which
gives

LE = isφ̇1(1− cosθ1)+V (θ1)+ isφ̇2(1− cosθ2)+V (θ2)

+λ(sinθ1 sinθ2 cos(φ1−φ2)+ cosθ1 cosθ2) . (7.114)
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The solutions must start at (θ1,φ1) = (0,0) and (θ2,φ2) = (π,0), say, and evolve
to (θ1,φ1) = (π,0) and (θ2,φ2) = (0,0). In Euclidean time, the WZ term has
become imaginary and the equations of motion in general only have solutions
for complexified field configurations. Varying with respect to φi gives equations
that correspond to the conservation of angular momentum:

is
d

dτ
(1− cosθ1)+λsinθ1 sinθ2 sin(φ1−φ2) = 0 (7.115)

is
d

dτ
(1− cosθ2)−λsinθ1 sinθ2 sin(φ1−φ2) = 0 (7.116)

Varying with respect to θi gives the equations:

isφ̇1 sinθ1+2K sinθ1 cosθ1+λ(cosθ1 sinθ2 cos(φ1−φ2)− sinθ1 cosθ2) = 0

(7.117)

isφ̇2 sinθ2+2K sinθ2 cosθ2+λ(cosθ2 sinθ1 cos(φ1−φ2)− sinθ2 cosθ1) = 0.

(7.118)

Adding Equations (7.115) and (7.116) we simply get

d

dτ
(cosθ1+cosθ2) = 0. (7.119)

Hence cosθ1+cosθ2 = l= 0, where the constant l is chosen to be zero using the
initial condition θ1 =0,θ2 = π and therefore we can take θ2 = π−θ1. We can now
eliminate θ2 from the equations of motion, and writing θ = θ1, φ= φ1−φ2 and
Φ= φ1+φ2 we get the effective Lagrangian:

L= isΦ̇− isφ̇cosθ+U(θ,φ), (7.120)

where U (θ,φ) = 2K sin2 θ+ λ
(
sin2 θ cosφ− cos2 θ

)
+ λ is the effective potential

energy. We have added a constant λ so that the potential is normalized to zero
at θ = 0. The first term in the Lagrangian is a total derivative and drops out.
The equations of motion become:

isφ̇sinθ =−∂U (θ,φ)

∂θ
(7.121)

isθ̇ sinθ =
∂U (θ,φ)

∂φ
. (7.122)

These equations have no solutions on the space of real functions θ(τ),φ(τ) due
to the explicit i on the left-hand side. The analogue of conservation of energy
follows immediately from these equations, multiplying (7.121) by θ̇ and (7.122)
by φ̇ and subtracting, gives:

dU (θ,φ)

dτ
= 0, i.e. U (θ,φ) = const.= 0. (7.123)
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The constant has been set to 0 again using the initial condition θ = 0. Thus we
have, specializing to our case, Equation (7.113)

U (θ,φ) = (2K+λ(cosφ+1))sin2 θ = 0 (7.124)

implying (2K+λ(cosφ+1)) = 0, since sin2 θ �= 0, as is required for a non-trivial
solution. Thus

cosφ=−
(
2K

λ
+1

)
(7.125)

and we see that φ must be a constant. This is not valid in general, it is due
to the specific choice of the external potential Equation (7.113). Since K > |λ|
we get |cosφ| > 1, which of course has no solution for real φ. We take φ =

φR + iφI which gives cosφ = cosφR coshφI − isinφR sinhφI . As the right-hand
side of Equation (7.125) is real, we must have either φI = 0 or φR = nπ or both.
Clearly the φI = 0 cannot yield a solution for Equation (7.125), hence we must
take φR = nπ. As we must impose 2π periodicity on φR, only n = 0 or 1 exist.
Then we get

cosφ= (−1)n coshφI =

⎧⎨
⎩−

(
2K
λ +1

)
if λ > 0

+
(

2K
|λ| − 1

)
if λ < 0

. (7.126)

Thus n= 1 for λ > 0 and n= 0 for λ < 0 allowing for the unified expression

coshφI =
2K+λ

|λ| . (7.127)

Equation (7.122) simplifies to

is
θ̇

sinθ
=−λsinφ=−iλ(−1)n sinhφI = i|λ|sinhφI (7.128)

as λ(−1)n=−|λ|. Equation (7.127) has two solutions: positive φI corresponds to
the instanton, (θ̇ > 0), and negative φI corresponds to the anti-instanton, (θ̇ < 0).
The equation is trivially integrated with solution

θ (τ) = 2arctan
(
eω(τ−τ0)

)
, (7.129)

where ω= (|λ|/s)sinhφI and at τ = τ0 we have θ(τ) = π/2, which has exactly the
same form as the solution in the previous section, Equation (7.78). Thus θ(τ)
interpolates from 0 to π as τ interpolates from −∞ to ∞ for an instanton and
from π to 0 for an anti-instanton.

