2-Local Isometries on Spaces of Lipschitz Functions

A. Jiménez-Vargas and Moisés Villegas-Vallecillos

Abstract. Let (X, d) be a metric space, and let $\operatorname{Lip}(X)$ denote the Banach space of all scalar-valued bounded Lipschitz functions f on X endowed with one of the natural norms

$$
\|f\|=\max \left\{\|f\|_{\infty}, L(f)\right\} \quad \text { or } \quad\|f\|=\|f\|_{\infty}+L(f),
$$

where $L(f)$ is the Lipschitz constant of f. It is said that the isometry group of $\operatorname{Lip}(X)$ is canonical if every surjective linear isometry of $\operatorname{Lip}(X)$ is induced by a surjective isometry of X. In this paper we prove that if X is bounded separable and the isometry group of $\operatorname{Lip}(X)$ is canonical, then every 2-local isometry of $\operatorname{Lip}(X)$ is a surjective linear isometry. Furthermore, we give a complete description of all 2-local isometries of $\operatorname{Lip}(X)$ when X is bounded.

1 Introduction

In [14], Šemrl introduced the following concept. A map Φ of an algebra A into itself is a 2-local automorphism (respectively, 2-local derivation) if for every $a, b \in A$ there is an automorphism (respectively, derivation) $\Phi_{a, b}: A \rightarrow A$, depending on a and b, such that $\Phi_{a, b}(a)=\Phi(a)$ and $\Phi_{a, b}(b)=\Phi(b)$. Šemrl [14] proved that every 2-local automorphism of the algebra $B(H)$ of all bounded linear operators on an infinitedimensional separable Hilbert space H is an automorphism, and a similar assertion was stated concerning the 2-local derivations.

Motivated by these results, Molnár [10] extended the notion of 2-locality to isometries as follows. Given a Banach space X, it is said that a map $\Phi: X \rightarrow X$ is a 2local isometry if for every $x, y \in X$ there is a surjective linear isometry $\Phi_{x, y}: X \rightarrow X$, which depends on x and y, such that $\Phi_{x, y}(x)=\Phi(x)$ and $\Phi_{x, y}(y)=\Phi(y)$ (no linearity or surjectivity of Φ is assumed). Molnár [10] showed that every 2-local isometry of $B(H)$ is a surjective linear isometry. Numerous papers on 2-locality have since appeared [9, 11, 17], and more recently [[1, 5, -8, 18].

Furthermore, Molnár [10] introduced the study of 2-locality for function algebras. In this direction, Győry [2] showed that if X is a first countable σ-compact Hausdorff space and $\mathcal{C}_{0}(X)$ is the Banach space of all scalar-valued continuous functions on X vanishing at infinite endowed with the uniform norm, then every 2-local isometry of $\mathfrak{C}_{0}(X)$ is a surjective linear isometry. Recently, Hatori et al. [3] considered 2-local isometries on uniform algebras including certain algebras of holomorphic functions

[^0]of one and two complex variables. In this paper, we shall study 2-local isometries on spaces of Lipschitz functions.

Let X be a metric space, and let $\operatorname{Lip}(X)$ be the Banach space of all scalar-valued bounded Lipschitz functions on X, equipped either with the maximum norm $\|f\|=$ $\max \left\{\|f\|_{\infty}, L(f)\right\}$ or with the sum norm $\|f\|=\|f\|_{\infty}+L(f)$, where

$$
\|f\|_{\infty}=\sup \{|f(x)|: x \in X\}
$$

is the uniform norm of f, and

$$
L(f)=\sup \left\{\frac{|f(x)-f(y)|}{d(x, y)}: x, y \in X, x \neq y\right\}
$$

is the Lipschitz constant of f.
The surjective linear isometries of $\operatorname{Lip}(X)$ have been the subject of considerable study [4, 13, 15, 16]. It is easy to see that if τ is a scalar of modulus 1 and φ is a surjective isometry of X, then the weighted composition operator

$$
\Phi(f)=\tau(f \circ \varphi), \quad \forall f \in \operatorname{Lip}(X)
$$

is a surjective linear isometry of $\operatorname{Lip}(X)$. If every surjective linear isometry of $\operatorname{Lip}(X)$ is of the above-mentioned form, we shall say, for brevity, that the isometry group of $\operatorname{Lip}(X)$ is canonical. In general, the isometry group of $\operatorname{Lip}(X)$ is not canonical (see an example in [16]). However, Rao and Roy [12] proved that the isometry group of $\operatorname{Lip}[0,1]$ endowed with the sum norm is canonical. On the other hand, with the maximum norm on $\operatorname{Lip}(X)$, the same conclusion was obtained, among others, by Roy [13] when X is compact and connected with diameter at most 1 ; and, independently, by Vasavada [15] when X is compact and satisfies certain separation conditions.

We now describe the matter of this paper. In Section 2 under the condition that X is a bounded metric space and the isometry group of $\operatorname{Lip}(X)$ is canonical, we shall prove that every 2-local isometry $\Phi: \operatorname{Lip}(X) \rightarrow \operatorname{Lip}(X)$ is essentially a weighted composition operator of the form

$$
\left.\Phi(f)\right|_{X_{0}}=\tau(f \circ \varphi), \quad \forall f \in \operatorname{Lip}(X)
$$

where X_{0} is a subset of X, τ is a unimodular scalar and $\varphi: X_{0} \rightarrow X$ is a Lipschitz bijection.

As we have seen above, the main problem concerning 2-local isometries on Banach spaces is to answer the question whether the 2-local isometries are surjective linear isometries. In Section 3, we shall give a positive answer for 2-local isometries of $\operatorname{Lip}(X)$. Namely, when X is, in addition, separable, we shall show that $X_{0}=X$ and φ is a Lipschitz homeomorphism, and therefore Φ is a surjective linear isometry of $\operatorname{Lip}(X)$.

2 Representation of 2-Local Isometries

Let (X, d) be a metric space. Throughout this paper we shall frequently use the following functions. For $x \in X$ and $\delta>0$, define $h_{x, \delta}: X \rightarrow[0,1]$ by

$$
h_{x, \delta}(z)=\max \left\{0,1-\frac{d(z, x)}{\delta}\right\} .
$$

Clearly, $h_{x, \delta} \in \operatorname{Lip}(X)$ with $L\left(h_{x, \delta}\right) \leq 1 / \delta ; h_{x, \delta}(z)=0$ if $d(z, x) \geq \delta$, and $h_{x, \delta}(z)=1$ if and only if $z=x$.

As usual, \mathbb{K} will denote the field of real or complex numbers, and $S_{\mathbb{K}}$ the set of all unimodular scalars of \mathbb{K}. Given $\alpha \in \mathbb{K}, \widehat{\alpha}$ will stand for the function constantly equal α on X.

