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Abstract
We establish here an integral inequality for real log-concave functions, which can be viewed as an average monotone
likelihood property. This inequality is then applied to examine the monotonicity of failure rates.

1. Introduction

Convex and concave functions play an important role in statistics, probability, and especially in
reliability theory, wherein they lead to some useful inequalities. Many aspects of these functions have
been studied in detail in different contexts and we refer the readers to the classical monographs [5, 6, 16].
In this note, we derive a simple integral inequality for log-concave functions and then demonstrate its
application in examining the monotonicity of failure rates.

A measurable function f : R→ R+ is said to be log-concave if:

f (tx + (1 − t)y) ≥ f (x)tf (y)1−t ,

for all x, y ∈ R and t ∈ (0, 1). It is easy to see that the support of a log-concave function is an interval
and that the above definition amounts to the concavity on R of the function log f : R→ R∪ {−∞} with
possible value−∞ outside Supp f. Interested readers may refer to [19] for a recent survey on log-concave
functions and relevant topics in statistics.

A function f : R+ → R+ is said to be hyperbolically monotone if the function x ↦→ f (ex) is log-
concave on R; see, for example, Section 9.2 in [19] and the references therein for more information on
this notion. In Lemma 2.3 of [2], a characterization of hyperbolic monotonicity is given as:

f (x)f (y) ≥ f (c−1x)f (cy), (1)

for all y ≥ x ≥ 0 and c ≥ 1. In [2], this characterization has then utilized to study the preservation of
increasing failure rate property under the formation of (n−k+1)-out-of-n systems with discrete distribu-
tions. In this note, we give a short new proof of this preservation property by means of a characterization
of hyperbolically monotone functions with an average version of the inequality in (1), holding without
any restriction on x, y, c. This result turns out to be a consequence of the integral characterization of
log-concave functions presented in the following section:
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2. Main results

Theorem 2.1. Let f : R→ R+ be continuous. Then, f is log-concave if and only if:

(∫ b

a
f (t) dt

)2

≥
(∫ b

a
f (t − c) dt

) (∫ b

a
f (t + c) dt

)
, (2)

for all a< b and c> 0.

Proof. The if part follows by midpoint convexity. Fix a ∈ R and c> 0. Dividing both sides of (2) by
(b − a)2 and letting b ↓ a, we obtain:

f 2 (a) ≥ f (a − c)f (a + c),

by continuity of f . This implies that Supp f = {x ∈ R, f (x) ≠ 0} is an interval, which we denote by I .
Setting x = a − c, y = a + c and g = log f , we get:

g(x) + g(y)
2

≤ g
( x + y

2

)
,

for all x, y ∈ I . This shows that g is midpoint concave in I and, by Sierpiński’s theorem—see [7], p. 12,
that it is concave in I, hence also on the whole R since g = −∞ outside I .

For the only if part, we need to show that:

(∫ 1

0
h(t) dt

)2

≥
(∫ 1

0
h(t − c) dt

) (∫ 1

0
h(t + c) dt

)
, (3)

for all c > 0, wherein we have set h(t) = f (a + t(b − a)) which is a log-concave function on R. We will
present three different proofs. In the first one, we show that the mapping:

z ↦→ I (z) =

∫ 1

0

∫ 1

0
h(s − z)h(t + z) dsdt,

is non-increasing in (0,∞). Then, by making the change of variables s = u − v and t = u + v, we have
the decomposition I (z) = 2(I1(z) + I2(z)), with:

I1(z) =

∫ 1/2

0

(∫ u

−u
h(u − v − z)h(u + v + z)dv

)
du

=

∫ 1/2

0

(∫ z+u

z−u
h(u − v)h(u + v)dv

)
du,

and
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I2(z) =

∫ 1

1/2

(∫ 1−u

u−1
h(u − v − z)h(u + v + z)dv

)
du

=

∫ 1

1/2

(∫ 1−u+z

u−1+z
h(u − v)h(u + v)dv

)
du.

