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Abstract We provide an alternative approach to the Faddeev–Reshetikhin–Takhtajan presentation of
the quantum group Uq(g), with L-operators as generators and relations ruled by an R-matrix. We look at
Uq(g) as being generated by the quantum Borel subalgebras Uq(b+) and Uq(b−), and use the standard
presentation of the latter as quantum function algebras. When g = gln, these Borel quantum function
algebras are generated by the entries of a triangular q-matrix. Thus, eventually, Uq(gln) is generated by
the entries of an upper triangular and a lower triangular q-matrix, which share the same diagonal. The
same elements generate over k[q, q−1] the unrestricted k[q, q−1]-integral form of Uq(gln) of De Concini
and Procesi, which we present explicitly, together with a neat description of the associated quantum
Frobenius morphisms at roots of 1. All this holds, mutatis mutandis, for g = sln too.
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1. Introduction

Let g be a semi-simple Lie algebra over a field k. Classically, it has two standard presen-
tations: Serre’s, which uses a minimal set of generators, and Chevalley’s, using a linear
basis as generating set. If g instead is reductive, a presentation is obtained by that of its
semi-simple quotient by adding the centre. When g = gln, Chevalley’s generators are the
elementary matrices, and Serre’s form a distinguished subset of them; the general case
of any classical matrix Lie algebra g is a slight variation on this theme. Finally, both
presentations also yield presentations of U(g), the universal enveloping algebra of g.

At the quantum level, one has correspondingly a Serre-like and a Chevalley-like pre-
sentation of Uq(g), the quantized universal enveloping algebra associated with g after
Jimbo and Lusztig (i.e. defined over the field k(q), where q is an indeterminate). The
first presentation is used by Jimbo [10] and Lusztig [13] and, mutatis mutandis, by Drin-
feld too; in this case the generators are q-analogues of the Serre generators, and starting
from them one builds quantum root vectors via two different methods: iterated quan-
tum brackets, as in [11] (and maybe others), or braid group action, as in [13] (see [6]
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for a comparison between these two methods). The second presentation was introduced
by Faddeev, Reshetikhin and Takhtajan (FRT) [4]: the generators in this case, called
L-operators, are q-analogues of the classical Chevalley generators; in particular, they are
quantum root vectors themselves. An explicit comparison between quantum Serre-like
generators and L-operators appears in [4, § 2] for the cases of classical g; on the other
hand, in [15, § 1.2], a similar comparison is made for g = gln between L-operators and
quantum root vectors (for any root) built out of Serre’s generators.

The first purpose of this note is to provide an alternative approach to the FRT presen-
tation of Uq(g): it amounts to a series of elementary steps, yet the final outcome seems
noteworthy. As a second, deeper result, we give an explicit presentation of the k[q, q−1]-
subalgebra of Uq(g) generated by L-operators; call it Ũq(g). By its very construction,
this is merely the unrestricted k[q, q−1]-integral form of Uq(g), defined by De Concini
and Procesi (see [3]), whose semi-classical limit is Ũq(g)/(q − 1)Ũq(g) ∼= F [G∗], where
G∗ is a connected Poisson algebraic group dual to g (see [3,5] and [7, §§ 7.3 and 7.9]):
our explicit presentation of Ũq(g) yields another, independent (and much easier) proof of
this fact. Third, by [3] we know that quantum Frobenius morphisms exist, which embed
F [G∗] into the specializations of Ũq(g) at roots of 1: our presentation of Ũq(g) provides
an explicit description of them.

This analysis shows that the two presentations of Uq(g) correspond to different
behaviours with respect to specializations. Indeed, let Ûq(g) be the k[q, q−1]-algebra given
by the Jimbo–Lusztig presentation over k[q, q−1]. Its specialization at q = 1 is

Ûq(g)/(q − 1)Ûq(g) ∼= U(g)

(up to technicalities), with g inheriting a Lie bialgebra structure (see [2,10,13]). On the
other hand, the integral form Ũq(g) mentioned above specializes to F [G∗], the Poisson
structure on G∗ being exactly the one dual to the Lie bialgebra structure on g. So the
existence of two different presentations of Uq(g) reflects the deep fact that, taking suitable
integral forms, Uq(g) provides quantizations of two different semi-classical objects (this
is a general fact; see [7,8]). To the author’s knowledge, this was not previously known,
as the FRT presentation of Uq(g) has never been used to study the integral form Ũq(g).

Let us sketch in short the path we follow. First, we note that Uq(g) is generated by
the quantum Borel subgroups Uq(b−) and Uq(b+) (where b− and b+ are opposite Borel
subalgebras of g), which share a common copy of the quantum Cartan subgroup Uq(t).
Second, there exist Hopf algebra isomorphisms Uq(b−) ∼= Fq[B−] and Uq(b+) ∼= Fq[B+],
where Fq[B−] and Fq[B+] are the quantum function algebras associated with b− and b+,
respectively. Third, when g is classical we resume the explicit presentation by generators
and relations of Fq[B−] and Fq[B+], as given in [4, § 1]. Fourth, from the above we argue
a presentation of Uq(g) where the generators are those of Fq[B−] and Fq[B+], the toral
generators being taken only once, and relations are those of these quantum function
algebras plus some additional relations between generators of opposite quantum Borel
subgroups. We perform this last step with all details for g = gln and, with slight changes,
for g = sln as well. Finally, we refine the last step to provide a presentation of Ũq(g).
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As an application, our results apply also (with few changes) to the Drinfeld-like quan-
tum groups U�(g): in particular we get a presentation of an �-deformation of F [G∗], say
Ũ�(g) =: F�[G∗].