Theorem 2.1 Let X be a bounded metric space, and let Φ be a 2-local isometry of $\operatorname{Lip}(X)$ whose isometry group is canonical. Then there exists a subset X_{0} of X, a unimodular scalar τ and a bijective Lipschitz map $\varphi: X_{0} \rightarrow X$ such that

$$
\left.\Phi(f)\right|_{X_{0}}=\tau(f \circ \varphi), \quad \forall f \in \operatorname{Lip}(X)
$$

Proof Let $g \in \operatorname{Lip}(X)$. Since Φ is a 2-local isometry of $\operatorname{Lip}(X)$, there exists a surjective linear isometry $\Phi_{\hat{1}, g}$ of $\operatorname{Lip}(X)$ such that $\Phi(\hat{1})=\Phi_{\hat{1}, g}(\hat{1})$ and $\Phi(g)=\Phi_{\hat{1}, g}(g)$. Because the isometry group of $\operatorname{Lip}(X)$ is canonical, we have

$$
\Phi_{\hat{1}, g}(f)=\tau_{\hat{1}, g}\left(f \circ \varphi_{\hat{1}, g}\right), \quad \forall f \in \operatorname{Lip}(X)
$$

where $\tau_{\hat{1}, g} \in S_{\mathbb{K}}$ and $\varphi_{\hat{1}, g}$ is a surjective isometry of X. Obviously, $\Phi(\hat{1})=\Phi_{\hat{1}, g}(\hat{1})=$ $\hat{\tau}_{\hat{1}, g}$ and, since g is arbitrary, $\Phi(\hat{1})=\hat{\tau}_{\hat{1}, \hat{1}}$. Define $\Phi_{0}=\bar{\tau}_{\hat{1}, \hat{1}} \Phi$. Clearly,

$$
\Phi_{0}(g)=\bar{\tau}_{\hat{1}, \hat{1}} \tau_{\hat{1}, g}\left(g \circ \varphi_{\hat{1}, g}\right)=g \circ \varphi_{\hat{1}, g}
$$

since $\bar{\tau}_{\hat{1}, \hat{1}} \tau_{\hat{1}, g}=\bar{\tau}_{\hat{1}, \hat{1}} \tau_{\hat{1}, \hat{1}}=1$. By the surjectivity of $\varphi_{\hat{1}, g}$, it follows that

$$
\Phi_{0}(g)(X)=g(X)
$$

For $x \in X$ and $f \in \operatorname{Lip}(X)$, define

$$
E_{x, f}=\left\{y \in X: \Phi_{0}(f)(y)=f(x)\right\}
$$

Next we show that $E_{x, f}$ is nonempty and $\bigcap_{f \in \operatorname{Lip}(X)} E_{x, f}$ is a singleton. Notice that $\Phi_{0}\left(h_{x, 1}\right)(X)=h_{x, 1}(X) \subset[0,1]$. Furthermore,

$$
\begin{aligned}
\Phi_{0}\left(h_{x, 1}\right) & =\bar{\tau}_{\hat{1}, \hat{1}} \Phi\left(h_{x, 1}\right)=\bar{\tau}_{\hat{1}, \hat{1}} \tau_{h_{x, 1}, f}\left(h_{x, 1} \circ \varphi_{h_{x, 1}, f}\right), \\
\Phi_{0}(f) & =\bar{\tau}_{\hat{1}, \hat{1}} \Phi(f)=\bar{\tau}_{\hat{1}, \hat{1}} \tau_{h_{x, 1}, f}\left(f \circ \varphi_{h_{x, 1}, f}\right),
\end{aligned}
$$

where $\tau_{h_{x, 1}, f} \in S_{\mathbb{K}}$ and $\varphi_{h_{x_{x}, 1}, f}$ is a surjective isometry of X. Therefore

$$
\begin{aligned}
E_{x, h_{x, 1}} & =\left\{y \in X:\left|\Phi_{0}\left(h_{x, 1}\right)(y)\right|=1\right\}=\left\{y \in X: h_{x, 1}\left(\varphi_{h_{x, 1}, f}(y)\right)=1\right\} \\
& =\left\{y \in X: \varphi_{h_{x, 1}, f}(y)=x\right\} .
\end{aligned}
$$

This last set has a unique point b_{x}, since $\varphi_{h_{x, 1}, f}$ is bijective. Hence $E_{x, h_{x, 1}}=\left\{b_{x}\right\}$. It follows that

$$
\Phi_{0}(f)\left(b_{x}\right)=\bar{\tau}_{\hat{1}, \hat{1}} \tau_{h_{x, 1}, f} f\left(\varphi_{h_{x, 1}, f}\left(b_{x}\right)\right)=\bar{\tau}_{\hat{1}, \hat{1}} \tau_{h_{x, 1}, f} f(x)
$$

and since $\bar{\tau}_{\hat{1}, \hat{1}} \tau_{h_{x, 1}, f}=\Phi_{0}\left(h_{x, 1}\right)\left(b_{x}\right)=1$, we have $\Phi_{0}(f)\left(b_{x}\right)=f(x)$. This means that $b_{x} \in E_{x, f}$, and thus $E_{x, h_{x, 1}}=\left\{b_{x}\right\} \subset E_{x, f}$. Since f is arbitrary, we conclude that $\bigcap_{f \in \operatorname{Lip}(X)} E_{x, f}=\left\{b_{x}\right\}$.

Hence we can define a function $\psi: X \rightarrow X$ by

$$
\{\psi(x)\}=\bigcap_{f \in \operatorname{Lip}(X)} E_{x, f}
$$

Now we see that ψ is injective. Let $x, y \in X, x \neq y$. Since $\psi(x) \in E_{x, h_{x, 1}}$ and $\psi(y) \in$ $E_{y, h_{x, 1}}$, we have $\Phi_{0}\left(h_{x, 1}\right)(\psi(x))=h_{x, 1}(x)=1$ and $\Phi_{0}\left(h_{x, 1}\right)(\psi(y))=h_{x, 1}(y) \neq 1$, which implies $\psi(x) \neq \psi(y)$.

Put $X_{0}=\psi(X)$ and let φ be the bijection $\psi^{-1}: X_{0} \rightarrow X$. Let $y \in X_{0}$. Clearly, $y=\psi(\varphi(y)) \in \bigcap_{f \in \operatorname{Lip}(X)} E_{\varphi(y), f}$, and therefore, for every $f \in \operatorname{Lip}(X)$, we have $y \in E_{\varphi(y), f}$, that is, $f(\varphi(y))=\Phi_{0}(f)(y)=\bar{\tau}_{\hat{1}, \hat{1}} \Phi(f)(y)$, which yields $\Phi(f)(y)=$ $\tau_{\hat{\imath}, \hat{1}} f(\varphi(y))$.

