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Linking Number of Singular Links and the
Seifert Matrix

James J. Hebda, Chun-Chung Hsieh, and Chichen M. Tsau

Abstract. We extend the notion of linking number of an ordinary link of two components to that of a

singular link with transverse intersections, in which case the linking number is a half-integer. We then

apply it to simplify the construction of the Seifert matrix, and therefore the Alexander polynomial, in

a natural way.

1 Introduction

The notion of linking number for two non-intersecting, parametrized, closed (C1)

curves in 3-space originated from the Gauss linking integral. It is the integral over

the unit torus of the pull-back of the area form of the unit sphere under the secant

Gauss map. Topologically, the linking number is the degree of the secant Gauss map,

and therefore the number of times the oriented unit sphere is covered by the im-

age of the map. It is the integer representing the homology class of one curve in

the first homology group of the complement of the other curve, and it is the alge-

braic intersection number of one curve with a 2-complex which bounds the other

curve (in case of a link of two components, then the 2-complex can be chosen to be a

Seifert surface). Combinatorially, the linking number is the sum of the signed cross-

ing numbers of one specified curve crossing under the other curve in a diagram of

the curves (i.e., regular projection in a plane), and equivalently, it is one-half of the

sum of the signed crossing numbers of any one curve crossing under the other curve

in a diagram. We shall see that this last viewpoint is especially useful when we discuss

the linking number of singular links. For a discussion of the above alternative and

equivalent definitions of linking number for an (ordinary) link of two components,

see [R, pp. 132–136] and [K, p. 14].

In this paper, we extend the notion of linking number via Gauss linking integral to

the case of two parametrized, closed (C2) curves which intersect one another trans-

versely. In this case the linking number is no longer an integer in general, and instead

it is half of an integer. We then give a combinatorial formula for computing such a

linking number from a diagram of the curves. A natural question is to ask whether

there is a topological explanation of this notion of linking number in terms of ho-

mology and intersection theory. We have not been able to answer it at the time of

this writing.
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Linking Number of Singular Links and the Seifert Matrix 391

This notion of linking number, in conjunction with the intersection form of

curves in surfaces, will then be used to construct the Seifert matrix for an oriented

link, which is essential in Seifert’s construction of the Alexander polynomial of the

link. This procedure simplifies the usual construction of the Seifert matrix via Seifert

pairings by eliminating the necessity of pushing a fundamental system of curves of

the Seifert surface to one side of the surface in order to avoid intersections of two

distinct curves, so that the ordinary linking number can be evaluated. In a way, this

procedure is also more natural than the conventional way of finding the Seifert ma-

trix.

We work in the smooth (C∞) category unless otherwise indicated. As usual, we

denote by lk(x, y) the linking number of two disjoint knots x and y in R3 or S3.

2 Linking Number of Singular Links

Let x, y : S1 → R3 be smooth embeddings and have transverse intersections. Here

transverse intersection means that at a point of intersection, the curves x and y have

linearly independent tangent vectors. In this case we say that x∪ y is a (parametrized)

singular link with transverse intersections. An isotopy of a singular link with trans-

verse intersections is an (ordinary) isotopy satisfying the condition that at each stage

the isotopy preserves the transversality of intersections of the singular link. Consider

the Gauss linking integral for x ∪ y, which we denote by lk(x, y):

lk(x, y) =
1

4π

∫

S1

∫

S1

x ′(s) × y ′(t) · (x(s) − y(t))

‖x(s) − y(t)‖3
dtds.

Călugăreanu showed [C1, p. 7] that despite the blow-ups of the integrand at the

intersection points of x and y, the linking integral is a well-defined finite number. We

show in the following that this number is a half-integer.

Theorem 2.1 The Gauss linking integral of a (parametrized) singular link x ∪ y with

transverse intersections is a number in Z[ 1
2
] and an isotopy invariant of x ∪ y.

Proof Since the Gauss linking integral is independent of the parametrization, for

convenience we identify S1 with the interval [0, 2π], and assume that x(0) = x(2π)

and y(0) = y(2π). Let p1, . . . , pn be the points of intersection of x and y, and let

(s1, t1), . . . , (sn, tn) be the corresponding points in the torus T = S1 × S1 such that

x(si) = y(ti) = pi for i = 1, . . . , n. Let

wi =
x ′(si) × y ′(ti)

‖x ′(si) × y ′(ti)‖
.