By the continuity of h, we can differentiate under the integral and obtain:

I′1(z) =

∫ 1/2

0
(h(−z)h(2u + z) − h(2u − z)h(z)) du ≤ 0,

where the inequality comes from Eq. (2) in [3] with −z = x1 ≤ x2 = 2u − z and X = 2z. Similarly, we
obtain:

I′2(z) =

∫ 1

1/2
(h(2u − 1 − z)h(1 + z) − h(−z)h(2u + z)) du ≤ 0,

with 2u − 1 − z = x1 ≤ x2 = 1 − z and again X = 2z. This completes the proof of the theorem.
The second proof relies on discretization. For all p, N ≥ 1, the non-negative sequences {an, n ≥ 0}

and {bn, n ≥ 0}, defined by:

an = h(nN−1) and bn = h((n − p)N−1),

are such that ajbk ≥ bjak for all k ≥ j ≥ 0 by the log-concavity of h and appealing again to Eq. (2) in
[3]. It is then easy to see that this implies:

(a1 + · · · + aN ) (bp+1 + · · · + bp+N ) ≥ (ap+1 + · · · + ap+N ) (b1 + · · · + bN ). (4)

Fix now c> 0 and choose an integer p = pN such that N−1pN → c as N → ∞. Multiplying by N−2

and letting N → ∞ in (4), by Riemann approximation, we obtain the required inequality in (3).
The third proof is more conceptual and hinges upon the Prékopa-Leindler inequality. Let ` be a

positive measure on R2 with density g(x, y) = h(x)h(y). As g is log-concave on R2, the Prékopa-
Leindler inequality (see Theorem 1.1 in [17]) implies that `(tA + (1 − t)B) ≥ `(A)t`(B)1−t for all
t ∈ (0, 1) and A, B ⊂ R2 measurable where, here and throughout, we have used the standard Minkowski
notation:

A + B = {x + y, x ∈ A, y ∈ B} and tA + z = {tx + z, x ∈ A}.

Now, upon setting A = [0, 1]2 and z = (c, c) ∈ R2, we have,

A =
1
2
(A − z) + 1

2
(A + z),

by the convexity of A. This implies(∫ 1

0
h(t) dt

)2

= `(A) = `

(
1
2
(A − z) + 1

2
(A + z)

)
≥

√
`(A − z)`(A + z),

with

`(A − z) =

(∫ 1

0
h(t − c) dt

)2

and `(A + z) =

(∫ 1

0
h(t + c) dt

)2

,

which implies the inequality in (3). �
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Remark 2.2. (a) Above, the continuity condition is not necessary and can be relaxed. Indeed, the proof
of the only if part relies only on log-concavity, and for the if part, we used Sierpinśki’s theorem, which
holds under a sole measurability assumption. On the other hand, the argument for the if part also uses:

lim
Y→0

1
Y

∫ a+Y

a
f (t) dt = f (a), (5)

for all a ∈ R, which may fail if f is assumed only to be measurable. Observe that (5) means that
every real number is a so-called Lebesgue density point for f , which holds true, for example, when f is
right-continuous;

(b) The mid-convexity argument and the Prékopa-Leindler inequality remain true in R2d . Then, they
imply the following multidimensional generalization: a continuous function f : Rd → R+ is log-concave
if: (∫

A
f (t) dt

)2
≥

(∫
A

f (t − x) dt
)
×

(∫
A

f (t + x) dt
)

for every A ⊂ Rd measurable and every x ∈ Rd ;
(c) Using either the first or the second proof for the only if part, we can show similarly that for a

continuous function f : R→ R+, the log-convexity of f on its support is equivalent to:(∫ b

a
f (t) dt

)2

≤
(∫ b

a
f (t − c) dt

) (∫ b

a
f (t + c) dt

)
for all a< b and c> 0 such that a − c, b + c ∈ Suppf . Notice that contrary to log-concavity, the support
condition is important and that the characterization becomes untrue without this condition; see the end
of Section 3.1 for further discussion.

We now state the aforementioned characterization of hyperbolically monotone functions.

Corollary 2.3. Let f : R+ → R+ be continuous. Then, the function x ↦→ f (ex) is log-concave on R if
and only if: (∫ b

a
f (t) dt

)2

≥
(∫ b

a
f (ct) dt

) (∫ b

a
f (c−1t) dt

)
, (6)

for all 0 < a < b and c> 0.

Proof. Clearly, x ↦→ f (ex) is log-concave on R if and only if x ↦→ exf (ex) is log-concave on R which
by Theorem 2.1 and some straightforward simplification, is equivalent to:(∫ b

a
etf (et) dt

)2

≥
(∫ b

a
etf (cet) dt

) (∫ b

a
etf (c−1et) dt

)
,

for all a< b and c> 0. The result then follows readily from the change of variable u = et . �

Remark 2.4. In [12], a related characterization of the log-concavity of f (ex) has been given as
the “monotone likelihood property”. More precisely, the function x ↦→ f (ex) is log-concave iff
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x → f (x)/f (cx) is monotone on (0,∞) for every c> 0. In this regard, the characterization in (6), when
rewritten as: ∫ b

a
f (t) dt∫ b

a
f (ct) dt

≥

∫ b

a
f (c−1t) dt∫ b

a
f (t) dt

,

can be viewed as an “average monotone likelihood property.”

