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Abstract. We characterize norm closed subspaces B of L∞(∂D) such that
C(∂D)B ⊂ B and maximal ones in the family of proper closed subspaces B of L∞(∂D)
such that A(D)B ⊂ B, where A(D) is the disk algebra. Analogously, we characterize
closed subspaces of H∞ that are simultaneously invariant under S and S∗, the forward
and the backward shift operators, and maximal invariant subspaces of H∞.
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1. Introduction and preliminaries. Let L∞ be the Banach space of essentially
bounded functions on the unit circle ∂D, and H∞ be the norm closed subspace of
functions that admit an analytic extension to D. Let z be the identity function on ∂D.
A norm closed subspace B of L∞ is called invariant if zB ⊂ B and doubly invariant if
zB ⊂ B and zB ⊂ B. Weak-star closed invariant subspaces of L∞ were characterized
long ago in Beurling’s theorem. See [1, pp. 131–133]. They have one of the following
forms.

(a) B = χEL∞, where E ⊂ ∂D is a measurable set and χE denotes its characteristic
function. This happens when B is doubly invariant.

(b) B = uH∞, where |u(z)| = 1 for almost every z ∈ ∂D.
It follows immediately that every weak-star closed invariant subspace of H∞ has
the form (b) with u an inner function. The structure of inner functions is known
completely. See [2]. By Beurling’s characterization, one can write down all weak-star
closed invariant subspaces of H∞ in an explicit way.

Despite these results, very little is known about closed invariant subspaces of L∞

and H∞ with respect to the norm topology. In this paper, we consider only the norm
topology. In the family of proper invariant subspaces of L∞ and H∞, a maximal one
is called a maximal invariant subspace of L∞ and H∞, respectively.

First, we give a complete characterization of doubly invariant subspaces of L∞.
From this, we are able to determine maximal invariant subspaces of L∞. Let Sf = zf, f ∈
H∞ and S∗ be the operator on H∞ defined by (S∗f )(z) = z(f (z) − f (0)). We characterize
the closed subspaces of H∞ that are simultaneously invariant under S and S∗. Also,
we describe the maximal invariant subspaces of H∞.

Let A be a uniform algebra. We denote by M(A) the maximal ideal space of A.
Now M(A) consists of the linear functionals of A that are multiplicative and nonzero.
Also M(A) is a compact Hausdorff space with the weak-star topology induced by
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the dual space of A. The Gelfand transform, defined by â(ϕ) = ϕ(a), for a ∈ A and
ϕ ∈ M(A), establishes an isometric isomorphism between A and a closed subalgebra
of C(M(A)), the space of continuous functions on M(A).

When A is also a C∗ algebra, the Gelfand transform is a ∗-isomorphism from A
onto C(M(A)). This allows us to identify L∞ with C(M(L∞)), from which the dual
space (L∞)∗ is identified with the space M(M(L∞)) of finite regular Borel measures
on M(L∞) with the total variation norm. Specifically, every element of (L∞)∗ has the
form

Lµ(f ) =
∫

M(L∞)
f̂ dµ (f ∈ L∞),

where µ ∈ M(M(L∞)). Also, for every such µ, the formula above defines a
linear functional of L∞ with ‖Lµ‖ = ‖µ‖. Put ker Lµ = {f ∈ L∞ : Lµ(f ) = 0}. When∫

M(L∞) f̂ dµ = 0 holds, we write as f̂ ⊥ µ. For a subspace B of L∞, we write B ⊥ µ if
f̂ ⊥ µ for every f ∈ B. We denote by supp µ the closed support set of µ.

The fiber over λ ∈ ∂D in M(L∞) is defined by Mλ = {ϕ ∈ M(L∞) : ẑ(ϕ) = λ}.
Since |ẑ| ≡ 1, M(L∞) = ⋃

λ∈∂D Mλ. Measures that are supported on a single fiber will
be of particular interest in our discussion. We define

F = {µ ∈ M(M(L∞)) : supp µ ⊂ Mλ for some λ ∈ ∂D}.

2. Doubly, and maximal invariant subspaces in L∞. Recall that a norm closed
subspace B ⊂ L∞ is called invariant if zB ⊂ B (i.e.: A(D)B ⊂ B), and is called doubly
invariant if zB ⊂ B and zB ⊂ B (i.e.: C(∂D)B ⊂ B). If f ∈ C(∂D) and λ ∈ ∂D then
f̂ |Mλ

= f (λ). Hence, if µ ∈ F is supported in Mλ for some λ ∈ ∂D, then f̂ = f (λ) on
supp µ, and consequently

f̂ ker Lµ ⊂ ker Lµ.