Then wi is a unit vector perpendicular to the plane spanned by the tangent vectors of

x and y at the point pi . Choose a sufficiently small δ > 0 so that the sets Ni(2δ) =

{(s, t) : |s − si| < 2δ, |t − ti | < 2δ}, i = 1, . . . , n, are disjoint square neighborhoods

of the points (s1, t1), . . . , (sn, tn) in T. We will further restrict δ in the course of the

proof.
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Let λ(t) be a bump function satisfying λ(t) = 1 if |t| ≤ δ, 0 < λ(t) < 1 if

δ < |t| < 2δ, and λ(t) = 0 if |t| ≥ 2δ. Let σ = (σ1, . . . , σn) where σi = ±1. For

sufficiently small ǫ > 0, set yσ
ǫ (t) = y(t) +

∑n
i=1 ǫλ(t − ti)σiwi . Geometrically, {yσ

ǫ }
is a family of knots obtained by pushing y off x locally at the point pi in the direction

of σiwi .

Consider the Gauss integrands

G(s, t) =
x ′(s) × y ′(t) · (x(s) − y(t))

‖x(s) − y(t)‖3

and

Gσ
ǫ (s, t) =

x ′(s) × (yσ
ǫ ) ′(t) · (x(s) − yσ

ǫ (t))

‖x(s) − yσ
ǫ (t)‖3

.

Since for each σ and for all sufficiently small ǫ > 0, {x, yσ
ǫ } is a family of isotopic

nonsingular links,
1

4π

∫∫

T

Gσ
ǫ (s, t) dtds = lk(x, yσ

ǫ )

is an integer which is independent of ǫ. For notational convenience let lk(x, yσ) de-

note this integer constant. Now

∫∫

T

Gσ
ǫ (s, t) dtds =

∫∫

T̂

Gσ
ǫ (s, t) dtds +

n∑

i=1

∫∫

Ni (δ)

Gσ
ǫ (s, t) dtds,

where T̂ = T − ⋃n
i=1 Ni(δ). Clearly, Gσ

ǫ converges uniformly to G on T̂ since the

denominator does not vanish. Thus we have

lim
ǫ→0

∫∫

T̂

Gσ
ǫ (s, t) dtds =

∫∫

T̂

G(s, t) dtds.

On the other hand, for each i = 1, . . . , n, yσ
ǫ (t) = y(t) + ǫσiwi if |t − ti | < δ, since

λ(t − ti) = 1. Therefore for (s, t) ∈ Ni(δ), Gσ
ǫ (s, t) = Gi

ǫ(s, t) −W i
ǫ(s, t), where

Gi
ǫ(s, t) =

x ′(s) × y ′(t) · (x(s) − y(t))

‖x(s) − y(t) − ǫσiwi‖3

and

W i
ǫ(s, t) =

x ′(s) × y ′(t) · ǫσiwi

‖x(s) − y(t) − ǫσiwi‖3
.

The argument in [C2, p. 615] (see also [W, p. 233]) implies that

lim
ǫ→0

∫∫

Ni (δ)

W i
ǫ(s, t) dtds = −2πσi.

In the appendix, we will show that it is possible to choose δ small enough so that

there exists a constant K such that

(2.1) |Gi
ǫ(s, t)| ≤ K√

(s − si)2 + (t − ti)2
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for all i and all (s, t) ∈ Ni(δ).

With δ so chosen, observe that K/
√

(s − si)2 + (t − ti)2 is integrable in Ni(δ), and

that Gσ
ǫ (s, t) → G(s, t) almost everywhere in Ni(δ). By the Lebesque dominated

convergence theorem, we have

lim
ǫ→0

∫∫

Ni (δ)

Gσ
ǫ (s, t) dtds =

∫∫

Ni (δ)

G(s, t) dtds.

Putting this together we have

lim
ǫ→0

∫∫

T

Gσ
ǫ (s, t) dtds =

∫∫

T̂

G(s, t) dtds +

n∑

i=1

(∫∫

Ni (δ)

G(s, t) dtds − 2πσi

)

=

∫∫

T

G(s, t) dtds −
n∑

i=1

2πσi.

Dividing by 4π gives

lk(x, yσ) = lk(x, y) −
n∑

i=1

σi

2
.

Thus

lk(x, y) = lk(x, yσ) +
1

2

n∑

i=1

σi.

Since lk(x, yσ) is an integer, this proves the theorem.