2. The general case

2.1. Quantized universal enveloping algebras

Let k be a fixed field of zero characteristic, let q be an indeterminate, and let g be a
semi-simple Lie algebra over k. Let Uq(g) be the quantum group à la Jimbo and Lusztig
defined over k(q): we define it after the conventions in [3], [2] or [5] (for ϕ = 0). Actually,
we can define a quantum group like that for each lattice M between the root lattice Q

and the weight lattice P of g; thus, we shall write UM
q (g). Roughly, UM

q (g) is the unital
k(q)-algebra with generators Fi, Λ±1

i , Ei for i = 1, . . . , r =: rank(g) and relations as
in [3,5], which depend on the Cartan datum of g and on the choice of the lattice M ;
in particular, the Λi are ‘toral’ generators, roughly q-exponentials of the elements of a
Z-basis of M . Here we recall only the relation

EiFj − FjEi = δij
Ki − K−1

i

q − q−1 , ∀i, j = 1, . . . , r, (2.1)

where Ki is a q-analogue of the coroot corresponding to the ith node of the Dynkin
diagram of g (in fact, it is a suitable product of the Λ±1

k ). Also, we consider on UM
q (g)

the Hopf algebra structure given in [3,5].
The quantum Borel subalgebra UM

q (b+) is simply the unital k(q)-subalgebra of
UM

q (g) generated by Λ±1
1 , . . . , Λ±1

r , E1, . . . , Er, and UM
q (b−) the subalgebra generated

by F1, . . . , Fr, Λ±1
1 , . . . , Λ±1

r . In fact, both of these are Hopf k(q)-subalgebras of UM
q (g).

It follows that UM
q (g) is generated by UM

q (b+) and UM
q (b−), and every possible commu-

tation relation between these two subalgebras is a consequence of (2.1) and the commu-
tation relations between the Λ±1

i and the Fj or the Ej . Finally, we call UM
q (t) the unital

k(q)-subalgebra of UM
q (g) (and of UM

q (b±)) generated by all the Λi (i = 1, . . . , n), which
also is a Hopf subalgebra.

Mapping Fi �→ Ei, Λ±1
i �→ Λ∓1

i and Ei �→ Fi (for all i = 1, . . . , n) uniquely defines
an algebra automorphism and coalgebra anti-automorphism of UM

q (g), that is a Hopf
algebra isomorphism

Θ : UM
q (g) � � ∼= �� �� UM

q (g)op,

where hereafter, given any Hopf algebra H, we denote by Hop the same Hopf algebra as
H but for the fact that we take the opposite coproduct. Restricting Θ to quantum Borel
subalgebras gives Hopf algebra isomorphisms UM

q (b±) ∼= UM
q (b∓)op.

2.2. Quantum function algebras

Let M be a lattice between Q and P as in § 2.1, and define M ′ := {ψ ∈ P | 〈ψ, µ〉 ∈
Z, ∀µ ∈ M}, where 〈· , ·〉 is the Q-valued scalar product on P induced by scalar extension
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from the natural Z-valued pairing between Q and P . Such an M ′ is again a lattice, said
to be dual to M . Conversely, M is dual to M ′, i.e. M = M ′′.

We define quantum function algebras after Lusztig. To start with, letting M and M ′ be
mutually dual lattices as above, we define FM ′

q [G] as the unital k(q)-algebra of all matrix
coefficients of finite-dimensional UM

q (g)-modules which have a basis of eigenvectors for
all the Λi (i = 1, . . . , n) with eigenvalue powers of q. Starting from UM

q (b+) or UM
q (b−)

instead of UM
q (g), the same recipe defines the Borel quantum function algebras FM ′

q [B+]
and FM ′

q [B−], respectively. All these quantum function algebras are in fact also Hopf
algebras.

Finally, the Hopf algebra monomorphisms j± : UM
q (b±) ↪→ UM

q (g) induce Hopf algebra
epimorphisms π± : FM ′

q [G] � FM ′

q [B±] (see [2,5] for details).

2.3. Isomorphisms between quantum universal enveloping algebras and
quantum function algebras over Borel subgroups

Let M and M ′ be mutually dual lattices as in § 2.2. According to Tanisaki [17], there
exist perfect (i.e. non-degenerate) Hopf pairings

UM
q (b+)op ⊗ UM ′

q (b−) → k(q), UM
q (b−)op ⊗ UM ′

q (b+) → k(q);

this implies that UM
q (b+)op ∼= FM

q [B−] and UM
q (b−)op ∼= FM

q [B+]. By composition of the
latter with the isomorphisms UM

q (b+) ∼= UM
q (b−)op and UM

q (b−) ∼= UM
q (b+)op in § 2.1,

it follows that UM
q (b+) ∼= FM

q [B+] and UM
q (b−) ∼= FM

q [B−] as Hopf k(q)-algebras.

2.4. Generation of UM
q (g) by quantum function algebras

We stated in § 2.1 that UM
q (g) is generated by UM

q (b−) and UM
q (b+), whose mutual

commutation is a consequence of (2.1). In particular, we have a k(q)-vector space iso-
morphism

UM
q (g) = (UM

q (b−) ⊗ UM
q (b+))/J,

where J is the two-sided ideal of UM
q (b−) ⊗ UM

q (b+), with the standard tensor product
structure, generated by ({Kµ ⊗ 1 − 1 ⊗ Kµ}µ∈M ), while the multiplication is a conse-
quence of the internal commutation rules of UM

q (b±) and of (2.1). Now, thanks to the
isomorphisms in § 2.3, we describe UM

q (g) as being generated by FM
q [B−] and FM

q [B+],
with mutual commutation being a consequence of the commutation formulae correspond-
ing to (2.1) under those isomorphisms. So we have a k(q)-vector space isomorphism

UM
q (g) ∼= (FM

q [B−] ⊗ FM
q [B+])/I,

where I is the ideal of FM
q [B−] ⊗ FM

q [B+] corresponding to J , while commutation rules
are the internal rules of FM

q [B±] and those corresponding to (2.1).

2.5. Relation to L-operators

Tracking carefully the construction of UM
q (g) proposed in § 2.4, one realizes that this

is just an alternative way to introduce UM
q (g) via L-operators as in [4]. Such a com-

parison is essentially the meaning (or a possible interpretation) of the analysis carried
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out in [14]. Moreover, the latter analysis also shows that the L-operators in [4] do
correspond to suitable matrix coefficients in FM

q [B−] and FM
q [B+] (embedded inside

FM
q [G]); such matrix coefficients then correspond to quantum root vectors in UM

q (b+)op

and UM
q (b−)op via the isomorphisms FM

q [B−] ∼= UM
q (b+)op and FM

q [B+] ∼= UM
q (b−)op

in § 2.3, and finally to quantum root vectors in UM
q (b−) and UM

q (b+) via the isomor-
phisms UM

q (b+)op ∼= UM
q (b−) and UM

q (b−)op ∼= UM
q (b+) in § 2.1.