Taking $\tau=\tau_{\hat{1}, \hat{1}}$, then $|\tau|=1$ and so we have shown that

$$
\Phi(f)(y)=\tau f(\varphi(y)), \quad \forall y \in X_{0}, \forall f \in \operatorname{Lip}(X)
$$

It remains to prove that φ is Lipschitz. For each $x \in X$, define

$$
f_{x}(z)=d(z, x), \quad \forall z \in X
$$

Clearly, $f_{x} \in \operatorname{Lip}(X)$ and $\left\|f_{x}\right\| \leq\left\|f_{x}\right\|_{\infty}+L\left(f_{x}\right) \leq \operatorname{diam}(X)+1$, where $\operatorname{diam}(X)$ denotes the diameter of X. Put $k=\operatorname{diam}(X)+1$. Then

$$
\left\|\Phi\left(f_{x}\right)\right\|=\left\|\Phi_{f_{x}, \hat{1}}\left(f_{x}\right)\right\|=\left\|f_{x}\right\| \leq k
$$

since $\Phi\left(f_{x}\right)=\Phi_{f_{x}, 1}\left(f_{x}\right)$ and $\Phi_{f_{x}, \hat{1}}$ is an isometry of $\operatorname{Lip}(X)$.
Let $x, y \in X_{0}$. Since $L\left(\Phi\left(f_{\varphi(y)}\right)\right) \leq\left\|\Phi\left(f_{\varphi(y)}\right)\right\|$, we have

$$
\left|\Phi\left(f_{\varphi(y)}\right)(x)-\Phi\left(f_{\varphi(y)}\right)(y)\right| \leq k d(x, y)
$$

Taking into account that

$$
\begin{aligned}
& \Phi\left(f_{\varphi(y)}\right)(x)=\tau f_{\varphi(y)}(\varphi(x))=\tau d(\varphi(x), \varphi(y)) \\
& \Phi\left(f_{\varphi(y)}\right)(y)=\tau f_{\varphi(y)}(\varphi(y))=\tau d(\varphi(y), \varphi(y))=0
\end{aligned}
$$

we conclude that $d(\varphi(x), \varphi(y)) \leq k d(x, y)$.

3 A Problem of Algebraic Reflexivity for 2-Local Isometries

In this section we shall prove our main result: every 2 -local isometry of $\operatorname{Lip}(X)$ is a surjective linear isometry, when X is a separable bounded metric space and the isometry group of $\operatorname{Lip}(X)$ is canonical. To prepare the proof of this fact, we begin with the following.

Lemma 3.1 Let X be a metric space, and let $R=\left\{r_{n}: n \in \mathbb{N}\right\}$ be a countable set of pairwise distinct points of X. Then there exists a Lipschitz function $f: X \rightarrow[0,1]$ with $L(f) \leq 1$ satisfying the following properties:
(a) $0<f\left(r_{j}\right)$ for all $j \in \mathbb{N}$ and $f\left(r_{i}\right) \neq f\left(r_{j}\right)$ if $i, j \in \mathbb{N}$ with $i \neq j$.
(b) For each $j \in \mathbb{N}$, there exists $\left.\left.t_{j} \in\right] 0,1\right]$ such that

$$
d\left(x, r_{j}\right)<t_{j} / 4 \quad \Rightarrow \quad f(x) \leq f\left(r_{j}\right)-d\left(x, r_{j}\right) / 2
$$

Hence f has a strict local maximum at r_{j}.
(c) $f\left(r_{1}\right)=1$ and $f(x)<1$ if $x \neq r_{1}$.

Proof We define two sequences $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ of positive scalars and a sequence $\left\{f_{n}\right\}$ of non-negative functions on X as follows:

$$
t_{1}=1, \quad s_{1}=1, \quad f_{1}=h_{r_{1}, 1},
$$

and for each positive integer n,

$$
\begin{aligned}
& t_{n+1}=\min \left(\left\{\frac{t_{n}}{3}\right\} \cup\left\{\frac{f_{n}\left(r_{j}\right)-f_{n}\left(r_{n+1}\right)}{4}: f_{n}\left(r_{n+1}\right)<f_{n}\left(r_{j}\right), j \in\{1, \ldots, n\}\right\}\right), \\
& s_{n+1}=t_{n+1}+f_{n}\left(r_{n+1}\right), \\
& f_{n+1}=\max \left\{f_{n}, s_{n+1} h_{\left.r_{n+1}, s_{n+1}\right\}}\right\} .
\end{aligned}
$$

A plain argument by induction allows us to see that, for each $n \in \mathbb{N}, f_{n} \in \operatorname{Lip}(X)$, $L\left(f_{n}\right) \leq 1, f_{n}\left(r_{1}\right)=1$ and $0 \leq f_{n}(x)<1$ if $x \neq r_{1}$.

Next we prove the following.
Claim For each $n \in \mathbb{N}$,
(i) s_{1}, \ldots, s_{n} are pairwise distinct;
(ii) If $s_{j}<s_{n}$ for some $j \in\{1, \ldots, n\}$, then $s_{n} h_{r_{n}, s_{n}}\left(r_{j}\right) \leq f_{j-1}\left(r_{j}\right)+\sum_{i=j+1}^{n} t_{i}$;
(iii) $f_{n}\left(r_{j}\right)=s_{j}$ for all $j \in\{1, \ldots, n\}$.

The proof is by induction on n. Assertions (i), (ii), and (iii) are trivial for $n=1$. Assume (i), (ii), and (iii) hold for $1, \ldots, n$; we shall prove it for $n+1$.

To see that $s_{1}, \ldots, s_{n}, s_{n+1}$ are pairwise distinct, let $j \in\{1, \ldots, n\}$. Using (iii), if $f_{n}\left(r_{j}\right) \leq f_{n}\left(r_{n+1}\right)$, we have

$$
s_{j}=f_{n}\left(r_{j}\right)<f_{n}\left(r_{n+1}\right)+t_{n+1}=s_{n+1}
$$

and if $f_{n}\left(r_{n+1}\right)<f_{n}\left(r_{j}\right)$,

$$
s_{n+1}=t_{n+1}+f_{n}\left(r_{n+1}\right) \leq \frac{f_{n}\left(r_{j}\right)-f_{n}\left(r_{n+1}\right)}{4}+f_{n}\left(r_{n+1}\right)<f_{n}\left(r_{j}\right)=s_{j}
$$

In any case, $s_{n+1} \neq s_{j}$, and we have finished.
To prove (ii) for $n+1$, let $j \in\{1, \ldots, n+1\}$ and suppose that $s_{j}<s_{n+1}$ (which implies $j<n+1$). Clearly, $s_{n+1}<s_{1}$, therefore $j>1$. We distinguish two cases.
Case 1. If $f_{n}\left(r_{n+1}\right)=f_{n-1}\left(r_{n+1}\right)=\cdots=f_{j}\left(r_{n+1}\right)$, then $f_{j}\left(r_{n+1}\right)=f_{j-1}\left(r_{n+1}\right)$. In the contrary case we have $f_{j}\left(r_{n+1}\right)=s_{j} h_{r_{j}, s_{j}}\left(r_{n+1}\right)$, and therefore

$$
f_{n}\left(r_{n+1}\right)=f_{j}\left(r_{n+1}\right)<s_{j}=f_{n}\left(r_{j}\right)
$$