Remark Note that if we set + = (+1, . . . , +1) and − = (−1, . . . ,−1), then the

proof shows that lk(x, y) = lk(x, y+)+n/2, and lk(x, y) = lk(x, y−)−n/2. Averaging

implies lk(x, y) =
1
2
[lk(x, y+) + lk(x, y−)]. Note also that Theorem 2.1 holds for

x, y : S1 → R3 that are C2-immersions with transverse intersections.

We may also interpret the linking integral of a singular link by means of a general-

ized Brouwer degree of the Gauss secant map. Observe that for a singular link x ∪ y,

the Gauss secant map

γ(s, t) =
x(s) − y(t)

‖x(s) − y(t)‖

maps the finitely punctured torus {(s, t) ∈ S1 × S1 | x(s) 6= y(t)} into the sphere S2.

The puncture points correspond to the points of intersections of x and y. We com-

pactify this punctured torus by attaching the circle of directions in the tangent space

of a puncture point to form an ideal circle boundary component. To describe this,

we put polar coordinates (r, θ) about a puncture point. The polar coordinates define

coordinates in a neighborhood of the boundary, in which the boundary is coordina-

tized by {(0, θ) | θ ∈ S1}. In this way the punctured torus is compactified into a

surface M with boundary, and the Gauss secant map extends to a map γ : M → S2
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that carries each boundary component diffeomorphically onto a great circle of S2. In

the coordinates of the ideal boundary we have

γ(0, θ) =
x ′(s0) cos θ + y ′(t0) sin θ

‖x ′(s0) cos θ + y ′(t0) sin θ‖ ,

where (s0, t0) is the puncture point. This formula shows that the image of the bound-

ary component under γ is the great circle lying in the plane through the origin

which is parallel to the plane spanned by x ′(s0) and y ′(t0) at the point of intersec-

tion. If dA is the area form on S2 (oriented by the inward normal), then lk(x, y) =
1

4π

∫
M

γ∗ (dA). This integral measures the signed area of M covering S2 under γ.

More generally, let M be a compact oriented surface with boundary. Consider a

smooth mapping f : M → S2 that carries each boundary component of M diffeo-

morphically onto a great circle of S2. If p is a regular point of f , then f∗ : TpM →
T f (p)S

2 is an isomorphism. Define as usual the local degree of f at p by deg( f , p) =

±1 depending upon whether f∗ preserves or reverses orientation. If C ⊂ ∂M is a

boundary component of M and q ∈ S2\ f (C), then f (C) is the boundary of a hemi-

sphere HC,q that does not contain q. Using the induced orientations on C ⊂ ∂M

and ∂HC,q, define the winding number of f (C) around q by w( f ,C, q) = ±1 de-

pending upon whether the diffeomorphism f |C : C → ∂HC,q preserves or reverses

orientation.

Theorem 2.2 Let q ∈ S2 be a regular value of f which is not in f (∂M). Then

1

4π

∫

M

f ∗ (dA) =

∑

p∈ f −1(q)

deg( f , p) +
1

2

∑

C⊂∂M

w( f ,C, q).

Proof Cap each boundary component C by a disk DC to produce an oriented closed

surface M̂ = M ∪
⋃

C⊂∂M DC . Extend f to a piecewise smooth map f̂ : M̂ → S2 so

that f̂ |DC : DC
∼= HC,q. Here f̂ may fail to be smooth at points of ∂M. Note that

f̂ |DC preserves orientation if and only if f |C : C → ∂HC,q reverses orientation (and

vice versa). Thus f̂ |DC preserves orientation if and only if w( f ,C, q) = −1. Now by

degree theory,

deg( f̂ ) =
1

4π

∫

M̂

f̂ ∗ (dA) =
1

4π

∫

M

f ∗ (dA) − 1

4π

∑

C⊂∂M

2πw( f ,C, q),

since f̂ maps each DC diffeomorphically onto a hemisphere. On the other hand,

deg( f̂ ) =

∑

p∈ f̂ −1(q)

deg( f̂ , p) =

∑

p∈ f −1(q)

deg( f , p).

Eliminating deg( f̂ ) between the two equations gives the result.

https://doi.org/10.4153/CMB-2007-037-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-037-8


Linking Number of Singular Links and the Seifert Matrix 395

Corollary 2.3 Let ±q ∈ S2 be antipodal regular values of f which are not in f (∂M).

Then
1

4π

∫

M

f ∗ (dA) =
1

2

[ ∑

p∈ f −1(q)

deg( f , p) +
∑

p∈ f −1(−q)

deg( f , p)
]
.

Proof Since w( f ,C,−q) = −w( f ,C, q), the result follows by averaging the formu-

las in Theorem 2.2 with q and −q.