2.6. Integral k[q, q−1]-forms, specializations and quantum Frobenius
morphisms

In order to look at specializations of a quantum group at special values of the param-
eter q, one needs the given quantum group to be defined over a subring of k(q) whose
elements are regular, i.e. have no poles, at such special values. As it is typical, we choose
as the ground ring the Laurent polynomial ring k[q, q−1]. Then, instead of UM

q (g), we
must consider integral forms of UM

q (g) over k[q, q−1], i.e. Hopf k[q, q−1]-subalgebras of
UM

q (g) which give all of UM
q (g) by scalar extension from k[q, q−1] to k(q): if ŪM

q (g) is
such a k[q, q−1]-form, its specialization at q = c ∈ k is the quotient Hopf k-algebra

ŪM
c (g) := ŪM

q (g)/(q − c)ŪM
q (g).

There are essentially two main types of k[q, q−1]-integral form: ÛM
q (g) (the quantum

analogue of Kostant’s Z-integral form of g) introduced by Lusztig [12], generated by
q-binomial coefficients and q-divided powers; and ŨM

q (g), introduced by De Concini and
Procesi [3], generated by rescaled quantum root vectors (see [5] for details). When q is
specialized to any value in k which is not a root of 1, the choice of either of these two
integral forms is irrelevant, because the corresponding specialized Hopf k-algebras are
mutually isomorphic. If, instead, q is specialized to ε ∈ k which is a root of 1, then the
specialized algebra changes according to the choice of integral form.

Indeed, the behaviour of ÛM
q (g) and ŨM

q (g) with respect to specializations at roots of 1
is quite different, even opposite. In particular, one has semi-classical limits ÛM

1 (g) ∼= U(g),
the universal enveloping algebra of g, and ŨM

1 (g) ∼= F [G∗
M ], the regular function alge-

bra of G∗
M , where G∗

M is a connected Poisson algebraic group with fundamental group
isomorphic to P/M and dual to g, the latter endowed with a structure of Lie bialgebra,
inherited from ÛM

q (g). Moreover, specializations of an integral form of either type at
a root of 1, say ε ∈ k, are linked to its semi-classical limit by the so-called quantum
Frobenius morphisms

ÛM
ε (g) � ÛM

1 (g) ∼= U(g), F [G∗
M ] ∼= ŨM

1 (g) ↪→ ŨM
ε (g). (2.2)

Such a situation occurs in exactly the same way (mutatis mutandis) for the quantum
Borel subalgebras UM

q (b−) and UM
q (b+). In short, one has two types of k[q, q−1]-integral

forms, ÛM
q (b±) and ŨM

q (b±), and quantum Frobenius morphisms:

ÛM
ε (b±) � ÛM

1 (b±) ∼= U(b±), F [B∗
±] ∼= ŨM

1 (b±) ↪→ ŨM
ε (b±). (2.3)
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By construction, ÛM
q (g) is generated by ÛM

q (b+) and ÛM
q (b−) and, similarly, ŨM

q (g) is
generated by ŨM

q (b+) and ŨM
q (b−). It follows that the morphisms in (2.3) can also be

obtained from (2.2) by restriction to quantum Borel subalgebras; conversely, the quantum
Frobenius morphisms in (2.2) are uniquely determined, and described, by those in (2.3).

By duality, the same happens also for quantum function algebras: in particular, there
exist two k[q, q−1]-integral forms F̂M

q [G] and F̃M
q [G] of FM

q [G], which are respectively
dual to ÛM

q (g) and ŨM
q (g) in the Hopf theoretical sense, for which the dual of (2.2) holds,

namely
F [G] ∼= F̂M

1 [G] ↪→ F̂M
ε [G], F̃M

ε [G] � F̃M
1 [G] ∼= U(g∗). (2.4)

Similarly, the dual of (2.3) holds for quantum function algebras of Borel subgroups,
namely

F [B±] ∼= F̂M
1 [B±] ↪→ F̂M

ε [B±], F̃M
ε [B±] � F̃M

1 [B±] ∼= U(b∗
±), (2.5)

which follow from (2.4) via the maps FM
q [G]

π± �� �� FM
q [B±] in § 2.2 (see [5] for details).

We now stress the relation between the isomorphisms of Hopf k(q)-algebras UM
q (b+) ∼=

FM
q [B+] and UM

q (b−) ∼= FM
q [B−] in § 2.3 and the k[q, q−1]-integral forms on both sides.

The key fact is that the previous isomorphisms restrict to isomorphisms of Hopf k[q, q−1]-
algebras

ÛM
q (b±) ∼= F̃M

q [B±] and ŨM
q (b±) ∼= F̂M

q [B±].

Therefore, looking at UM
q (g), as generated by FM

q [B−] and FM
q [B+] as explained in § 2.4,

one argues that the first and second quantum Frobenius morphisms in (2.2) are uniquely
determined (and described) by the second and first morphisms, respectively, in (2.5).

3. The case of gln

3.1. q-matrices

Let {tij | i, j = 1, . . . , n} be a set of elements in any k(q)-algebra A, ideally displayed
inside an (n×n)-matrix of which they are the entries. We will say that T := (tij)i,j=1,...,n

is a q-matrix if the tij satistfy the following relations in the algebra A:

tijtik = qtiktij , tikthk = qthktik, ∀j < k, i < h,

tiltjk = tjktil, tiktjl − tjltik = (q − q−1)tiltjk, ∀i < j, k < l.