Using φ̇ = 0 and Equation (7.123) that the effective energy is zero, we see
that the action for this instanton trajectory, let us call it S0, simply vanishes
S0 =

∫∞
−∞ dτL= 0. So where does the amplitude come from? As in the previous

section, we have not taken into account the fact that φ must be translated from
φ= 0 (any initial point will do, as long as it is consistently used to compute the
full amplitude) to φ= nπ+ iφI before the instanton can occur and then back to
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φ=0 after the instanton has occurred. Normally such a translation has no effect;
either the contribution at the beginning cancels that at the end or, if the action
is second-order in time derivative, moving adiabatically gives no contribution.
But in the present case, for an instanton, before the instanton occurs, θ = 0,
while after it has occurred, θ = π, and vice versa for an anti-instanton. As φ̇ is
multiplied by cosθ in the action, the two contributions actually add, and there
is a net contribution to the action. Indeed, the full action for the combination of
the instanton and the changes in φ is given by

ΔS =

∫ nπ+iφI

0

−isdφcosθ|θ=0+S0+

∫ 0

nπ+iφI

−isdφcosθ|θ=π

=−is2nπ+2sφI (7.130)

we call it ΔS since it arises because of a change in φ, and where we have put
S0 = 0.

We will use this information to compute the following matrix element, using
the spin-coherent states |θ,φ〉 and the two lowest energy eigenstates |E0〉 and
|E1〉:

〈θf ,φf |e−βH |θi,φi〉= e−βE0〈θf ,φf |E0〉〈E0|θi,φi〉
+e−βE1〈θf ,φf |E1〉〈E1|θi,φi〉+ · · · (7.131)

On the other hand, the matrix element is given by the spin-coherent state path
integral

〈θf ,φf |e−βH |θi,φi〉=N
∫ θf ,φf

θi,φi

DθDφ e−SE . (7.132)

The integration is done in the saddle point approximation. With (θi,φi) = (0,0)

corresponding to the state |↑,↓〉 and (θf ,φf ) = (π,0) corresponding to the state
| ↓,↑〉, we get

〈↓,↑ |e−βH |↑,↓〉=N e−ΔSκβ(1+ · · ·), (7.133)

where κ is the ratio of the square root of the determinant of the operator
governing the second-order fluctuations about the instanton excluding the time
translation zero mode, and that of the free determinant. It can, in principle, be
calculated, but we will not do this here. The zero mode is taken into account by
integrating over the position of the occurrence of the instanton giving rise to the
factor of β. N is the overall normalization including the square root of the free
determinant which is given by Ne−E0β , where E0 is the unperturbed ground-
state energy and N is a constant that depends on the form of the perturbative
ground-state wave function. The result exponentiates, but since we must sum
over all sequences of one instanton followed by any number of anti-instanton–
instanton pairs, the total number of instantons and anti-instantons is odd, and
we get

e−ΔSκβ→ sinh
(
e−ΔSκβ

)
. (7.134)
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Given ΔS =−is2nπ+2sφI and solving Equation (7.127) for φI for K� |λ|

φI = arccosh

(
2K+λ

|λ|

)
≈ ln

(
4K

|λ|

)
(7.135)

gives:

e−ΔS =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
eis2π−2sφI if λ > 0 =

⎧⎪⎨
⎪⎩
(

|λ|
4K

)2s

if s ∈Z

−
(

|λ|
4K

)2s

if s ∈Z+1/2(
|λ|
4K

)2s

if λ < 0

. (7.136)

Then we get

〈↓,↑ |e−βH |↑,↓〉=±
(
1

2
e

( |λ|
4K

)2s
κβ − 1

2
e
−
( |λ|

4K

)2s
κβ

)
Ne−βE0 , (7.137)

where the − sign only applies for the case of anti-ferromagnetic coupling with
half odd integer spin, i.e. λ > 0,s = Z+ 1/2. An essentially identical analysis
yields, for the persistence amplitudes