Remark These formulas generalize to maps f : M → Sn of oriented compact

n-manifolds M with spherical boundary which carry boundary components diffeo-

morphically onto great hyperspheres of Sn.

We shall henceforth define the linking number of a (parametrized) singular link

x ∪ y with transverse intersections to be its Gauss linking integral lk(x, y).

Given a singular link x ∪ y with transverse intersections, a combinatorial formula

for the linking number lk(x, y) from a diagram of the singular link can be obtained.

By Theorem 2.1, we may assume that the diagram is the regular projection of the

singular link x∪ y, which lies in the plane of projection except at crossings (not inter-

sections) where one of x and y crosses over or under the other in a sufficiently small

ǫ-neighborhood of the plane of projection. As ǫ → 0, we see that the only nonzero

portion in the Gauss linking integral of x ∪ y are those around crossing points (note

that the linking integral around an interesection point is 0 in this case), and by the

proof of Theorem 2.1, each crossing gives rise to ± 1
2

according to whether it is a

positive or negative crossing. This can also be obtained by Corollary 2.3 by taking

±q ∈ S2 to be vectors normal to the plane of projection. We therefore obtain an

algorithm for computing lk(x, y) combinatorially as follows: In a given diagram of

x∪y, ignore intersections and assign ± 1
2

to every positive/negative crossing correspond-

ingly, and then sum up these assigned values to obtain lk(x, y).

Now consider a parametrized embedding x : S1 → R3. Its image is an oriented

knot in R3, and for convenience we shall still denote the image by x. Every oriented

knot in R3 is the image of such a parametric embedding. Two parametrizations of

x give the same oriented knot in R3 if there is an orientation-preserving diffeomor-

phism on S1 taking one parametrization to the other. For oriented knots x and y in

R3 which intersect transversely, define the linking number of x and y to be the linking

number of their representative parametric embeddings.

3 Seifert Matrix and Linking Number of Singular Links

The Alexander polynomial [A] of a knot K in S3 was originally defined to be the deter-

minant of a presentation matrix, called the Alexander matrix, of the first homology

group of the universal abelian cover of the complement of K in S3, considered as a

Z[t−1, t]-module. The polynomial is well defined up to a unit ±t i in Z[t−1, t]. Given

a fixed orientation of S3, if L is an oriented link in S3 and F a (oriented and smooth)

Seifert surface for L, then F has a product neighborhood F × [−1, 1] in S3, where

F±
= F × {±1} corresponds to the positive/negative side of F in S3 determined by
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the orientations of F and S3. Let H1(F) = 〈α1, . . . , αm〉, where each αi is a smooth

closed curve immersed in F, and for i 6= j, if αi intersects α j , then they intersect

transversely. Then the Seifert matrix of L [S] (determined by the Seifert surface F and

ordered basis {α1, . . . , αm} of H1(F)) is the matrix V = [vi j], where vi j = lk(αi , α
+
j )

for 1 ≤ i, j ≤ m, in which α+
j is α j ⊂ F = F × {0} pushed into F+ so that

αi∩α+
j = φ. By the stable equivalence of Seifert surfaces for a given oriented link, and

the S-equivalence of the corresponding Seifert matrices, the (Conway-normalized)

Alexander polynomial ∆L(t) ∈ Z[t
1

2 , t
−1

2 ] defined by ∆L(t) = det(t
1

2 V − t
−1

2 V T) is

a well-defined isotopy invariant of L. See for example [L, M].

By Theorem 2.1, lk(αi , α j) is a number in Z[ 1
2
] for i 6= j. We define lk(αi , αi)

to be lk(αi , α̃i), where α̃i is a parallel copy of αi in the surface F. Thus we have

lk(αi , αi) = lk(αi , α
+
i ) = lk(αi , α

−

i ).

Lemma 3.1 lk(αi , α j) =
1
2

[
lk(αi , α

+
j ) + lk(αi , α

−

j )
]

for 1 ≤ i, j ≤ m.

Proof By an extension of the argument used in proving Theorem 2.2, one can

show that if the number of intersection points of αi and α j is n, then lk(αi , α j) −
lk(αi , α

+
j ) =

k
2
, and lk(αi , α j) − lk(αi , α

−

j ) =
−k
2

for some −n ≤ k ≤ n, and the

result follows.