Hence $s_{n+1}<f_{n}\left(r_{j}\right)=s_{j}<s_{n+1}$, a contradiction. Thus $f_{j}\left(r_{n+1}\right)=f_{j-1}\left(r_{n+1}\right)$. Since $L\left(f_{j-1}\right) \leq 1$, we have

$$
\begin{aligned}
& s_{n+1}\left(1-\frac{d\left(r_{n+1}, r_{j}\right)}{s_{n+1}}\right) \\
& \quad=t_{n+1}+f_{n}\left(r_{n+1}\right)-d\left(r_{n+1}, r_{j}\right)=t_{n+1}+f_{j-1}\left(r_{n+1}\right)-d\left(r_{n+1}, r_{j}\right) \\
& \quad \leq t_{n+1}+f_{j-1}\left(r_{j}\right) \leq \sum_{i=j+1}^{n+1} t_{i}+f_{j-1}\left(r_{j}\right)
\end{aligned}
$$

and therefore

$$
s_{n+1} h_{r_{n+1}, s_{n+1}}\left(r_{j}\right) \leq \sum_{i=j+1}^{n+1} t_{i}+f_{j-1}\left(r_{j}\right)
$$

Case 2. Suppose Case 1 does not hold. Then $j<n$, and there is $i \in\{j+1, \ldots, n\}$ such that

$$
f_{n}\left(r_{n+1}\right)=f_{n-1}\left(r_{n+1}\right)=\cdots=f_{i}\left(r_{n+1}\right)=s_{i} h_{r_{i}, s_{i}}\left(r_{n+1}\right) .
$$

If $s_{i} \leq s_{j}$, using (iii), we have

$$
f_{n}\left(r_{n+1}\right)=s_{i} h_{r_{i}, s_{i}}\left(r_{n+1}\right)<s_{i}=f_{n}\left(r_{i}\right)
$$

and therefore

$$
s_{n+1}=t_{n+1}+f_{n}\left(r_{n+1}\right) \leq \frac{f_{n}\left(r_{i}\right)-f_{n}\left(r_{n+1}\right)}{4}+f_{n}\left(r_{n+1}\right)<f_{n}\left(r_{i}\right)=s_{i} \leq s_{j}<s_{n+1}
$$

which is impossible. Hence $s_{j}<s_{i}$. Then

$$
\begin{aligned}
s_{n+1}\left(1-\frac{d\left(r_{n+1}, r_{j}\right)}{s_{n+1}}\right) & =t_{n+1}+s_{i} h_{r_{i}, s_{i}}\left(r_{n+1}\right)-d\left(r_{n+1}, r_{j}\right) \leq t_{n+1}+s_{i} h_{r_{i}, s_{i}}\left(r_{j}\right) \\
& \leq t_{n+1}+\sum_{l=j+1}^{i} t_{l}+f_{j-1}\left(r_{j}\right) \leq \sum_{l=j+1}^{n+1} t_{l}+f_{j-1}\left(r_{j}\right)
\end{aligned}
$$

and, in consequence,

$$
s_{n+1} h_{r_{n+1}, s_{n+1}}\left(r_{j}\right) \leq \sum_{l=j+1}^{n+1} t_{l}+f_{j-1}\left(r_{j}\right) .
$$

Finally, we check (iii) for $n+1$. Let $j \in\{2, \ldots, n\}$. If $s_{j}<s_{n+1}$, as proved above, we have

$$
s_{n+1} h_{r_{n+1}, s_{n+1}}\left(r_{j}\right) \leq \sum_{l=j+1}^{n+1} t_{l}+f_{j-1}\left(r_{j}\right) \leq t_{j} \sum_{l=1}^{n+1-j} \frac{1}{3^{l}}+f_{j-1}\left(r_{j}\right)<s_{j}=f_{n}\left(r_{j}\right)
$$

and thus $f_{n+1}\left(r_{j}\right)=f_{n}\left(r_{j}\right)=s_{j}$. If $s_{n+1} \leq s_{j}$, since $s_{n+1} h_{r_{n+1}, s_{n+1}}\left(r_{j}\right)<s_{n+1}$, it is clear that $f_{n+1}\left(r_{j}\right)=s_{j}$. For $j=n+1, f_{n+1}\left(r_{n+1}\right)=s_{n+1}$ follows easily, and this completes the proof of our claims.

Now we find f. Pick $n \in \mathbb{N}$. We shall prove that $\left\|f_{n+1}-f_{n}\right\|_{\infty} \leq t_{n+1}$. Given $x \in X$, we have either

$$
f_{n+1}(x)-f_{n}(x)=0<t_{n+1}
$$

or

$$
\begin{aligned}
0<f_{n+1}(x)-f_{n}(x) & =s_{n+1} h_{r_{n+1}, s_{n+1}}(x)-f_{n}(x) \\
& =s_{n+1}\left(1-\frac{d\left(x, r_{n+1}\right)}{s_{n+1}}\right)-f_{n}(x) \\
& =t_{n+1}+f_{n}\left(r_{n+1}\right)-d\left(x, r_{n+1}\right)-f_{n}(x) \leq t_{n+1}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|f_{n+1}-f_{n}\right\|_{\infty} \leq t_{n+1} \leq \frac{t_{1}}{3^{n}}=\frac{1}{3^{n}}, \quad \forall n \in \mathbb{N} . \tag{3.1}
\end{equation*}
$$

Hence $\left\{f_{n}\right\}$ is a Cauchy sequence in ($\mathfrak{C}_{b}(X),\|\cdot\|_{\infty}$), where $\mathfrak{C}_{b}(X)$ denotes the space of all scalar-valued bounded continuous functions on X. Then there exists $f \in \mathfrak{C}_{b}(X)$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\infty}=0$, and it is immediate to check that $f \in \operatorname{Lip}(X)$ and $L(f) \leq 1$.

Next we prove (a), (b), and (c). Since $f\left(r_{j}\right)=s_{j}$ for all $j \in \mathbb{N}$ and the scalars s_{j} are positive and pairwise distinct, (a) follows.

To prove (b), let $j \in \mathbb{N}$ and $x \in X$ be such that $0<d\left(x, r_{j}\right)<t_{j} / 4$. For $j>1$ observe that

$$
f_{j-1}(x) \leq f_{j-1}\left(r_{j}\right)+d\left(x, r_{j}\right)<s_{j}-d\left(x, r_{j}\right)=s_{j} h_{r_{j}, s_{j}}(x),
$$

and therefore $f_{j}(x)=s_{j} h_{r_{j}, s_{j}}(x)$. Moreover, $f_{1}=s_{1} h_{r_{i}, s_{1}}$.
If $f_{n}(x)=f_{j}(x)$ for all $n>j$, using that $s_{j}=f\left(r_{j}\right)$ we have

$$
f(x)=f_{j}(x)=s_{j} h_{r_{j}, s_{j}}(x)=s_{j}-d\left(x, r_{j}\right)<f\left(r_{j}\right)-\frac{d\left(x, r_{j}\right)}{2},
$$

which proves (b) in this case.
Suppose now $\left\{n \in \mathbb{N}: n>j, f_{n}(x)>f_{j}(x)\right\} \neq \varnothing$, and let

$$
m=\min \left\{n \in \mathbb{N}: n>j, f_{n}(x)>f_{j}(x)\right\}
$$

Then $f_{m}(x)=s_{m} h_{r_{m}, s_{m}}(x)$. We shall prove that $s_{m} \leq s_{j}$. If $s_{j}<s_{m}$, then $j>1$ and, by applying (ii) of the claim, we have

$$
s_{m} h_{r_{m}, s_{m}}\left(r_{j}\right) \leq \sum_{i=j+1}^{m} t_{i}+f_{j-1}\left(r_{j}\right) \leq t_{j} \sum_{i=1}^{m-j} \frac{1}{3^{i}}+f_{j-1}\left(r_{j}\right)<\frac{t_{j}}{2}+f_{j-1}\left(r_{j}\right)=s_{j}-\frac{t_{j}}{2}
$$