〈↓,↑ |e−βH |↓,↑〉= 〈↑,↓ |e−βH |↑,↓〉

=

(
1

2
e

( |λ|
4K

)2s
κβ

+
1

2
e
−
( |λ|

4K

)2s
κβ

)
Ne−βE0 . (7.138)

These calculated matrix elements can now be compared with what is expected
for the exact theory:

〈↓,↑ |e−βH |↑,↓〉= e−β(E0− 1
2ΔE)〈↓,↑ |E0〉〈E0|↑,↓〉

+e−β(E0+
1
2ΔE)〈↓,↑ |E1〉〈E1|↑,↓〉

(7.139)

and

〈↓,↑ |e−βH |↓,↑〉= e−β(E0− 1
2ΔE)〈↓,↑ |E0〉〈E0|↓,↑〉

+e−β(E0+
1
2ΔE)〈↓,↑ |E1〉〈E1|↓,↑〉

(7.140)

The energy splitting can be read off from this result

ΔE =E1−E2 = 2

(
|λ|
4K

)2s

κ (7.141)

for all cases; however, the wave functions are different. The low-energy eigenstates
are given by

|E0〉=
1√
2
(|↓,↑〉+ |↑,↓〉) |E1〉=

1√
2
(|↓,↑〉− |↑,↓〉) (7.142)
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for the case λ > 0 for s ∈ Z, where they are the actual ground and first excited
state as well as for the case λ< 0 (although here these energy eigenstates should
be labelled |E3〉 and |E4〉 as the actual ground states are the ferromagnetic
states |↑,↑〉, |↓,↓〉). For the fermionic spin, anti-ferromagnetic case with λ> 0 and
s ∈Z+1/2 we get the reversal of the states

|E0〉=
1√
2
(|↓,↑〉− |↑,↓〉) |E1〉=

1√
2
(|↓,↑〉+ |↑,↓〉), (7.143)

but the energy splitting remains the same.
This understanding of the ground state in the anti-ferromagnetic case is the

main result. This difference in the ground states for integer and half-odd integer
spins is understood in terms of the Berry phase [88, 38] (computed by the change
in the WZ term) for the evolution corresponding to the instanton. It can also
be understood by looking at perturbation theory to order 2s; the details cannot
be given here. Briefly, the action of the perturbation Equation (7.109) will lower
one spin and raise the other. This can be done 2s times when we achieve a
complete flip of both spins. We find that the effective 2× 2 Hamiltonian for the
degenerate subspace is proportional to the identity plus off-diagonal terms that
are symmetric. For the integer spin case the off-diagonal terms are negative and
for the half-odd integer case they are positive. Diagonalizing this 2× 2 matrix
gives the solutions for the ground states, exactly as we have found.

7.8 The Haldane-like Spin Chain and Instantons

The study of quantum spin chains has been a very important physical problem in
condensed matter and mathematical physics over the past 100 years. They play
an exemplary role in the study of strongly correlated quantum systems. In both
experimental and theoretical physics, models of quantum spin chains are one
of the most fundamental systems endowed with interesting phenomenon. The
classic work on spin chains was that of Bethe [14] and Hulthén [63] for the one-
dimensional (D=1), isotropic Heisenberg spin- 12 anti-ferromagnetic chain. They
computed the exact anti-ferromagnetic ground state and its energy for an infinite
chain. Anderson [6] worked out the ground-state energies and the spectrum for
D = 1,2,3 by means of spin wave theory. The inclusion of an anisotropy term
introduces much interesting physics ranging from quantum computing [90] to
optical physics [110]. The resulting Hamiltonian is what we will study in this
section. It now possesses two coupling constants which can compete against each
other to lower the energy

Ĥ =−K
N∑
i=1

S2
i,z +λ

N∑
i=1

�Si · �Si+1 (7.144)
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and we consider the chain with periodic boundary conditions and consider λ> 0

so that we are in the anti-ferromagnetic regime, which is the more interesting
regime.