Theorem 3.2 With the notations given in the above, the (i, j)-th entry of the Seifert

matrix V is the linking number lk(αi , α j) of a diagram of the singular link αi ∪ α j ,

computed by ignoring all the intersection points of αi and α j and counting ± 1
2

at each

positive/negative crossing correspondingly, plus the Z[ 1
2
]-valued algebraic intersection

number of αi and α j computed by counting ± 1
2

at each positive/negative intersection

correspondingly.

Proof Lemma 3.1 gives rise to a symmetric bilinear form lk : H1(F)×H1(F) → Z[ 1
2
]

which is represented by the matrix A = [ai j], where ai j = lk(αi , α j) for 1 ≤ i, j ≤ m,

with respect to the basis {α1, . . . , αm}. Since vi j = lk(α j , α
+
i ) = lk(α−

j , αi) =

lk(αi , α
−

j ), we have ai j =
1
2
(vi j + v ji) for 1 ≤ i, j ≤ m, hence A =

1
2
(V + V T). Recall

the intersection form ι on H1(F) is a skew-symmetric bilinear form whose matrix

representation with respect to the ordered basis {α1, . . . , αm} is W = [wi j], where

wi j = ι(αi , α j) for 1 ≤ i, j ≤ m. The matrix W is related to the Seifert matrix V by

W = V −V T , see for example [R, p. 202]. Let B =
1
2
W =

1
2
(V −V T). The matrix B

may be considered as the matrix representing the Z[ 1
2
]-valued intersection form on

H1(F) where the value assigned at each transverse intersection is ± 1
2

(with the same

sign convention), instead of ±1. It follows that V = A + B, and so the Seifert matrix

V may be recovered from A and B (algebraically this is the well-known fact that every

square matrix is the sum of a symmetric and a skew-symmetric matrix.)

Theorem 3.2 gives rise to a procedure of finding the Seifert matrix for an oriented

link by using a fundamental system of curves in the Seifert surface for the link alone.
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A Appendix

To prove (2.1), first fix i. Without loss of generality we may assume (si , ti) = (0, 0).

Integration by parts implies that

x(s) = x(0) + x ′(s)s −
∫ s

0

ux ′ ′(u) du and y(t) = y(0) + y ′(t)t −
∫ t

0

vy ′ ′(v) dv.

Since x(0) = y(0),

x ′(s) × y ′(t) · (x(s) − y(t)) = x ′(s) × y ′(t) · (x ′(s)s − y ′(t)t −
∫ s

0

ux ′ ′(u) du

+

∫ t

0

vy ′ ′(v) dv)

= x ′(s) × y ′(t) ·
(
−

∫ s

0

ux ′ ′(u) du +

∫ t

0

vy ′ ′(v)dv
)

Thus ‖x ′(s)× y ′(t) · (x(s)− y(t))‖ ≤ K1(s2 + t2), where the constant K1 can be taken

to be 1
2
· ‖x ′‖∞ · ‖y ′‖∞ · max{‖x ′ ′‖∞, ‖y ′ ′‖∞}. Here ‖ · ‖∞ denotes the sup norm

on S1.

Now we may choose δ ′ > 0 so that x ′(s), y ′(t), and wi are linearly independent

on the closure N i(δ
′) of Ni(δ

′). Let

K2 =
1

2
inf

{
‖ux ′(s) + vy ′(t) + wwi‖ : u2 + v2 + w2

= 1, (s, t) ∈ N i(δ
′)
}

.

Then K2 > 0. Let δ = min{δ ′,
√

2K2/c}, where c = max{‖x ′ ′‖∞, ‖y ′ ′‖∞}. Then if

(s, t) ∈ Ni(δ), we have

‖x(s) − y(t) − ǫσiwi‖ ≥ ‖x ′(s)s − y ′(t)t − ǫσiwi‖

− ‖ −
∫ s

0

ux ′ ′(u) du +

∫ t

0

vy ′ ′(v) dv‖

≥ 2K2

√
s2 + t2 + ǫ2 − c

2
(s2 + t2)

≥
(

2K2 −
c

2

√
s2 + t2

)√
s2 + t2

≥ K2

√
s2 + t2.

Thus with this δ, we have for (s, t) ∈ Ni(δ)

|Gi
ǫ(s, t)| ≤ ‖x ′(s) × y ′(t) · (x(s) − y(t))‖

‖x(s) − y(t) − ǫσiwi‖3
≤ K1(s2 + t2)

K2(
√

s2 + t2)3
=

K√
s2 + t2

,

where K = K1/K2.

Inequality (2.1) holds uniformly for all i by taking the smallest of the δ’s and the

largest of K’s.
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