3. Applications to the study of failure rates

3.1. On increasing failure rates and proportional failure rates

Let X be a nonnegative variable with absolutely continuous cumulative distribution function F, survival
function F̄ = 1 − F, and probability density function f. The function h = f /F̄, known as the failure rate
function of X, is an important measure used extensively in reliability, survival analysis and stochastic
modeling. The function x ↦→ xh(x) has been referred in [15] as a generalized failure rate and in [18] as
a proportional failure rate. As a consequence of Theorem 2.1 and Corollary 2.3, we get a short proof for
the following fact which is well-known for the function h (see [5, p. 76]) but less known for the function
x ↦→ xh(x).

Proposition 3.1. If f is log-concave, then h is non-decreasing. If f (ex) is log-concave, then x ↦→ xh(x)
is non-decreasing.

Proof. Suppose f is log-concave. Then, by taking a = t > 0 and letting b → ∞ in Theorem 2.1, we
obtain:

F̄2(t) =

(∫ ∞

t
f (x) dx

)2
≥

∫ ∞

t

∫ ∞

t
f (x − c)f (y + c) dxdy = F̄ (t − c)F̄ (t + c),

for all c, t > 0. By mid-point convexity, this shows that F̄ (x) is log-concave, or equivalently,

d
dx

ln(F̄ (x)) = − f (x)
F̄ (x)

= −h(x),

is non-increasing, as required. The proof of the second part is analogous upon using:

F̄2(t) =

(∫ ∞

t
f (x) dx

)2
≥

∫ ∞

t

∫ ∞

t
f (cx)f (c−1y) dxdy = F̄ (ct)F̄ (c−1t),

for all c, t > 0, which is obtained by taking a = t > 0 and letting b → ∞ in Corollary 2.3. �

In the above statement, we have used the fact that the non-decreasing property of h (resp. x ↦→
xh(x)) is equivalent to the log-concavity of F̄ (resp. x ↦→ F̄ (ex)). The following example demonstrates
a situation wherein this is also equivalent to the log-concavity of f (resp. x ↦→ f (ex)).
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Example 3.2. Suppose X has the generalized gamma distribution with density:

f (x) = |V |
Γ(U) xUV−1 e−xV , x > 0,

where U > 0 and V≠ 0 are shape parameters; see [11]. This means that X d
= �1/V

U , where �U is a standard
gamma random variable with parameter U. We then have:

Γ(U) F̄ (x) =

{
Γ(U, y) = e−yU (1 − U, 1 − U; y) for V > 0
W(U, y) = U−1yUe−y M (U, 1 + U; y) for V < 0,

with y = xV and the standard notation for incomplete gamma and confluent hypergeometric functions,
see (5.6) and (5.6) in [20]. It is easy to check that x ↦→ f (ex) is always log-concave, and so is F̄ (ex) by
Corollary 2.3. Based on hypergeometric functions, this can also be observed from xh(x) = VyU/U (1 −
U, 1 − U, y) for V > 0, with:

d
dy

(y−UU (1 − U, 1 − U, y)) = −y−U−1U (1 − U,−U, y) = −U (2, 2 + U, y) ≤ 0,

by (2.1) and (1.4) in [20], and from xh(x) = UV/M (U, 1 + U, y) for V < 0, which is decreasing in y and
hence increasing in x, by positivity of the coefficients in the series defining M .

As far as the log-concavity of F̄ is concerned, the situation depends on the sign of V. For V < 0, we
have h(x) = y−1/V/M (1, 1 + U, y) → 0 as x→ 0 and x → ∞, so that h is never monotone and neither F̄
nor f are log-concave; on the other hand, when V > 0, we have h(x) = VyU−1/V/U (1 − U, 1 − U, y) and,

f is log-concave ⇐⇒ inf{V,UV} ≥ 1 ⇐⇒ F̄is log-concave.