This model is the generalization to a spin chain of the two-spin model that we
studied in the previous section. Here each nearest-neighbour pair corresponds to
the two-spin system that we have just studied. Each spin has magnitude |�Si|= s

and we will consider the large s limit. The two limiting cases are weak anisotropy
λ�K and weak exchange coupling λ�K, where λ is the Heisenberg exchange
interaction coupling constant and K is the anisotropy coupling constant. The
limit of weak anisotropy was studied in a celebrated paper by Haldane [59] in a
closely related model, hence we call our model a Haldane-like spin chain. Haldane
demonstrated that in the large spin limit, s� 1, the system can be mapped to a
non-linear sigma model in field theory with distinguishing effects between integer
and half-odd integer spins. The full rotational symmetry is broken explicitly into
rotational symmetry about the z-axis with the total z-component Si,z =

∑
iSi,z

conserved. The Hamiltonian also possesses a discrete reflection symmetry about
the z-axis Si,z→−Si,z. We will also study the model in the large spin limit, but
we will take the limit of strong anisotropy, K� λ, the opposite limit to Haldane.

With λ=0, the ground state is 2N -fold degenerate, corresponding to each spin
in the state Sz =±s. Then s2z = s2 and the energy is −Ks22N , which is minimal.
For an even number of sites, the model is called bi-partite and the two fully anti-
aligned Neél states are good starting points for investigating the ground state.
For an odd number of sites, the Neél states are frustrated; they must contain
at least one defect, which are called domain wall solitons [115, 39, 93, 20, 95].
There is a high level of degeneracy as the soliton can be placed anywhere along
the cyclic, periodic chain and this degenerate system is the starting point for
investigating the ground state for the case of an odd number of sites. Frustrated
systems are of great importance in condensed matter physics as they lead to
exotic phases of matter such as spin liquid [9], spin glasses [15] and topological
orders [73]. Solitons will also occur on the periodic chain with even number of
sites, but they must occur in soliton–anti-soliton pairs.

Many physical magnetic systems such as CsNiF3 and Co++ have been
modelled with Hamiltonians of the form of Equation (7.144). Models of this
form have been of research interest over the years since the work of Haldane [59].
To mention but a few, quite recently, the ground-state phase diagrams of the
spin-2 XXZ anisotropic Heisenberg chain has been carefully investigated by the
infinite system density-matrix-renormalization group (iDMRG) algorithm [74]
and other numerical methods [58]. For the spin-1 XXZ anisotropic Heisenberg
chain, the numerical exact diagonalization has been extensively investigated
for finite size systems [25]. For an arbitrary spin, the phase diagrams and
correlation exponents of an XXZ anisotropic Heisenberg chain has also been
studied by representing the spins as a product of 2s spin 1

2 operators [108]. This
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research has been focussed on ground-state phase diagrams and the existence of
Haldane phase (conjecture). In this section, we will study the spin chain with
Hamiltonian given by the simple form given in Equation (7.144) with periodic
boundary condition �SN+1 = �S1, and we consider K� λ> 0, i.e. strong easy-axis
anisotropy and perturbative Heisenberg anti-ferromagnetic coupling. In the first
subsection, we will study macroscopic quantum tunnelling of the Hamiltonian-
defined Equation (7.144) for the case of an even spin chain. This analysis is
based on spin-coherent state path integral formalism, which is appropriate for
large spin systems. In the second subsection, which we include for completeness,
we will deal with the case of an odd spin chain. Here, spin-coherent state path
integral formalism fails to give a definitive result. Thus, our analysis is based on
perturbation theory.

7.8.1 Even Number of Sites and Spin-Coherent State Path Integral

Let us consider our model, Equation (7.144), for N even. The ground state of
the free theory (K term) is 2N -fold degenerate corresponding to each spin in the
highest (lowest) weight states m=±s. In the degenerate subspace, there are two
fully aligned states |↑,↑,↑,↑, · · · ,↑,↑〉 and |↓,↓,↓,↓, · · · ,↓,↓〉 and two fully anti-
aligned Neél states |p〉 = |↑,↓,↑,↓, · · · ,↑,↓〉 and |−p〉 = |↓,↑,↓,↑, · · · ,↓,↑〉, where
the arrow denotes the highest (lowest) weight states, i.e. m= s≡↑(m=−s≡↓)
for each individual spin and the remaining degenerate states are produced by
flipping individual spins relative to these extremal states. These two Neél states
|±p〉 have the lowest energy at first-order in perturbation theory; however, they
are not exact eigenstates of the quantum Hamiltonian in Equation (7.144),
thus we expect ground-state quantum tunnelling coherence between them. Such
tunnelling is usually mediated by an instanton trajectory, and the exponential of
the instanton action (multiplied by a prefactor) yields the energy splitting. We
will obtain this instanton trajectory via the spin-coherent state path integral
formalism [5, 76, 75, 99], which is the appropriate formalism for large spin
systems. In this formalism, the spin operators become unit vectors parameterized
by spherical coordinates. The corresponding Euclidean Lagrangian in this
formalism is given by