In this case, the so-called ‘quantum determinant’, defined as

detq((tk,�)k,�=1,...,n) :=
∑

σ∈Sn

(−q)l(σ)t1,σ(1)t2,σ(2) · · · tn,σ(n),

commutes with all the ti,j . If, in addition, A is a k(q)-bialgebra, we shall also require that

∆(tij) =
n∑

k=1

tik ⊗ tkj , ε(tij) = δij , ∀i, j = 1, . . . , n.
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In this case, the quantum determinant is group-like, that is ∆(detq) = detq ⊗ detq and
ε(detq) = 1. Finally, if A is a Hopf algebra, we call any q-matrix as above whose entries
are such that detq is invertible in A a Hopf q-matrix ; then S(det±1

q ) = det∓1
q .

For later use, we also recall the following compact notation. Let

T1 := T ⊗ I, T2 := I ⊗ T ∈ A ⊗ Matn(k(q))⊗2 ∼= A ⊗ Matn2(k(q)),

where I is the identity matrix, and T := (tij)i,j=1,...,n is thought of as an element of
Matn(A) ∼= A ⊗ Matn(k(q)); consider

R :=
n∑

i,j=1

qδij eii ⊗ ejj + (q − q−1)
∑

1�i<j�n

eij ⊗ eji ∈ Matn2(k(q)),

where eij := (δihδjk)n
h,k=1 is the (i, j)th elementary matrix. Then T is a q-matrix if and

only if the identity RT2T1 = T1T2R holds true in A ⊗ Matn2(k(q)); in detail, for the
matrix entry in position ((i, j), (kl)) this reads

n∑
m,p=1

Rij,mptpktml =
n∑

m,p=1

timtjpRmp,kl.

In the bialgebra case, T is a q-matrix if, in addition, ∆(T ) = T ⊗̇ T , ε(T ) = I, and in
the Hopf algebra case also TS(T ) = I = S(T )T , i.e. S(T ) = T−1; see [4,15] for notation
(we use assumptions and normalizations of the latter) and further details.

3.2. Presentation of F P
q [G], F P

q [B−] and F P
q [B+] for G = GLn

Let us look now at G = GLn. After [1, Appendix], we know that FP
q [GLn] has the

following presentation: it is the unital associative k(q)-algebra with generators the ele-
ments of {tij | i, j = 1, . . . , n} ∪ {det−1

q } and relations encoded by the requirement that
(ti,j)i,j=1,...,n be a q-matrix; in particular, det±1

q belongs to the centre of FP
q [GLn]. More-

over, FP
q [GLn] has the unique Hopf algebra structure such that (ti,j)i,j=1,...,n is a Hopf

q-matrix.
Similarly, FP

q [B−] and FP
q [B+] are defined in the same way, but with the additional

relations ti,j = 0(i, j = 1, . . . , n; i > j) for FP
q [B−] and ti,j = 0 (i, j = 1, . . . , n; i < j) for

FP
q [B+]. Otherwise, we can say that FP

q [B−] and FP
q [B+] are generated by the entries

of the q-matrices⎛
⎜⎜⎜⎜⎜⎜⎝

t1,1 0 · · · 0 0
t2,1 t2,2 · · · 0 0
...

...
...

...
...

tn−1,1 tn−1,2 · · · tn−1,n−1 0
tn,1 tn,2 · · · tn,n−1 tn,n

⎞
⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎝

t1,1 t1,2 · · · t1,n−1 t1,n

0 t2,2 · · · t2,n−1 t2,n

...
...

...
...

...
0 0 · · · tn−1,n−1 tn−1,n

0 0 · · · 0 tn,n

⎞
⎟⎟⎟⎟⎟⎟⎠

,

respectively, and by the additional element (t1,1t2,2 . . . tn,n)−1. Moreover, both FP
q [B−]

and FP
q [B+] are Hopf algebras, the Hopf structure being given by the assumption that

their generating matrices be Hopf q-matrices (see also [16] for all these definitions).
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By their very definitions, the Hopf algebra epimorphisms π+ : FP
q [GLn] � FP

q [B+]
and π− : FP

q [GLn] � FP
q [B−] mentioned in § 2.2 are given by π+ : tij �→ tij(i � j),

tij �→ 0(i > j) and π− : tij �→ tij(i � j), tij �→ 0(i < j), respectively.

3.3. The quantum algebras UM
q (g), UM

q (b−) and UM
q (b+) for g = gln,

M ∈ {P, Q}
We recall (see, for example, [9]) the definition of the quantized universal enveloping

algebra UP
q (gln): it is the associative algebra with 1 over k(q) with generators

F1, F2, . . . , Fn−1, G±1
1 , G±1

2 , . . . , G±1
n−1, G

±1
n , E1, E2, . . . , En−1

and relations

GiG
−1
i = 1 = G−1

i Gi, G±1
i G±1

j = G±1
j G±1

i , ∀i, j,

GiFjG
−1
i = qδi,j+1−δi,j Fj , GiEjG

−1
i = qδi,j−δi,j+1Ej , ∀i, j,

EiFj − FjEi = δi,j

GiG
−1
i+1 − G−1

i Gi+1

q − q−1 , ∀i, j,

EiEj = EjEi, FiFj = FjFi, ∀i, j : |i − j| > 1,

E2
i Ej − [2]qEiEjEi + EjE

2
i = 0, F 2

i Fj − [2]qFiFjFi + FjF
2
i = 0, ∀i, j : |i − j| = 1,

with [2]q := q + q−1. Moreover, UP
q (gln) has a Hopf algebra structure given by

∆(Fi) = Fi ⊗ G−1
i Gi+1 + 1 ⊗ Fi, S(Fi) = −FiGiG

−1
i+1, ε(Fi) = 0, ∀i,

∆(G±1
i ) = G±1

i ⊗ G±1
i , S(G±1

i ) = G∓1
i , ε(G±1

i ) = 1, ∀i

∆(Ei) = Ei ⊗ 1 + GiG
−1
i+1 ⊗ Ei, S(Ei) = −G−1

i Gi+1Ei, ε(Ei) = 0, ∀i.

The algebra UQ
q (gln) (defined as in [5, § 3]) can be realized as a Hopf subalgebra.