It follows that

$$
\begin{aligned}
f_{m}(x) & =s_{m} h_{r_{m} s_{m}}(x) \leq d\left(x, r_{j}\right)+s_{m} h_{r_{m}, s_{m}}\left(r_{j}\right)<d\left(x, r_{j}\right)+s_{j}-\frac{t_{j}}{2} \\
& <s_{j}-\frac{t_{j}}{4}<s_{j}-d\left(x, r_{j}\right)=f_{j}(x),
\end{aligned}
$$

which contradicts the definition of m. Hence $s_{m} \leq s_{j}$. Then

$$
f_{m-1}\left(r_{m}\right)<t_{m}+f_{m-1}\left(r_{m}\right)=s_{m} \leq s_{j}=f_{m-1}\left(r_{j}\right)
$$

and therefore

$$
\begin{aligned}
t_{m}+\frac{s_{m}}{3} & =\frac{4 t_{m}}{3}+\frac{f_{m-1}\left(r_{m}\right)}{3} \leq \frac{4}{3} \frac{f_{m-1}\left(r_{j}\right)-f_{m-1}\left(r_{m}\right)}{4}+\frac{f_{m-1}\left(r_{m}\right)}{3} \\
& =\frac{f_{m-1}\left(r_{j}\right)}{3}=\frac{s_{j}}{3}
\end{aligned}
$$

In consequence,

$$
t_{m} \leq \frac{s_{j}-s_{m}}{3} \leq \frac{s_{j}-f_{m}(x)}{3}<\frac{s_{j}-f_{j}(x)}{3}
$$

On the other hand, using inequality (3.1) we have

$$
\begin{aligned}
f_{n+m-1}(x)-f_{j}(x) & =f_{n+m-1}(x)-f_{m-1}(x) \\
& =f_{n+m-1}(x)-f_{n+m-2}(x)+\cdots+f_{m}(x)-f_{m-1}(x) \\
& \leq t_{n+m-1}+\cdots+t_{m} \leq \frac{t_{m}}{3^{n-1}}+\cdots+\frac{t_{m}}{3^{0}}<\frac{3}{2} t_{m}
\end{aligned}
$$

for every $n \in \mathbb{N}$. Hence,

$$
f(x) \leq f_{j}(x)+\frac{3}{2} t_{m}<f_{j}(x)+\frac{s_{j}-f_{j}(x)}{2}=s_{j}-\frac{d\left(x, r_{j}\right)}{2}=f\left(r_{j}\right)-\frac{d\left(x, r_{j}\right)}{2}
$$

and this completes the proof of (b).

Finally, we show (c). Since $f_{n}\left(r_{1}\right)=1$ for all n, we have $f\left(r_{1}\right)=1$. Let $x \in X \backslash\left\{r_{1}\right\}$. Notice that $f_{n} \geq f_{1}$ for all n. If $f_{n}(x)=f_{1}(x)$ for all $n>1$, then $f(x)=f_{1}(x)<1$. Otherwise we can suppose $\left\{n \in \mathbb{N}: n>1, f_{n}(x)>f_{1}(x)\right\} \neq \varnothing$ and let

$$
m=\min \left\{n \in \mathbb{N}: n>1, f_{n}(x)>f_{1}(x)\right\}
$$

Clearly, $f_{m}(x)=s_{m} h_{r_{m}, s_{m}}(x)$. As $f_{m-1}\left(r_{m}\right)<1=f_{m-1}\left(r_{1}\right)$, then, reasoning as in the proof of (b), we obtain

$$
t_{m}<\frac{s_{1}-f_{1}(x)}{3} ; \quad f_{n+m-1}(x)-f_{1}(x)<\frac{3}{2} t_{m}, \quad \forall n \in \mathbb{N}
$$

and thus

$$
f(x) \leq f_{1}(x)+\frac{s_{1}-f_{1}(x)}{2}=\frac{s_{1}+f_{1}(x)}{2}<1=f\left(r_{1}\right)
$$

In order to prove our central result, we also need the following proposition, which is interesting in itself. It is a version of a result of Győry [2] for Lipschitz functions. A detailed reading of its proof shows that the adaptation is far from simple.

Proposition 3.2 Let X be a metric space, and let $R=\left\{r_{n}: n \in \mathbb{N}\right\}$ be a countable set of pairwise distinct points of X. Then there exist Lipschitz functions $f, g: X \rightarrow[0,1]$ such that f has a strict local maximum at every point of R and

$$
\left\{z \in X:(f(z), g(z))=\left(f\left(r_{n}\right), g\left(r_{n}\right)\right)\right\}=\left\{r_{n}\right\}, \quad \forall n \in \mathbb{N}
$$

Proof Let f and $\left\{t_{n}\right\}$ be as in Lemma 3.1. We prepare the proof in three steps.
First, we show that for each $n \in \mathbb{N}$, there exists $g_{n} \in \operatorname{Lip}(X)$ satisfying the following conditions.
(i) $0 \leq g_{n} \leq 1 / 2, g_{n}\left(r_{j}\right)>0$ for all $j \in \mathbb{N}$ and $g_{n}(x)<g_{n}\left(r_{1}\right)$ if $x \neq r_{1}$;
(ii) For each $j \in \mathbb{N}$ there exist scalars $\left.\left.\delta_{n, j} \in\right] 0,1\right]$ and $\alpha_{n, j}>0$ such that

$$
d\left(x, r_{j}\right)<\delta_{n, j} \quad \Rightarrow \quad g_{n}(x) \leq g_{n}\left(r_{j}\right)-\alpha_{n, j} d\left(x, r_{j}\right)
$$

Hence, g_{n} has a strict local maximum at r_{j}.
(iii) $g_{n}\left(r_{j}\right) \notin g_{n}\left(f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \backslash\left\{r_{j}\right\}\right)$ for all $j=1, \ldots, n$.
(iv) The set $g_{n}\left(f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right)\right)$ is finite for all $j \in \mathbb{N}$.
(v) $L\left(g_{n}\right) \leq \sum_{k=1}^{n} \frac{1}{2^{k}}<1$.

We prove it by induction. Define $g_{1}=f / 2$. Using the properties of f, it is easy to check that g_{1} satisfies properties (i) to (v). Assume there is $g_{n} \in \operatorname{Lip}(X)$ satisfying properties (i) to (v).