The first equivalence is direct, and the inclusion in the second equivalence follows from Corollary 2.3.
For the second reverse inclusion, we first observe again from (2.1) and (1.4) in [20] that:

d
dy

(
Vy1/V−UU (1 − U, 1 − U, y)

)
= y1/V−U−1 (U (1 − U, 1 − U, y) − VU (1 − U,−U, y))

= y1/V−1 (U (1, 1 + U, y) − VyU (2, 2 + U, y)) .

From (3.1) in [20], the first quantity behaves like Γ(U) (1 − UV)y1/V−U−1 > 0 as y→ 0 when V ≥ 1
and UV < 1, while the second quantity behaves like (1 − V)y1/V−2 > 0 as y → ∞ when V < 1. This
shows that h has increase points on (0,∞) if inf{V,UV} < 1. Notice that by using the same argument,
we can show that:

f is log-convex ⇐⇒ sup{V,UV} ≤ 1 ⇐⇒ F̄is log-convex,

for every V > 0.

The following example demonstrates a situation wherein the statement of Proposition 3.1 may not
be an equivalence.
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Example 3.3. Suppose X has a generalized beta distribution of the first kind with density:

f (x) = |W |
B(U, V) xUW−1 (1 − xW)V−1

+ , x > 0,

with U, V > 0 and W ≠ 0. This means that X d
= B1/W

U,V , where BU,V is a standard Beta random variable
with parameters U, V. Notice that when U = 1, we get the so-called Kumaraswamy distribution with
parameters (W, V) (see [13]). Then, we have:

B(U, V)F̄ (x) =

{
B(1 − y; V,U) = V−1 (1 − y)V 2F1(1 − U, V, V + 1, 1 − y) for W > 0
B(y;U, V) = U−1yU 2F1(1 − V,U,U + 1; y) for W < 0,

with y = xW ∈ (0, 1) and the standard notation for the incomplete beta function and the Gaussian
hypergeometric function. It is easy to check that:

x ↦→ f (ex) is log-concave ⇔ V ≥ 1.

On the other hand, for W > 0, Kummer’s transformation on 2F1 implies:

1
xh(x) = (VW)−1y−U (1 − y) 2F1(1 − U, V, V + 1; 1 − y)

= (VW)−1(1 − y) 2F1(U + V, 1, V + 1; 1 − y),

which is a decreasing function in x ∈ (0, 1) by positivity of the coefficients in the series representation
of 2F1(U + V, 1, V + 1; 1 − y). This shows that x ↦→ F̄ (ex) is log-concave for all U, V, W > 0.

But, for W < 0, the same hypergeometric transformation leads to:

1
xh(x) = (U |W |)−1(1 − y) 2F1(U + V, 1,U + 1; y),

which can be shown to be decreasing in x ∈ (1,∞) for V > 1 and increasing in x ∈ (1,∞) for V < 1.
This implies that either V ≥ 1 and x ↦→ f (ex) and x ↦→ F̄ (ex) are log-concave, or V ≤ 1 and x ↦→ f (ex)
and x ↦→ F̄ (ex) are log-convex. In particular, the statement of Proposition 3.1 is again an equivalence
for W < 0. It can also be shown that neither f nor F̄ are log-concave for W < 0, while

f is log-concave ⇔ inf{V, W,UW} ≥ 1 and F̄ is log-concave ⇔ inf{W,UW} ≥ 1,

for W > 0.

If we consider V < 1 and W > 0 in the above example, it is of interest to notice that x ↦→ f (ex) is
log-convex on R− while x ↦→ F̄ (ex) is log-concave on R. From Remark 2.2 (c) and Corollary 2.3, this
implies:(∫ c

a
f (t) dt

)2
≤

(∫ c

a
f (ct) dt

) (∫ c

a
f (c−1t) dt

)
≤

(∫ c−1

a
f (ct) dt

) (∫ c

a
f (c−1t) dt

)
≤

(∫ 1

a
f (t) dt

)2

,

for all a< c in (0, 1). We refer to [3] for further discussions on the asymmetry between log-concavity
and log-convexity in a probabilistic framework. One may also refer to [9] for a characterization based
on Lévy measures, in the framework of infinitely divisible distributions.
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3.2. On failure rates of (n − k + 1)-out-of-n systems with discrete lifetimes

Let Z be a random variable with support SZ ⊆ N, pi = P[Z = i] be its probability mass function
(pmf), Fi = P[Z ≤ i] be its cumulative distribution function (cdf), and F̄i = P[Z > i] be its survival
function (sf). The failure rate of this distribution has been defined as (see [10] p.45):

h(i) =
P[Z = i]
P[Z ≥ i] =

pi

F̄i−1
= 1 − F̄i

F̄i−1
,

for all i ∈ SZ . Z is said to have the IFR property if its failure rate is non-decreasing. From the above, it
means that i ↦→ F̄i/F̄i−1 is non-increasing, or equivalently, {F̄i} is a logconcave sequence, i.e.,