Namely, define Li := G1G2 · · ·Gi, Kj := GjG
−1
j+1 for all i = 1, . . . , n, j = 1, . . . , n − 1.

Then UQ
q (gln) is the k(q)-subalgebra of UP

q (gln) generated by

{F1, . . . , Fn−1, K±1
1 , . . . , K±1

n−1, L±1
n , E1, . . . , En−1}.

The quantum Borel subalgebras UP
q (b+) and UP

q (b−) are the subalgebras of UP
q (gln)

generated by

{G±1
1 , . . . , G±1

n } ∪ {E1, . . . , En−1} and {G±1
1 , . . . , G±1

n } ∪ {F1, . . . , Fn−1},

respectively. Similar definitions hold for UQ
q (b±), but with the set {K±1

1 , . . . , K±1
n−1, L

±1
n }

instead of {G±1
1 , . . . , G±1

n }. All these are in fact Hopf subalgebras.

3.4. The Hopf isomorphisms ζ− : UP
q (b−) ∼= F P

q [B−], ζ+ : UP
q (b+) ∼= F P

q [B+]

The Hopf algebra isomorphisms of § 2.3 are given explicitly by (i = 1, . . . , n; j =
1, . . . , n − 1)

ζ− : UP
q (b−)

∼=−→ FP
q [B−], G±1

i �→ t∓1
i,i , Fj �→ +(q − q−1)−1t−1

j+1,j+1tj+1,j ,

ζ+ : UP
q (b+)

∼=−→ FP
q [B+], G±1

i �→ t±1
i,i , Ej �→ −(q − q−1)−1tj,j+1t

−1
j+1,j+1,
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and their inverse are uniquely determined by

ζ−1
− : FP

q [B−]
∼=−→ UP

q (b−), t±1
i,i �→ G∓1

i , tj+1,j �→ +(q − q−1)G−1
j+1Fj ,

ζ−1
+ : FP

q [B+]
∼=−→ UP

q (b+), t±1
i,i �→ G±1

i , tj,j+1 �→ −(q − q−1)EjG
+1
j+1.

A straightforward computation shows that all the above are isomorphisms as claimed.

Theorem 3.1 (‘short’ FRT-like presentation of UP
q (gln)). UP

q (gln) is the uni-
tal associative k(q)-algebra with generators the elements of the set {βi,j}1�i�j�n ∪
{γj,i}1�i�j�n and relations

βi,i+1γj+1,j − γj+1,jβi,i+1 = (δi,j+1(1 − q−1) + δi,j−1(1 − q))βi,i+1γj+1,j

− δij(q − q−1)(αiα
−1
i+1 − α−1

i αi+1), (3.1)

βk,kγk,k = 1 (3.2)

(for all i, j = 1, . . . , n − 1, k = 1, . . . , n) plus the relations encoded in the requirement
that the triangular matrices B := (βij)n

i,j=1 and Γ := (γij)n
i,j=1 be q-matrices. Moreover,

this algebra has the unique Hopf algebra structure such that these are Hopf q-matrices.

Proof. This follows directly from § 2.4 and the isomorphisms in § 3.4. Indeed, in the
given presentation, the βh,k generate a copy of FP

q [B+], with βh,k
∼= th,k, isomorphic to

UP
q (b+) via § 3.4; similarly, the γr,s generate a copy of FP

q [B−], with γr,s
∼= tr,s, isomor-

phic to UP
q (b−). The additional set of ‘mixed’ relations (3.1) simultaneously involving the

βi,i+1 and the γj+1,j then corresponds to the set of relations (2.1),or to the third line of
the set of relations in § 3.3, via the isomorphisms ζ± of § 3.4; indeed, these isomorphisms
give

βi,i+1 ∼= −(q − q−1)EiG
+1
i+1, βk,k

∼= Gk

and

γj+1,j
∼= +(q − q−1)G−1

j+1Fj , γk,k
∼= G−1

k ,

from which, computing −(q−q−1)2[EiG
+1
i+1, G

−1
j+1Fj ] in UP

q (gln), we obtain formula (3.1).
As to the Hopf structure, it is determined by that of the Hopf subalgebras UP

q (b+) and
UP

q (b−): thus, the claim follows from the previous discussion. �

Remark 3.2. Note that any other commutation relation between a generator βh,k

(h < k) and a generator γr,s (r > s) can be deduced from the ones between the βi,i+1

and the γj+1,j by repeatedly using the relations

βi,j = (q − q−1)−1(βi,kβk,j − βk,jβi,k)β−1
k,k, ∀i < k < j,

which arise from the relations βi,kβk,j − βk,jβi,k = (q − q−1)βk,kβi,j for the q-matrix B,
and the relations

γj,i = (q − q−1)−1(γk,iγj,k − γj,kγk,i)γ+1
k,k, ∀j > k > i,

which arise from the relations γk,iγj,k − γj,kγk,i = (q − q−1)γk,kγj,i for the q-matrix Γ .
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3.5. Quantum root vectors and L-operators

In this subsection we describe the generators of UP
q (gln) considered in Theorem 3.1 in

terms of generators of the FRT presentation, the so-called L-operators, in [4].
Our comparison ‘passes through’ that with quantum root vectors built on the Jimbo–

Lusztig generators given in § 3.3. For any x, y, a, let [x, y]a := xy − ayx. Define

E±
i,i+1 := Ei, E±

i,j := [E±
i,k, E±

k,j ]q±1 , ∀i < k < j,

F±
i+1,i := Fi, F±

j,i := [F±
j,k, F±

k,i]q∓1 , ∀j > k > i,

as in [11]: all these are quantum root vectors, in that, in the semi-classical limit at q = 1,
they specialize to root vectors for gln, namely the elementary matrices eij with i 
= j.
As a matter of notation, we also set Ė±

i,j := (q − q−1)E±
i,j and Ḟ±

j,i := (q − q−1)F±
j,i for

all i < j.
For the L-operators, introduced in [4], we recall from [15, § 1.2] the formulae