LE = is

N∑
i=1

φ̇i(1− cosθi)+K

N∑
i=1

sin2 θi

+λ

N∑
i=1

(sinθi sinθi+1 cos(φi−φi+1)+ cosθi cosθi+1) , (7.145)

where the periodicity condition i =N +1 = 1 is imposed. The first term is the
usual WZ [120] term which arises from the non-orthogonality of spin-coherent
states while the other two terms correspond to the anisotropy energy and the
Heisenberg exchange energy. Quantum amplitudes are obtained via the path
integral and the saddle point approximation. Solutions of the Euclidean classical
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equations of motion give information about quantum tunnelling amplitudes. The
Euclidean classical equation of motion for φi is

is
d(1− cosθi)

dτ
= sinθi−1 sinθi sin(φi−1−φi)

− sinθi sinθi+1 sin(φi−φi+1) (7.146)

while the equation of motion for θi is

0isφ̇i sinθi+2K sinθi cosθi

λ(cosθi(sinθi+1 cos(φi−φi+1))+ sinθi−1 cos(φi−1−φi))
= λ(sinθi(cosθi+1+cosθi−1)) = 0. (7.147)

Summing both sides of Equation (7.146) gives

is
∑
i

d(1− cosθi)

dτ
= 0⇒

∑
i

cosθi = l= 0, (7.148)

which corresponds to the conservation of the z-component of the total spin∑
iS

z
i , as the full Hamiltonian, Equation (7.144), is invariant under rotations

about the z-axis.
We will solve these equations using simplifying, physically motivated ansatze.

A particular solution of Equation (7.148) is θ2k−1 ≡ θ, and θ2k = π − θ,
k = 1,2 · · · ,N/2. Making the further simplifying ansatz φi − φi+1 = (−1)i+1φ

effectively reducing the system to a single spin problem, we get the effective
Lagrangian (adding an irrelevant constant)

LeffE = is

N∑
k=1

φ̇k− iscosθ
N/2∑
k=1

(φ̇2k−1− φ̇2k)

+

N∑
i=1

[
K+λ[1+ cos(φi−φi+1)]

]
sin2 θ (7.149)

= isN Φ̇− isN

2
φ̇cosθ+Ueff , (7.150)

where Ueff =N [K+λ(1+ cosφ)] sin2 θ. The spin chain problem has reduced to
essentially the same problem we studied in the previous section with just two
spins. The instanton that we will find must go from θ=0 to θ= π. Conservation
of energy implies ∂τUeff = 0, which then must vanish, Ueff = 0, since it is so at
θ = 0. This implies

cosφ=−
(
K

λ
+1

)
�−1 (7.151)

since sinθ(τ) �=0 along the whole trajectory. Thus φ is a complex constant which
can be written as φ = π + iφI identical to that of the two-spin case [99]. The
classical equation of motion for φ gives

isθ̇ =−2λsinθ sinφ= i2λsinθ sinhφI (7.152)
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which integrates as
θ (τ) = 2arctan

(
eω(τ−τ0)

)
, (7.153)

where ω = (2λ/s)sinhφI . The instanton is independent of the number of spins
and only depends on the initial and the final points. As found in [99], the
instanton contributes to the action only through the WZ term, as Ueff = 0

all along the trajectory. The action is given by [99]

Sc = S0−
isN

2

∫ π+iφI

0

dφcosθ|θ=0−
isN

2

∫ 0

π+iφI

dφcosθ|θ=π

= 0− isNπ+NsφI =−isNπ+NsφI . (7.154)

The two Neél states reorganize into the symmetric and anti-symmetric linear
superpositions, |+〉 and the |−〉 as in [99]. The energy splitting is then

ΔE = 2De−Sc = 2D
(
λ

2K

)Ns
cos(sNπ) (7.155)

where D is a determinantal pre-factor which contains no λ dependence. The
factor of λNs signifies that this energy splitting arises from 2s

(
N
2

)
order in

degenerate perturbation theory in the interaction term. The energy splitting,
Equation (7.155), is the general formula for any even spin chain N . For N = 2,
we recover the results obtained previously [29, 30, 71, 72, 99]. The factor sN can
be even or odd, depending on the value of the spin. For half-odd integer spin
(2l+1)/2 and for N = 2(2k+1), the argument of the cosine in Equation (7.155)
is sNπ = (2l+1)(2k+1)π and hence we find ΔE is negative, which means that
|−〉 is the ground state and |+〉 is the first excited state. In all other cases, for any
value of the spin s and N =2(2k) the argument of the cosine is sNπ= (2s)(2k)π,
which is an even integer multiple of π and hence we find ΔE is positive and then
|+〉 is the ground state, |−〉 is the first excited state.