That is, ker Lµ is a doubly invariant subspace of L∞ for every µ ∈ F. It follows
immediately that if G ⊂ F, then

⋂ {ker Lµ : µ ∈ G} is doubly invariant. The following
theorem shows that the converse also holds.

THEOREM 1. Every doubly invariant subspace B of L∞ has the form

B =
⋂
µ∈G

ker Lµ, (1)

for some family G ⊂ F.

To prove our theorem, we need the following lemma due to Glicksberg; see [1, p. 61].

LEMMA 2. Let B be a doubly invariant subspace of L∞ and f ∈ L∞. Then f ∈ B if
and only if f̂ |Mλ

∈ B̂|Mλ
, for every λ ∈ ∂D. Also, if µ ⊥ B, then µ|Mλ

⊥ B|Mλ
.

Proof of Theorem 1. Put G = {µ ∈ F : µ ⊥ B}. For λ ∈ ∂D, let Gλ denote the set of
measures µ in G that are concentrated on Mλ. Then G = ⋃{Gλ : λ ∈ ∂D}. By Lemma 2
we also have µ|Mλ

⊥ B|Mλ
, for all µ ⊥ B. Then, by [1, p. 57], B̂|Mλ

is closed in C(Mλ).
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Hence we have

B =
⋂

λ∈∂D

{
f ∈ L∞ : f̂ |Mλ

∈ B̂|Mλ

}
(by Lemma 2)

=
⋂

λ∈∂D

{f ∈ L∞ : f̂ ⊥ µ for every µ ∈ Gλ} (because B̂|Mλ
is closed)

= {f ∈ L∞ : f̂ ⊥ µ for every µ ∈ G}
=

⋂
µ∈G

ker Lµ.

Let B be an invariant subspace of L∞. We can define maximal invariant subspaces of
B similarly.

COROLLARY 3. Let B be a doubly invariant subspace of L∞ and N an invariant
subspace of B.

(i) N is a maximal invariant subspace of B if and only if N = ker Lµ ∩ B, for some
measure µ ∈ F with µ 
⊥ B.

(ii) N is contained in a maximal invariant subspace of B if and only if
⋃

n≥0 znN is
not dense in B.

Proof. Suppose that N is maximal in B. Then N is a proper subspace of B. Since
zN ⊂ N, N ⊂ zN holds. Then either zN = N or zN = B holds. Suppose that zN = B.
Then for every f ∈ B, we have zf ∈ B and there is h ∈ N such that zh = zf . This implies
that N = B. This contradicts the properness of N in B. Thus, zN = N holds and N is
double invariant. By Theorem 1, there exists G ⊂ F such that N = ⋂ {ker Lµ : µ ∈ G}.
Since N 
= B, there must be some µ1 ∈ G such that µ1 
⊥ B. Hence

N ⊂ B ∩ ker Lµ1 ⊂ B,

where the last inclusion is proper. Since N is maximal in B, we have N = B ∩ ker Lµ1 .
Conversely, let µ ∈ F be such that µ 
⊥ B. Then B ∩ ker Lµ is doubly invariant and

dim B/(ker Lµ ∩ B) = 1, from which the maximality is clear. This proves (i).
Suppose that N is contained in a maximal invariant subspace M of B. In the first

paragraph of the proof, we showed that M is doubly invariant. Thus, the closure of⋃
n≥0 znN in L∞ is contained in M. Since M is proper in B,

⋃
n≥0 znN is not dense

in B. Conversely, suppose that
⋃

n≥0 znN is not dense in B. Let M be the closure of⋃
n≥0 znN in L∞. Then M is doubly invariant and M 
= B. By Theorem 1, there is

some measure µ ∈ F such that M ⊂ ker Lµ and µ 
⊥ B. Hence, by (i), ker Lµ ∩ B is a
maximal invariant subspace of B containing N.

3. Invariant subspaces in H∞. We recall that Sf = zf and S∗f = z(f − f (0)) for
f ∈ H∞. Let B ⊂ H∞ be a closed subspace. Then B is an invariant subspace if and
only if B is invariant under S. Put F0 = {µ ∈ F : µ ⊥ �}.

THEOREM 4. Let B ⊂ H∞ be a closed subspace such that B 
= {0}. Then B is invariant
under S and S∗ if and only if there is G ⊂ F0 such that

B =
⋂
µ∈G

ker Lµ ∩ H∞.
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Proof. For the sufficiency of the proof, observe that if µ ∈ F is supported on
Mλ(λ ∈ ∂D), then for every f ∈ H∞ we have

Sf − λf ∈ ker Lµ and S∗f − λ(f − f (0)) ∈ ker Lµ.

On the other hand, if µ ⊥ � and f ∈ ker Lµ, then

λf ∈ ker Lµ and λ(f − f (0)) ∈ ker Lµ.