Taking into account (ii), the fact that f has a strict local maximum at r_{n+1} and that $f\left(r_{n+1}\right) \neq f\left(r_{j}\right)$ for all $j \in\{1, \ldots, n\}$, the continuity of f permits us to choose a scalar $\left.\rho_{n+1} \in\right] 0, \delta_{n, n+1}$ [such that $f(x) \neq f\left(r_{j}\right)$ for all $j \in\{1, \ldots, n\}, f(x)<f\left(r_{n+1}\right)$ and $g_{n}(x) \leq g_{n}\left(r_{n+1}\right)-\alpha_{n, n+1} d\left(x, r_{n+1}\right)$ for all $x \in X$ for which $0<d\left(x, r_{n+1}\right)<\rho_{n+1}$. Put

$$
A=\left\{x \in X: \rho_{n+1} \leq d\left(x, r_{n+1}\right)<\delta_{n, n+1}\right\}
$$

and define the scalar $\beta_{n+1}=\sup \left\{g_{n}(x): x \in A\right\}$ if $A \neq \varnothing$ and $\beta_{n+1}=0$, otherwise. If $x \in A, 2$ yields

$$
\beta_{n+1} \leq g_{n}\left(r_{n+1}\right)-\alpha_{n, n+1} \rho_{n+1}<g_{n}\left(r_{n+1}\right)
$$

Let $\left.\gamma_{n+1} \in\right] \beta_{n+1}, g_{n}\left(r_{n+1}\right)[$ and define

$$
U_{n+1}=\left\{x \in X: g_{n}(x)>\gamma_{n+1}, d\left(x, r_{n+1}\right)<\rho_{n+1}\right\}
$$

Clearly, U_{n+1} is an open neighbourhood of r_{n+1}. Furthermore,

$$
f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \cap U_{n+1}= \begin{cases}\varnothing, & j=1, \ldots, n \\ \left\{r_{n+1}\right\}, & j=n+1\end{cases}
$$

and therefore

$$
\begin{equation*}
f^{-1}\left(\left\{f\left(r_{n+1}\right)\right\}\right) \backslash\left\{r_{n+1}\right\} \subset X \backslash U_{n+1} \tag{3.2}
\end{equation*}
$$

From property (i) we deduce that g_{n} is not constant, and therefore $L\left(g_{n}\right)>0$. Since $g_{n}\left(f^{-1}\left(\left\{f\left(r_{n+1}\right)\right\}\right)\right)$ is finite by (iv), we can take a scalar ε_{n+1} in the set

$$
\begin{equation*}
] 0, \frac{\delta_{n, n+1}-\rho_{n+1}}{2^{n+1}} L\left(g_{n}\right)\left[\backslash\left\{\frac{s-g_{n}\left(r_{n+1}\right)}{\gamma_{n+1}-g_{n}\left(r_{n+1}\right)}: s \in g_{n}\left(f^{-1}\left(\left\{f\left(r_{n+1}\right)\right\}\right)\right)\right\} .\right. \tag{3.3}
\end{equation*}
$$

Then $\varepsilon_{n+1}<1 / 2^{n+1}$. Let $g_{n+1}: X \rightarrow \mathbb{R}$ be defined by

$$
g_{n+1}(x)= \begin{cases}\left(1-\varepsilon_{n+1}\right) g_{n}(x)+\varepsilon_{n+1} \gamma_{n+1}, & x \in U_{n+1}, \\ g_{n}(x), & x \in X \backslash U_{n+1}\end{cases}
$$

Observe that $g_{n+1} \leq g_{n}$. Next we show that g_{n+1} satisfies properties (i) to (v).
$\operatorname{Property}(\mathrm{v})$ Let $x, y \in X$. Assume, for instance, $g_{n+1}(y) \leq g_{n+1}(x)$. If $x, y \in U_{n+1}$, it is clear that

$$
\begin{aligned}
g_{n+1}(x)-g_{n+1}(y) & =\left(1-\varepsilon_{n+1}\right) g_{n}(x)-\left(1-\varepsilon_{n+1}\right) g_{n}(y) \\
& \leq\left(1-\varepsilon_{n+1}\right) L\left(g_{n}\right) d(x, y) \leq\left(\sum_{k=1}^{n+1} \frac{1}{2^{k}}\right) d(x, y)
\end{aligned}
$$

Likewise, the same conclusion can be drawn for $x \in U_{n+1}, y \in X \backslash U_{n+1}$, and for $x, y \in X \backslash U_{n+1}$. Finally, if $x \in X \backslash U_{n+1}$ and $y \in U_{n+1}$, we have

$$
\begin{aligned}
\gamma_{n+1} & =\left(1-\varepsilon_{n+1}\right) \gamma_{n+1}+\varepsilon_{n+1} \gamma_{n+1}<\left(1-\varepsilon_{n+1}\right) g_{n}(y)+\varepsilon_{n+1} \gamma_{n+1} \\
& =g_{n+1}(y) \leq g_{n+1}(x)=g_{n}(x)
\end{aligned}
$$

Since $x \in X \backslash U_{n+1}$, it follows that $\rho_{n+1} \leq d\left(x, r_{n+1}\right)$. Moreover, $\delta_{n, n+1} \leq d\left(x, r_{n+1}\right)$, since otherwise we have $x \in A$ and $g_{n}(x) \leq \beta_{n+1}<\gamma_{n+1}$, a contradiction. Hence,

$$
\delta_{n, n+1}-\rho_{n+1}<d\left(x, r_{n+1}\right)-d\left(y, r_{n+1}\right) \leq d(x, y)
$$

and thus

$$
\varepsilon_{n+1} g_{n}(y)-\varepsilon_{n+1} \gamma_{n+1}<\varepsilon_{n+1} g_{n}(y)<\varepsilon_{n+1}<\frac{\delta_{n, n+1}-\rho_{n+1}}{2^{n+1}} L\left(g_{n}\right)<\frac{d(x, y)}{2^{n+1}} L\left(g_{n}\right)
$$

In this way,

$$
\begin{aligned}
& g_{n+1}(x)-g_{n+1}(y)=g_{n}(x)-g_{n}(y)+\varepsilon_{n+1} g_{n}(y)-\varepsilon_{n+1} \gamma_{n+1} \\
& \quad<L\left(g_{n}\right) d(x, y)+\frac{L\left(g_{n}\right)}{2^{n+1}} d(x, y)<\left(\sum_{k=1}^{n} \frac{1}{2^{k}}+\frac{1}{2^{n+1}}\right) d(x, y)=\left(\sum_{k=1}^{n+1} \frac{1}{2^{k}}\right) d(x, y) .
\end{aligned}
$$