7.8.2 Odd Spin Chain, Frustration and Solitons

We include the analysis of the spin chain with an odd number of sites for
the sake of completeness. This system can, in principle, be analysed using the
spin-coherent state path integral. However, the tunnelling transitions are quite
different, and no explicit, analytic expressions for the instantons that are required
are known. In this situation, we revert back to the calculation using perturbative
methods, which is actually quite interesting.

When we consider a periodic chain with an odd number of sites, a soliton-
like defect arises due to the spin frustration. The fully anti-aligned Neél-like
state cannot complete periodically, as it requires an even total number of spins.
Thus there has to be at least one pair of spins that is aligned. This can come
in the form up–up or down–down while all other pairs of neighbouring spins
are in the up–down or down–up combination. As the total z-component of the
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spin is conserved, these states lie in orthogonal super-selection sectors and never
transform into each other. The position of the soliton is arbitrary thus each
sector is N -fold degenerate. In the first case the total z-component of the spin is
s while in the second case it is −s. We will, without loss of generality, consider
the s sector. These degenerate states are denoted by |k〉, k = 1, · · · ,N , where

|k〉= |↑,↓,↑,↓,↑, · · · , ↑,↑,︸︷︷︸
k,k+1thplace

, · · · ,↑,↓〉 (7.156)

in obvious notation. These states are not exact eigenstates of the quantum spin
Hamiltonian in Equation (7.144), thus we also expect ground-state quantum
tunnelling amongst these states, just as in the case of a particle in a periodic
potential, which would lift the degeneracy and reorganize the soliton states into a
band. The explicit form of the required instanton, which from the spin-coherent
state path integral would give rise to the appropriate tunnelling, is not known.
However, from Equation (7.155) we can see for the case of even spins that energy
splitting actually arises at the 2s

(
N
2

)
order in (degenerate) perturbation theory.

The path integral and instanton method only gives the result which must also
be available at this high order in degenerate perturbation theory. This indicates
that the appropriate formalism for the odd quantum spin chain would simply be
(degenerate) perturbation theory at high order.

It is convenient to write the Hamiltonian as

Ĥ = Ĥ0+ V̂ (7.157)

where Ĥ0 represents the K (free) term and V̂ represents the λ (perturbative)
term. The states in Equation (7.156) all have the same energy Es=−KNs2 from
Ĥ0 and in first-order degenerate perturbation theory Es=−KNs2−λ(N−1)s2+

λs2=(−K−λ)Ns2+2λs2 and are split from the first excited level, which requires
the introduction of a soliton/anti-soliton pair, by an energy of 4λ. As we take
the limit K� λ, we assume that the action of lowering or raising the value of Ŝz
incurs an energy cost proportion to K which is much more energy than creating
a soliton/anti-soliton pair, which has an energy cost proportional to λ. Although
the soliton/anti-soliton states are the next states in the spectrum, they cannot be
attained perturbatively, except at order 2s in perturbation theory. In each order
of perturbation theory less than 2s, the degenerate multiplet of states mixes
with the states of much higher energy, but due to invariance under translation,
the corrections brought to each state are identical and their degeneracy cannot
be split. However, at order 2s, the degenerate multiplet is mapped to itself.
Although the state of an additional soliton/anti-soliton pair is also reached at
this order, since it is not degenerate in energy with the original multiplet of N
states, its correction will be perturbatively small.

Reaching the degenerate multiplet at order 2s causes the multiplet to split in
energy and the states to reorganize into a band. Indeed, V̂ 2s contains the term
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(S−
k+1S

+
k+2)

2s and (S+
k−1S

−
k )

2s. These operators represent quantum fluctuations
close to the position of the soliton, which when acting on the ket |k〉, flips the
anti-aligned pair of spins at positions k+1,k+2 and at k−1,k, respectively. It is
easy to see that flipping this pair of spins has the effect of translating the soliton
|k〉→ |k+2〉 and |k〉→ |k− 2〉, respectively. All other terms in V̂ 2s are quantum
fluctuations away from the position of the soliton. They map to states out of the
degenerate subspace, either inserting a soliton/anti-soliton pair or changing the
value of Sz to non-extremal values, and hence do not contribute to breaking
the degeneracy.