Consequently, if µ ∈ F0, then we have Sf, S∗f ∈ ker Lµ for every f ∈ ker Lµ. That is,
ker Lµ ∩ H∞ is invariant under S and S∗ for every µ ∈ F0.

Now we prove the necessity. Suppose that B is invariant under S and S∗. Since B 
=
{0}, there exist f ∈ B and a nonnegative integer n such that f = zng, with g ∈ H∞ and
g(0) 
= 0. Then ((S∗)n − S(S∗)n+1)f = g(0) ∈ B, so that B contains a nonzero constant.
Consequently B contains the disk algebra A(D).

Let g ∈ H∞ and c ∈ C(∂D) be such that g + c is in the closure of B + C(∂D)
in H∞ + C(∂D). Then there are fn ∈ B and cn ∈ C(∂D) such that ‖fn + cn − g − c‖∞
→0. It is well known (see [2, p. 137]) that dist(cn − c, H∞) = dist(cn − c, A(D)). Hence
there exists an ∈ A(D) such that ‖an − (cn − c)‖∞→0. Thus,

‖fn + an − g‖∞ ≤ ‖fn + cn − g − c‖∞ + ‖an − cn + c‖∞→0.

Since fn + an ∈ B and B is closed, we have g = lim(fn + an) ∈ B. Hence, we have g +
c ∈ B + C(∂D). Thus B + C(∂D) is closed in H∞ + C(∂D). It follows that

B = (B + C(∂D)) ∩ H∞, (2)

because A(D) ⊂ B.
Since znB ⊂ (S∗)nB + C(∂D) ⊂ B + C(∂D) for every nonnegative integer n, we

have that B∞
def= the closure of

⋃
n≥0 znB in H∞ + C(∂D) is contained in B + C(∂D).

Therefore by (2)

B ⊂ B∞ ∩ H∞ ⊂ (B + C(∂D)) ∩ H∞ = B.

Thus B = B∞ ∩ H∞. Since B∞ is a doubly invariant subspace of L∞, by Theorem 1,
there is a family G ⊂ F such that B∞ = ⋂ {ker Lµ : µ ∈ G}. Since � ⊂ B ⊂ B∞, we
get G ⊂ F0.

COROLLARY 5. Let B ⊂ H∞ be a maximal invariant subspace. If there exists f ∈ B
that is invertible in H∞, then B = ker Lν ∩ H∞ for some ν ∈ F with ν 
⊥ H∞.

Proof. Let us assume first that f = 1. Then A(D) ⊂ B. Since zB ⊂ B, B ⊂ S∗B
holds. Thus, for g ∈ B we have that SS∗g = g − g(0) ∈ B ⊂ S∗B. It is easy to see that
S∗B is closed. Hence S∗B is an invariant subspace of H∞. Since B is maximal in H∞,
either S∗B = B or S∗B = H∞ holds. If S∗B = H∞, then for every h ∈ H∞ there is
g ∈ B such that z(g − g(0)) = h, and consequently zh ∈ B. Thus zH∞ ⊂ B and, since
zH∞ is a maximal invariant subspace of H∞ and B is a proper subspace of H∞, then
B = zH∞ holds. This contradicts the hypothesis that 1 ∈ B. Hence, S∗B = B holds and
B turns out to be S∗-invariant. Then, by Theorem 4, there is a collection G ⊂ F0 such
that B = ⋂ {ker Lµ : µ ∈ G} ∩ H∞. Since B is a proper subspace of H∞, there exists
some ν ∈ G such that ν 
⊥ H∞. Since ker Lν ∩ H∞ is a maximal invariant subspace of
H∞ that contains B, we get B = ker Lν ∩ H∞.
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For the case in which f ∈ B is a general invertible function in H∞, consider the
space f −1B. It is obvious that this space is also a maximal invariant subspace of H∞,
and 1 ∈ f −1B. By our previous case, there is some ν0 ∈ F0 such that ν0 
⊥ H∞ and
f −1B = ker Lν0 ∩ H∞. Hence B = ker Lν ∩ H∞, where ν = f̂ −1ν0 is not orthogonal to
f H∞ = H∞.

For w ∈ D, we write ϕω(z) = (w − z)(1 − wz) for the special automorphism of the
disk that interchanges w and 0.

LEMMA 6. Let B ⊂ H∞ be a maximal invariant subspace and b a finite Blaschke
product. If B 
= ϕwH∞, for all w ∈ D, then B ∩ bH∞ = bB.

Proof. First, we prove the following result.

Claim 1. If B 
= zH∞, then B ∩ znH∞ = znB for every positive integer n.