L+
ii := G+1

i , L+
ij := +G+1

i Ḟ+
j,i, L+

j,i := 0, ∀i < j,

L−
ii := G−1

i , L−
ji := −Ė+

i,jG
−1
i , L−

i,j := 0, ∀i < j

}
(3.3)

to define them; setting L+ := (L+
ij)

n
i,j=1 and L− := (L−

ij)
n
i,j=1, the relations

RL+
1 L+

2 = L+
2 L+

1 R, RL−
1 L−

2 = L−
2 L−

1 R, RL+
1 L−

2 = L−
2 L+

1 R (3.4)

express in compact form their mutual commutation properties (with notation as in § 3.1).
Indeed, the FRT presentation amounts exactly to claiming that UP

q (gln) is the unital
associative k(q)-algebra with generators L±

i,j (for all i, j = 1, . . . , n) and relations (3.4)
and

L+
k,kL−

k,k = 1 = L−
k,kL+

k,k, ∀k = 1, . . . , n, (3.5)

and it has the unique Hopf algebra structure such that

∆(Lε) = Lε ⊗̇ Lε, ε(Lε) = I, S(Lε) = (Lε)−1, ∀ε ∈ {+,−}, (3.6)

where L+ and L− are the upper and lower triangular matrices whose non-zero entries
are the L+

i,j and L−
j,i, respectively, I is the (n × n)-identity matrix and we use standard

compact notation as in [4].
Now, using the identifications ζ±1

+ , we get the identities

βi,i = G+1
i , βi,j = +(−q)j−i

G+1
j Ė−

i,j , ∀i < j. (3.7)

Indeed, the identities βii = G+1
i and βi,j = −qG+1

j Ė−
i,j = −Ė−

i,jG
+1
j for j = i + 1 follow

directly from the description of ζ−1
+ and the identifications βi,i

∼= ti,i, βi,i+1 ∼= ti,i+1. In
the other cases the result follows easily by induction on j − i, using the relations

βi,j = (q − q−1)−1(βi,kβk,j − βk,jβi,k)β−1
k,k, for i < k < j,

given in Remark 3.2.
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Formulae (3.7) show that the βi,j are also quantum root vectors, for positive roots.
Similarly, for negative roots the γj,i are involved. Namely, the identifications ζ±1

− yield

γi,i = G−1
i , γj,i = −(−q)i−j

Ḟ−
j,iG

−1
j , ∀i < j, (3.8)

which are the analogues of (3.7). Again this is proved by induction on j − i: the cases
j − i � 1 are a direct consequence of the description of ζ−1

− and the identifications
γi,i

∼= ti,i, γi+1,i
∼= ti+1,i, while the inductive step follows easily by means of the relations

γj,i = (q − q−1)−1(γk,iγj,k − γj,kγk,i)γ+1
k,k, for j > k > i,

given in Remark 3.2.
In order to compare (3.3) with (3.7) and (3.8) we must be able to compare quantum root

vectors with opposite superscripts. The tool is the unique k(q)-algebra anti-automorphism

Ψ : UP
q (gln) � � ∼= �� �� UP

q (gln), Ei �→ Ei, Fi �→ Fi, G±1
j �→ G∓1

j , ∀i, j,

which is clearly an involution; a straightforward computation shows that

Ψ(E±
i,j) = (−q)∓(i−j+1)

E∓
i,j , Ψ(F±

j,i) = (−q)±(i−j+1)
F∓

j,i, ∀i < j. (3.9)

Now, comparing (3.3) with (3.7) and (3.8) by using (3.9), we get

L+
ij = Ψ(γ−1

j,j γj,iγ
+1
i,i ), L−

ji = Ψ(β+1
i,i βi,jβ

−1
j,j ), ∀i � j, (3.10)

γj,i = Ψ((L+
ii)

−1L+
ijL

+
jj), βi,j = Ψ(L−

jjL
−
ji(L

−
ii)

−1), ∀i � j. (3.11)

3.6. Presentation of Ũq
P (g)

Again let G := GLn. It is well known that the k[q, q−1]-integral form F̂P
q [G] has

the same presentation as FP
q [G], but over k[q, q−1] instead of k(q). The same holds

for F̂P
q [B+] and F̂P

q [B−]. In addition, F̂P
q [B±] ∼= ŨP

q (b±) and ŨP
q (g) is generated by

ŨP
q (b+) and ŨP

q (b−). Therefore, the previous analysis implies that ŨP
q (g) as a k[q, q−1]-

algebra is generated by the entries of the q-matrices B and Γ of Theorem 3.1. The latter
provides explicitly some relations (over k[q, q−1], that is, inside ŨP

q (g) itself) among
such generators, but these do not form a complete set of relations: the general mixed
relations among the βi,j and the γr,s are missing, as those in Remark 3.2 do not make
sense inside ŨP

q (g). However, since we know the relationship between these generators
and L-operators and we know all relations among the latter, we can eventually write
down a complete set of relations for the given generators! This leads to the following
presentation.

Theorem 3.3 (FRT-like presentation of Ũq
P (gln)). Ũq

P (gln) is the unital
k[q, q−1]-algebra with generators the entries of the triangular matrices B := (βij)n

i,j=1
and Γ := (γij)n

i,j=1 and relations

RB2B1 = B1B2R, RΓ2Γ1 = Γ1Γ2R, (3.12)

RopΓD
1 BD

2 = BD
2 ΓD

1 Rop, DβDγ = I = DγDβ , (3.13)
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where

R :=
n∑

i,j=1

qδij eii ⊗ ejj + (q − q−1)
∑

1�i<j�n

eij ⊗ eji,

X1 := X ⊗ I, X2 := I ⊗ X (as in § 3.1),

Rop :=
n∑

i,j=1

qδij eii ⊗ ejj + (q − q−1)
∑

1�i<j�n

eji ⊗ eij

and Dβ := diag(β1,1, . . . , βn,n), Dγ := diag(γ1,1, . . . , γn,n), BD := D+1
β BD−1

β ,
ΓD := D−1

γ ΓD+1
γ .