To compute the splitting and the corresponding eigenstates, we follow [30].
We have to diagonalize the N ×N matrix with components bμ,ν given by

bμ,ν = 〈μ|V̂A2s−1|ν〉 , μ,ν = 1,2, · · · ,N (7.158)

where A2s−1 =
(

Q
Es−Ĥ0

V̂
)2s−1

, and Q = 1 −
∑
|μ〉〈μ|. These matrices are a

generalization of the 2× 2 matrix in [30]. The calculation of the components is
straightforward, for example, looking at bμ,1 we find

bμ,1 =

(
λ

2

)2s

〈μ|S−
2 S

+
3

(
Q

Es− Ĥ0

S−
2 S

+
3

)2s−1

|1〉

+

(
λ

2

)2s

〈μ|S+
NS

−
1

(
Q

Es− Ĥ0

S+
NS

−
1

)2s−1

|1〉 . (7.159)

Applying the operators 2s times on the right-hand side we obtain

bμ,1 = C[〈μ|3〉+ 〈μ|N − 1〉], (7.160)

where C is given by

C =±
(
λ

2

)2s 2s∏
m=1

m(2s−m+1)

2s−1∏
m=1

1

Km(2s−m)

=±K
(
λ

2K

)2s [
(2s)!

(2s− 1)!

]2
=±4Ks2

(
λ

2K

)2s

. (7.161)

The first product in Equation (7.161) comes from the two square roots that
accompany the action of the raising and lowering operators, and the second
product is a consequence of the energy denominators. The plus or minus sign
arises because we have 2s − 1 products of negative energy denominators in
Equation (7.159), so if s is integer, 2s− 1 is odd and we get a minus sign, while
for half-odd integer s, 2s− 1 is even and we get a plus sign. Similarly, we can
show that bμ,ν = C[〈μ|ν+2〉+ 〈μ|ν− 2〉], defined periodically of course. Thus we
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find that the matrix, [bμ,ν ], that we must diagonalize is a circulant matrix [37]

[bμ,ν ] = C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 · · · 1 0

0 0 0 1 · · · 0 1

1 0 0 0 1 · · · 0
... 1 0

. . . · · · . . .

1 · · · . . . · · · 0 0 0

0 1 · · · 1 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.162)

In this matrix each row element is moved one step to the right, periodically,
relative to the preceding row. The eigenvalues and eigenvectors are well known.
The jth eigenvalue is given by

εj = b1,1+ b1,2ωj + b1,3ω
2
j + · · ·+ b1,NωN−1

j , (7.163)

where ωj = ei
2πj
N is the jth , N th root of unity with corresponding eigen-

vector | 2πjN 〉 = (1,ωj ,ω
2
j , · · · ,ωN−1

j )T , for j = 0,1,2, · · · ,N − 1. For our matrix,
Equation (7.162), the only non-zero coefficients are b1,3 and b1,N−1, thus the
one-soliton energy bands are

εj = C(ω2
j +ω

N−2
j ) = C(ω2

j +ω
−2
j )

= 2C cos
(
4πj

N

)
. (7.164)

Introducing the Brillouin zone momentum q = jπ/N , the energy bands
Equation (7.164) can be written as

εq = 2C cos(4q) (7.165)

which is gapless but is doubly degenerate as the cosine passes through two periods
in the Brillouin zone. The exact spectrum is symmetric about the value N/2.
With [x] the greatest integer not greater than x, the states for j = [N/2]−k and
j= [N/2]+k+1 for k=0,1,2, · · · , [N/2]−1 are degenerate as cos

(
4π([N/2]−k)

N

)
=

cos
(

4π([N/2]+k+1)
N

)
since [N/2] =N/2− 1/2. However, the state with k = [N/2]

is not paired, only j = 0 is allowed. When s is an integer, C is negative and the
unpaired state j =0 is the ground state which is then non-degenerate, but for s a
half-odd integer, C is positive, and the ground states are the degenerate pair with
j = [N/2], [N/2]+ 1 in accordance with Kramers’ theorem [78]. However, in the
thermodynamic limit, N →∞, the spectrum simply becomes doubly degenerate
for all values of the spin and gapless.
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