Since znB ⊂ B, B ⊂ znB ∩ H∞ holds. By the maximality of B in H∞, either

B = znB ∩ H∞ or H∞ = znB ∩ H∞. (3)

The first equality is our claim. Suppose that H∞ = znB ∩ H∞ holds for some n. We
may assume that n is the smallest positive integer satisfying H∞ = znB ∩ H∞. We have
znH∞ = B ∩ znH∞. Hence

znH∞ ⊂ B. (4)

Here we have that n 
= 1. For, suppose that zH∞ ⊂ B holds. Since zH∞ is a maximal
invariant subspace of H∞ and B ⊂ H∞ is proper, B = zH∞ holds. This contradicts
our assumption of Claim 1. Hence n ≥ 2. By (3), we have B = zB ∩ H∞. Hence by (4),
we get

znH∞ = znH∞ ∩ zH∞ ⊂ B ∩ zH∞ = zB.

Thus we obtain zn−1H∞ ⊂ B. Hence H∞ = zn−1B ∩ H∞ holds. This contradicts the
fact that n is the smallest positive integer such that H∞ = znB ∩ H∞.

Next, we prove the following claim.

Claim 2. B ∩ ϕn
wH∞ = ϕn

wB for every w ∈ D and every positive integer n.

Consider the closed subspace of H∞ given by B ◦ ϕw
def= {f ◦ ϕw : f ∈ B}. Since

(ϕw ◦ ϕw)(z) = z, it is clear that B ◦ ϕw is a maximal invariant subspace of H∞. By our
assumption, B 
= ϕwH∞ holds. Hence B ◦ ϕw 
= zH∞. Therefore, by Claim 1 we have
(B ◦ ϕw) ∩ znH∞ = zn(B ◦ ϕw) for every positive integer n. Composing this equality
with ϕw we obtain the desired result.

Now let b be a finite Blaschke product. Obviously bB ⊂ B ∩ bH∞. For the reverse
inclusion, let f ∈ H∞ be such that bf ∈ B. Writing b = ϕn1

w1
. . . ϕnk

wk
, where wj ∈ D and

nj ≥ 1 for 1 ≤ j ≤ k, we have that

ϕn1
w1

. . . ϕnk
wk

f ∈ B.

Then Claim 2 asserts that ϕn2
w2

. . . ϕnk
wk

f ∈ B. We can repeat this argument k − 1 more
times to obtain f ∈ B.
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THEOREM 7. Let B ⊂ H∞ be a maximal invariant subspace. Then either B = ϕwH∞,

for some w ∈ D, or B = ker Lν ∩ H∞, for some ν ∈ F with ν 
⊥ H∞.

Proof. Let B∞ be the closure of
⋃

n≥0 znB in H∞ + C(∂D). Assume first that
1 ∈ B∞. Then there are g ∈ B and a nonnegative integer n such that ‖zng − 1‖∞ <

1/2. Hence, ‖g − zn‖∞ < 1/2. Since |ẑn| ≡ 1 on M(H∞) \ D, we have |ĝ| ≥ 1/2 on
M(H∞) \ D. It is well known that a function in H∞ that never vanishes on M(H∞) \ D
can be factorised as g = bf, where f ∈ (H∞)−1 and b is a finite Blaschke product.

If there is some w ∈ D such that B = ϕwH∞, we are done. If not, Lemma 6 says
that f ∈ B. Hence, Corollary 5 says that B = ker Lµ ∩ H∞ for µ ∈ F with µ 
⊥ H∞.
Thus our theorem holds when 1 ∈ B∞.

Now suppose that 1 
∈ B∞. Since B∞ is a doubly invariant subspace of L∞,
Theorem 1 states that there exists a family G ⊂ F such that B∞ = ⋂ {ker Lµ : µ ∈ G}.
Since 1 
∈ B∞, there must be some ν ∈ G such that ν 
⊥ 1. Thus

B ⊂ B∞ ∩ H∞ ⊂ ker Lν ∩ H∞.

Since 1 
∈ ker Lν ∩ H∞, this space is a proper invariant subspace of H∞. Also B is
maximal in H∞, so that B = ker Lν ∩ H∞ holds, as claimed.

4. Open problems. The most important open problem is to obtain a complete
characterization of invariant subspaces of L∞ and H∞. If B ⊂ H∞ is invariant, the
weak-star closure of B has the form uH∞, where u is an inner function. Thus, uB is
an invariant subspace of H∞ that is weak-star dense in H∞. Therefore, the problem
for H∞ reduces to characterize invariant subspaces that are weak-star dense in H∞.
A similar analysis can be carried out for L∞, except that in this case we also have to
characterize invariant subspaces whose weak-star closure is χEL∞, where E ⊂ ∂D is
some measurable set.

We have other questions. Is every invariant subspace in H∞ contained in a
maximal one? What about L∞? Obviously, these questions are less ambitious than the
ones in the previous paragraphs.
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