The first (compact) relation in (3.13) above is also equivalent to

n∑
i,k=1

qδi,k(ei,i⊗I)(RopΓ−
1 B+

2 )(I⊗ek,k) =
n∑

j,s=1

qδj,s(ej,j ⊗I)(B−
2 Γ+

1 Rop)(I⊗es,s), (3.14)

where X± := (q±δh,kχh,k) for all X ∈ {B, Γ} (and χ ∈ {β, γ}) and, in explicit, expanded
form, it is equivalent to the set of relations (for all i, k, j, s = 1, . . . , n)

qδi,j γi,kβj,s + δi>j(q − q−1)qδi,s−δjkγj,kβi,s

= qδk,sβj,sγi,k + δs>k(q − q−1)qδi,s−δjkβj,kγi,s, (3.15)

where obviously δh>k := 1 if h > k and δh>k := 0 if h 
> k.
Furthermore, ŨP

q (gln) has the unique Hopf algebra structure given by

∆(X) = X ⊗̇ X, ε(X) = I, S(X) = X−1, ∀X ∈ {B, Γ}. (3.16)

Proof. The commutation formulae in (3.12) and the Hopf formulae in (3.16) are
merely a compact way of saying that B and Γ are Hopf q-matrices. The second equality
of (3.13) is merely another way of writing (3.2).

Moreover, the first equality of (3.13) arises from the similar compact relation for L-
operators and the link between the latter and the present generators. Indeed, substituting
(3.10) in the last identity in (3.4) we obtain

RΨ(D−1
γ ΓTD+1

γ )1Ψ(D+1
β BTD−1

β )2 = Ψ(D+1
β BTD−1

β )2Ψ(D−1
γ ΓTD+1

γ )1R

(where a superscript ‘T’ denotes ‘transpose’). Using the fact that Ψ is an algebra anti-
automorphism and extending its action to Ψ(R) = R, we then argue that

Ψ((D+1
β BD−1

β )2(D−1
γ ΓD+1

γ )1Rop) = Ψ(Rop(D−1
γ ΓD+1

γ )1(D+1
β BD−1

β )2),

from which (3.13) eventually follows because Ψ2 = id.
Finally, on expanding (3.13), one finds explicitly (for all i, k, j, s = 1, . . . , n) that

qδi,j γ−1
i,i γi,kγ+1

k,kβ+1
j,j βj,sβ

−1
s,s + δi>j(q − q−1)γ−1

j,j γj,kγ+1
k,kβ+1

i,i βi,sβ
−1
s,s

= qδk,sβ+1
j,j βj,sβ

−1
s,sγ−1

i,i γi,kγ+1
k,k + δs>k(q − q−1)β+1

j,j βj,kβ−1
k,kγ−1

i,i γi,sγ
+1
s,s .
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From this, making repeated use of all the relations encoded in (3.12) and in the second
equality of (3.13) one can cancel out all ‘diagonal’ factors, i.e. those of type β�,� or γ�,�.
The outcome is (for all i, k, j, s = 1, . . . , n) given by

qδi,j γi,kβj,s + δi>j(q − q−1)qδi,s−δjkγj,kβi,s = qδk,sβj,sγi,k + δs>k(q − q−1)qδi,s−δjkβj,kγi,s;

that is, exactly the set of relations (3.15). As a last step, manipulating the exponents of
q a little, one finds (for i, k, j, s = 1, . . . , n) that

q2δi,k(qδi,j (q−δi,kγi,k)(q+δj,sβj,s) + δi>j(q − q−1)(q−δj,kγj,k)(q+δi,sβi,s))

= q2δj,s(qδk,s(q−δj,sβj,s)(q+δi,kγi,k) + δs>k(q − q−1)(q−δj,kβj,k)(q+δi,sγi,s)), (3.17)

which, when written in compact form, yields exactly (3.14). �

Remark 3.4. The argument used to obtain formulae (3.13) from the last identity in
(3.4) may be also applied to the first two identities therein. This yields relations among
the βij and among the γji which are different from, but equivalent to, formulae (3.12).

Corollary 3.5. The Poisson–Hopf k-algebra ŨP
1 (gln) is the polynomial, Laurent-

polynomial algebra in the variables

{β̄i,j}1�i�j�n ∪ {γ̄j,i}1�i�j�n,

the β�� and the γii being invertible, with relations β±1
ii = γ∓1

ii , ∀i, whose Hopf structure
is given (in compact notation) by

∆(X̄) = X̄ ⊗̇ X̄, ε(X̄) = I, S(X̄) = X̄−1, ∀X ∈ {B, Γ}

(with B and Γ as in Theorem 3.3) and with the unique Poisson structure such that

{x̄i,h, x̄i,�} = x̄i,hx̄i,�, {x̄h,j , x̄�,j} = x̄h,j x̄�,j , {x̄h,h, x̄�,�} = 0 (h < �)

{x̄i,j , x̄h,k} = 0 (i < h, j > k), {x̄i,j , x̄h,k} = 2x̄i,kx̄h,j (i < h, j < k),

}
(3.18)

with either all xpq being βpq (and βpq := 0 for all p > q) or all xpq being γpq (and γpq := 0
for all p < q), and

{β̄j,s, γ̄i,k} = (δi,j − δk,s)β̄j,sγ̄i,k + 2δi>j γ̄j,kβ̄i,s − 2δs>kβ̄j,kγ̄i,s. (3.19)

In particular ŨP
1 (gln) ∼= F [(GLn)∗

P ] as Poisson Hopf algebras, where (GLn)∗
P is the alge-

braic group of pairs of matrices (Γ, B) where Γ and B are lower triangular and upper
triangular invertible matrices, respectively, and the diagonals of Γ and B are inverse to
each other, with the Poisson structure dual to the Lie bialgebra structure of gln.

Proof. If we write x̄ := x mod (q − 1)ŨP
q (gln) for every x ∈ ŨP

q (gln), then setting
q = 1 in the presentation of ŨP

q (gln) of Theorem 3.3 yields a presentation for ŨP
1 (gln).