(F̄i)2 ≥ F̄i−1F̄i+1

for all i ≥ 0. Let Z1, . . . , Zn be n independent copies of Z and Zk:n be the k-th order statistic, for 1 ≤ k ≤
n. This is the same as the lifetime of an (n−k+1)-out-of-n system; see [5], for example (some properties
on ageing notions and order statistics in the discrete case can be found in [1] and the references therein).
The following theorem presents an alternative proof to the main result of [2] which states that the IFR
property is preserved by order statistics. A continuous version of this result had been established about
six decades ago by Esary and Proschan [8].

Theorem 3.4. If Z has IFR property, then Zk:n has IFR property for all n ≥ 1 and 1 ≤ k ≤ n.

Proof. Setting pk:n
i , Fk:n

i and F̄k:n
i for the respective pmf, cdf and sf of Zk:n, we start with the expression:

pk:n
i = k

(
n
k

) ∫ Fi

Fi−1

xk−1(1 − x)n−k dx,

given in [4] p. 42, for example. This implies

F̄k:n
i =

∞∑
j=i+1

pk:n
j = k

(
n
k

) ∫ 1

Fi

xk−1 (1 − x)n−k dx =

∫ F̄i

0
fk:n(x) dx,

with the notation:

fk:n (x) = k
(
n
k

)
xn−k (1 − x)k−1,

which is easily seen to be such that fk:n(ex) is log-concave function for all n ≥ 1 and 1 ≤ k ≤ n.
Applying now Corollary 2.3 with a= 0, b = F̄i and c = F̄i−1/F̄i, we obtain:

(F̄k:n
i )2 =

(∫ F̄i

0
fk:n(x) dx

)2

≥
(∫ F̄i

0
fk:n(cx) dx

) (∫ F̄i

0
fk:n(c−1x) dx

)
=

(∫ (F̄i )2/F̄i−1

0
fk:n(x) dx

) (∫ F̄i−1

0
fk:n(x) dx

)
≥

(∫ F̄i+1

0
fk:n(x) dx

) (∫ F̄i−1

0
fk:n(x) dx

)
= F̄k:n

i−1F̄k:n
i+1,

where for the second inequality we have used (F̄i)2 ≥ F̄i−1F̄i+1 comes from the IFR property of Z.
Hence, the theorem. �
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The above method also allows us to obtain the stability result for the reversed failure rate of the
discrete random variable Z. With the notation as above, the reversed failure rate is defined as:

r(i) =
P[Z = i]
P[Z ≤ i] =

pi

Fi
= 1 − Fi−1

Fi
.

Then, Z is said to have the DRFR property if r(i) is non-increasing in i, which means that {Fi} is a
log-concave sequence. The following is a discrete counterpart to a result in Theorem 2.1 of Kundu,
Nanda and Hu [14].

Theorem 3.5. If Z has DRFR property, then Zk:n has DRFR property for all n ≥ 1 and 1 ≤ k ≤ n.

Proof. Let us consider the expresion:

Fk:n
i =

∫ Fi

0
gk:n(x) dx,

for the cdf of kth order statistic, with the notation:

gk:n(x) = fk:n(1 − x) = k
(
n
k

)
xk−1(1 − x)n−k .

It is evident that fk:n(ex) is a log-concave function for all n ≥ 1 and 1 ≤ k ≤ n. The proof of this theorem
then proceeds along the same lines as that of Theorem 3.4, using the inequality (Fi)2 ≥ Fi−1Fi+1. �

Remark 3.6. The following example shows that the converse results of Theorems 3.4 and 3.5 are not
true in general. Suppose P[Z = 1] = P[Z = 3] = 2/5 and P[Z = 2] = 1/5. Then, we find that
h(1) = r(3) = 2/5, h(2) = r(2) = 1/3 and h(3) = r(1) = 1, so that h and r are not monotone. On the
other hand, we have:

h2:3(1) =
44
125

< h2:3(2) =
37
91

< h2:3(3) = 1,

and so Z2:3 is IFR; similarly

r1:3(3) =
8

125
< r1:3(2) =

19
117

< r1:3(1) = 1,

and so Z1:3 is DRFR.
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