Hence $g_{n+1} \in \operatorname{Lip}(X)$ and $L\left(g_{n+1}\right) \leq \sum_{k=1}^{n+1} \frac{1}{2^{k}}$.
Property (i) It is a simple matter to see that g_{n+1} satisfies this property.
Property (ii) Let $j \in \mathbb{N}$. If $r_{j} \in X \backslash U_{n+1}$, then $g_{n+1}\left(r_{j}\right)=g_{n}\left(r_{j}\right)$. Let us take, in this case, $\left.\delta_{n+1, j}=\delta_{n, j} \in\right] 0,1\left[\right.$ and $\alpha_{n+1, j}=\alpha_{n, j}>0$. If $d\left(x, r_{j}\right)<\delta_{n+1, j}$, we have

$$
g_{n+1}(x) \leq g_{n}(x) \leq g_{n}\left(r_{j}\right)-\alpha_{n, j} d\left(x, r_{j}\right)=g_{n+1}\left(r_{j}\right)-\alpha_{n+1, j} d\left(x, r_{j}\right)
$$

If $r_{j} \in U_{n+1}$, we can choose a $\left.\delta_{n+1, j} \in\right] 0, \delta_{n, j}$ [such that

$$
\left\{x \in X: d\left(x, r_{j}\right)<\delta_{n+1, j}\right\} \subset U_{n+1}
$$

Put $\alpha_{n+1, j}=\left(1-\varepsilon_{n+1}\right) \alpha_{n, j}>0$. If $d\left(x, r_{j}\right)<\delta_{n+1, j}$,

$$
\begin{aligned}
g_{n+1}(x) & =\left(1-\varepsilon_{n+1}\right) g_{n}(x)+\varepsilon_{n+1} \gamma_{n+1} \\
& \leq\left(1-\varepsilon_{n+1}\right) g_{n}\left(r_{j}\right)-\left(1-\varepsilon_{n+1}\right) \alpha_{n, j} d\left(x, r_{j}\right)+\varepsilon_{n+1} \gamma_{n+1} \\
& =g_{n+1}\left(r_{j}\right)-\alpha_{n+1, j} d\left(x, r_{j}\right)
\end{aligned}
$$

Property (iii) Since ε_{n+1} belongs to the set (3.3), we have

$$
g_{n+1}\left(r_{n+1}\right)=\left(1-\varepsilon_{n+1}\right) g_{n}\left(r_{n+1}\right)+\varepsilon_{n+1} \gamma_{n+1} \notin g_{n}\left(f^{-1}\left(\left\{f\left(r_{n+1}\right)\right\}\right)\right)
$$

and, by inclusion (3.2),

$$
\begin{aligned}
g_{n+1}\left(f^{-1}\left(\left\{f\left(r_{n+1}\right)\right\}\right) \backslash\left\{r_{n+1}\right\}\right) & =g_{n}\left(f^{-1}\left(\left\{f\left(r_{n+1}\right)\right\}\right) \backslash\left\{r_{n+1}\right\}\right) \\
& \subset g_{n}\left(f^{-1}\left(\left\{f\left(r_{n+1}\right)\right\}\right)\right)
\end{aligned}
$$

Hence, $g_{n+1}\left(r_{n+1}\right) \notin g_{n+1}\left(f^{-1}\left(\left\{f\left(r_{n+1}\right)\right\}\right) \backslash\left\{r_{n+1}\right\}\right)$.
Let $j \in\{1, \ldots, n\}$. Since $f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \cap U_{n+1}=\varnothing$, then $r_{j} \in X \backslash U_{n+1}$ and $f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \backslash\left\{r_{j}\right\} \subset X \backslash U_{n+1}$. Therefore

$$
g_{n+1}\left(r_{j}\right)=g_{n}\left(r_{j}\right) \notin g_{n}\left(f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \backslash\left\{r_{j}\right\}\right)=g_{n+1}\left(f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \backslash\left\{r_{j}\right\}\right)
$$

Property (iv) Let $j \in \mathbb{N}$. It is sufficient to observe that the sets

$$
\begin{aligned}
& g_{n+1}\left(f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \cap U_{n+1}\right)= \\
& \quad\left\{\left(1-\varepsilon_{n+1}\right) g_{n}(x)+\varepsilon_{n+1} \gamma_{n+1}: x \in f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \cap U_{n+1}\right\}
\end{aligned}
$$

and

$$
g_{n+1}\left(f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \cap\left(X \backslash U_{n+1}\right)\right)=g_{n}\left(f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \cap\left(X \backslash U_{n+1}\right)\right)
$$

are finite by the property (iv) of g_{n}.
Secondly, it is straightforward to check that $\left\{g_{n}\right\}$ converges to $g \in \operatorname{Lip}(X)$ in $\left(\mathcal{C}_{b}(X),\|\cdot\|_{\infty}\right)$. Moreover, $L(g) \leq 1$ and $0 \leq g \leq 1 / 2$.

Thirdly, we prove that $\left\{x \in X:(f(x), g(x))=\left(f\left(r_{j}\right), g\left(r_{j}\right)\right)\right\}=\left\{r_{j}\right\}$, for each $j \in \mathbb{N}$. Indeed, we show easily by induction that for each $n \in \mathbb{N}$,

$$
g_{n}(x)=g_{j}(x), \quad \forall x \in f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right), \quad \forall j \in\{1, \ldots, n\}
$$

Given $j \in \mathbb{N}$, assume $(f(x), g(x))=\left(f\left(r_{j}\right), g\left(r_{j}\right)\right)$ for some $x \in X \backslash\left\{r_{j}\right\}$. Then $r_{j}, x \in$ $f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right)$ and, as proved above, we have $g_{n+j}(x)=g_{j}(x)$ and $g_{n+j}\left(r_{j}\right)=g_{j}\left(r_{j}\right)$ for all $n \in \mathbb{N}$. It follows that

$$
g_{j}\left(r_{j}\right)=g\left(r_{j}\right)=g(x)=g_{j}(x) \in g_{j}\left(f^{-1}\left(\left\{f\left(r_{j}\right)\right\}\right) \backslash\left\{r_{j}\right\}\right)
$$

but this contradicts property (iii) of g_{j}.
We have now gathered all the ingredients to prove our main theorem.
Theorem 3.3 Let X be a separable bounded metric space. If the isometry group of $\operatorname{Lip}(X)$ is canonical, then every 2-local isometry of $\operatorname{Lip}(X)$ is a surjective linear isometry.

Proof By Theorem 2.1 there exist $X_{0} \subset X, \tau \in S_{K}$ and a Lipschitz bijection $\varphi: X_{0} \rightarrow X$ such that $\left.\Phi(f)\right|_{X_{0}}=\tau(f \circ \varphi)$ for all $f \in \operatorname{Lip}(X)$.

If X is finite, it is clear that $X_{0}=X$ and $\varphi^{-1}: X \rightarrow X$ is Lipschitz.
Let us suppose now that X is nonfinite. Due to the separability of X, there exists a countable dense subset $R=\left\{r_{n}: n \in \mathbb{N}\right\}$ of X, where the points r_{n} are pairwise distinct. Let $f, g: X \rightarrow[0,1]$ be as in Proposition3.2 We can write $\Phi(f)=\tau_{f, g}(f \circ$ $\left.\varphi_{f, g}\right)$ and $\Phi(g)=\tau_{f, g}\left(g \circ \varphi_{f, g}\right)$ for some $\tau_{f, g} \in S_{K}$ and some surjective isometry $\varphi_{f, g}$ of X. For each natural n we have

$$
\begin{aligned}
& \tau_{f, g} f\left(\varphi_{f, g}\left(\varphi^{-1}\left(r_{n}\right)\right)\right)=\Phi(f)\left(\varphi^{-1}\left(r_{n}\right)\right)=\tau f\left(r_{n}\right) \\
& \tau_{f, g} g\left(\varphi_{f, g}\left(\varphi^{-1}\left(r_{n}\right)\right)\right)=\Phi(g)\left(\varphi^{-1}\left(r_{n}\right)\right)=\tau g\left(r_{n}\right)
\end{aligned}
$$

Since f and g are non-negative and $\left|\tau_{f, g}\right|=|\tau|=1$, it follows that

$$
f\left(\varphi_{f, g}\left(\varphi^{-1}\left(r_{n}\right)\right)\right)=f\left(r_{n}\right), \quad g\left(\varphi_{f, g}\left(\varphi^{-1}\left(r_{n}\right)\right)\right)=g\left(r_{n}\right)
$$

Then Proposition 3.2 yields $\varphi_{f, g}\left(\varphi^{-1}\left(r_{n}\right)\right)=r_{n}$, and so

$$
\varphi^{-1}(z)=\varphi_{f, g}^{-1}(z), \quad \forall z \in R
$$

Let $x \in X_{0}$. Since R is dense in X, there is a sequence $\left\{z_{n}\right\}$ in R converging to $\varphi_{f, g}(x)$. Then $\left\{\varphi_{f, g}{ }^{-1}\left(z_{n}\right)\right\}$ converges to x, but $\varphi_{f, g}{ }^{-1}\left(z_{n}\right)=\varphi^{-1}\left(z_{n}\right)$ for all $n \in \mathbb{N}$, and so $\left\{\varphi^{-1}\left(z_{n}\right)\right\}$ converges to x. It follows that $\left\{z_{n}\right\}$ converges to $\varphi(x)$. In consequence, $\varphi_{f, g}(x)=\varphi(x)$ for every $x \in X_{0}$.

Let $y \in X$. Since φ is surjective, there is $x \in X_{0}$ for which $\varphi(x)=\varphi_{f, g}(y)$. Then $\varphi_{f, g}(x)=\varphi_{f, g}(y)$, as proved above, which implies $y=x$ by the injectivity of $\varphi_{f, g}$ and so $y \in X_{0}$. Hence $X=X_{0}$. Therefore $\varphi=\varphi_{f, g}$, and thus φ is a surjective isometry of X.

In both cases we have $\Phi(f)=\tau(f \circ \varphi)$ for all $f \in \operatorname{Lip}(X)$, where $\varphi^{-1}: X \rightarrow X$ is Lipschitz. Consequently, Φ is surjective and linear. From the definition of 2-local isometry, it is easy to deduce that Φ is an isometry. We conclude that Φ is a surjective linear isometry of $\operatorname{Lip}(X)$.

Acknowledgment The authors would like to thank the referee for making several suggestions that have improved this paper.

References

[1] M. A. Chebotar, W.-F. Ke, P.-H. Lee, and L.-S. Shiao, On maps preserving products. Canad. Math. Bull. 48(2005), no. 3, 355-369. doi:10.4153/CMB-2005-033-8
[2] M. Győry, 2-local isometries of $\complement_{0}(X)$. Acta Sci. Math. (Szeged) 67(2001), no. 3-4, 735-746.
[3] O. Hatori, T. Miura, H. Oka, and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras. Int. Math. Forum 2(2007), no. 49-52, 2491-2502.
[4] K. Jarosz and V. Pathak, Isometries between function spaces. Trans. Amer. Math. Soc. 305(1998), no. 1, 193-206. doi:10.1090/S0002-9947-1988-0920154-7
[5] P. S. Ji and C. P. Wei, Isometries and 2-local isometries on Cartan bimodule algebras in hyperfinite factors of type $I I_{1}$. (Chinese) Acta Math. Sinica (Chin. Ser.) 49(2006), no. 1, 51-58.
[6] S. O. Kim and J. S. Kim, Local automorphisms and derivations on certain C^{*}-algebras. Proc. Amer. Math. Soc. 133(2005), no. 11, 3303-3307. doi:10.1090/S0002-9939-05-08059-7
[7] Y.-F. Lin and T.-L. Wong, A note on 2-local maps. Proc. Edinb. Math. Soc. 49(2006), no. 3, 701-708. doi:10.1017/S0013091504001142
[8] J.-H. Liu and N.-C. Wong, 2-local automorphisms of operator algebras. J. Math. Anal. Appl. 321 (2006), no. 2, 741-750. doi:10.1016/j.jmaa.2005.09.003
[9] L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space. Exp. Math. 18(2000), no. 3, 231-238.
[10] L. Molnár, 2-local isometries of some operator algebras. Proc. Edinb. Math. Soc. 45(2002), no. 2, 349-352.
[11] L. Molnár, Local automorphisms of operator algebras on Banach spaces. Proc. Amer. Math. Soc. 131(2003), no. 6, 1867-1874. doi:10.1090/S0002-9939-02-06786-2
[12] N. V. Rao and A. K. Roy, Linear isometries of some function spaces. Pacific J. Math. 38(1971), 177-192.
[13] A. K. Roy, Extreme points and linear isometries of the Banach space of Lipschitz functions. Canad. J. Math. 20(1968), 1150-1164. doi:10.4153/CJM-1968-109-9
[14] P. Šemrl, Local automorphisms and derivations on B(H). Proc. Amer. Math. Soc. 125(1997), no. 9, 2677-2680. doi:10.1090/S0002-9939-97-04073-2
[15] M. H. Vasavada, Closed ideals and linear isometries of certain function spaces. Ph.D. Thesis, University of Wisconsin, 1969.
[16] N. Weaver, Isometries of noncompact Lipschitz spaces. Canad. Math. Bull. 38(1995), no. 2, 242-249. doi:10.4153/CMB-1995-035-3
[17] J. Xie and F. Lu, A note on 2-local automorphisms of diagraph algebras. Linear Algebra Appl. 378(2004), 93-98. doi:10.1016/j.laa.2003.09.004
[18] J. H. Zhang, A. L. Yang, and F. F. Pan, Local automorphisms of nest subalgebras of factor von Neumann algebras. Linear Algebra Appl. 402(2005), 335-344. doi:10.1016/j.laa.2005.01.005

Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04120 Almería, Spain e-mail: ajimenez@ual.es mvv042@alboran.ual.es

[^0]: Received by the editors September 1, 2008; revised March 14, 2009.
 Published electronically March 5, 2011.
 Research partially supported by Junta de Andalucía project FQM2008-3737 and MEC project MTM2010-17687. The second author was supported in part by Beca Plan Propio Universidad de Almería. AMS subject classification: 46B04, 46J10, 46E15.
 Keywords: isometry, local isometry, Lipschitz function