The latter is a commutative, polynomial Laurent-polynomial algebra as claimed, whence

ŨP
1 (gln) ∼= F [(GLn)∗

P ]
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as algebras, via an isomorphism which for all i � j maps

βij := βij mod (q − 1)ŨP
q (gln)

to the matrix coefficient corresponding to the (i, j)th entry of the matrix B in a pair
(Γ, B) as in the claim, and maps

γji := γji mod (q − 1)ŨP
q (gln)

to the matrix coefficient corresponding to the (j, i)th entry of the matrix Γ in a pair
(Γ, B). The formulae for the Hopf structure in ŨP

q (gln) imply that this is also an iso-
morphism of Hopf algebras, for the Hopf structure on the right-hand side induced by the
group structure of (GLn)∗

P .
Since ŨP

1 (gln) is commutative, it inherits from ŨP
q (gln) the unique Poisson bracket

given by the rule

{x̄, ȳ} :=
xy − yx

q − 1
mod (q − 1)ŨP

q (gln),

for all x, y ∈ ŨP
q (gln). Then the Poisson brackets in (3.19) come directly from (3.15),

while all those in (3.18) follow from the commutation formulae among the βij and the γji

in (3.11).
Finally, checking that this Poisson structure on the algebraic group (GLn)∗

P is exactly
the one dual to the Lie bialgebra structure of gln is just a matter of bookkeeping. �

3.7. The quantum Frobenius morphisms F [(GLn)∗
P ] ∼= ŨP

1 (gln) ↪→ ŨP
ε (gln)

Let kε be the extension of k by a primitive �th root of 1, say ε. Since ŨP
q (gln) is

generated by copies of

ŨP
q (b+) ∼= F̂P

q [B+] and ŨP
q (b−) ∼= F̂P

q [B−],

taking specializations the same is true for ŨP
ε (gln); in particular the latter is presented

like in Theorem 3.3 but with q = ε.
In addition, the quantum Frobenius morphisms

F [GLn] ∼= F̂P
1 [GLn] ↪→ F̂P

ε [GLn] and F [B±] ∼= F̂P
1 [B±] ↪→ F̂P

ε [B±]

have a pretty neat description, as they are given by ti,j �→ t�i,j . Hereafter, we denote by
the same symbol an element in a quantum algebra and its corresponding coset after any
specialization (see, for example, [16] for details). As mentioned in § 2.6, the morphism
F [(GLn)∗

P ] ∼= ŨP
1 (gln) ↪→ ŨP

ε (gln) is determined by its restriction to the quantum Borel
subalgebras, hence to the copies of F̂P

1 [B+] and F̂P
1 [B−] which generate ŨP

1 (gln). When
reformulated in light of Corollary 3.5, this implies the following theorem.

Theorem 3.6. The quantum Frobenius morphism F [(GLn)∗
P ] ∼= ŨP

1 (gln) ↪→ ŨP
ε (gln)

is given by βi,j �→ β�
i,j , γj,i �→ γ�

j,i, for all i � j.
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4. The case of sln

4.1. From gln to sln

In this section, we consider g = sln and G = SLn. The constructions and results of § 3
about gln essentially give the same for sln, up to minor details. In this section we shall
draw on these results, briefly explaining the changes in order.

First, the ideal generated by (Ln−1) in UP
q (gln) is a Hopf ideal. We then define UP

q (sln)
as the quotient Hopf k(q)-algebra UP

q (sln) := UP
q (gln)/(Ln − 1). With similar notation

(see § 3.3) to that for generators of UP
q (gln) and their images in UP

q (sln), we define
UQ

q (sln) as the k(q)-subalgebra of UP
q (sln) generated by {Fi, K

±1
i , Ei}i=1,...,n−1; this is

also the image of UQ
q (gln) when mapping UP

q (gln) onto UP
q (sln). In this setting, UP

q (b+)
and UP

q (b−) are the k(q)-subalgebras of UP
q (sln) generated by {L±1

i , Ei}i=1,...,n−1 and
by {Fi, L

±1
i }i=1,...,n−1, respectively, whereas UQ

q (b+) and UQ
q (b−) alternatively, are the

k(q)-subalgebras of UQ
q (sln) generated by {K±1

i , Ei}i=1,...,n−1 and {Fi, K
±1
i }i=1,...,n−1,

respectively. These are all Hopf subalgebras of UP
q (sln) and UQ

q (sln), and Hopf algebra
quotients of the similar quantum Borel subalgebras for gln.

In this context, we can repeat step by step the construction made for gln, up to minimal
details (namely, taking into account everywhere the relation Ln = 1); in particular, in
quantum function algebras the additional relation t1,1t2,2 · · · tn,n = 1 has to be taken
into account. Otherwise, the results for the sln case can be immediately argued from
the corresponding results for gln. The first of these results, analogous to Theorem 3.1,
follows.

Theorem 4.1 (‘short’ FRT-like presentation of UP
q (sln)). UP

q (sln) is the quo-
tient algebra of UP

q (gln) modulo the two-sided ideal I generated by( n∏
i=1

βii − 1
)

, or by
( n∏

j=1

γjj − 1
)

,

which gives the same result. Moreover, I is a Hopf ideal of UP
q (gln), therefore UP

q (sln)
inherits from UP

q (gln) a structure of quotient Hopf algebra, given by formulae like those
in Theorem 3.1 (with the obvious, additional simplifications). In particular, UP

q (sln)
has the same presentation as UP

q (gln) in Theorem 3.1 plus the additional relation
β1,1β2,2 · · ·βn,n = 1, or γ1,1γ2,2 · · · γn,n = 1.

4.2. Quantum root vectors, L-operators and new generators for Ũq
P (sln)

Definitions imply that the Hopf algebra epimorphism UP
q (gln) � UP

q (sln) maps any
quantum root vector, say Ei,j or Fj,i, in UP

q (gln) onto a corresponding quantum root
vector in UP

q (sln), for which we use similar notation. A similar result clearly also holds
for each L-operator (in UP

q (gln)), whose image in UP
q (sln) we denote by the same symbol.

The discussion in § §3.5 and 3.6 can then be repeated verbatim; in particular, formulae
(3.3)–(3.11) also hold true within UP

q (sln). The outcome then is the analogue of The-
orem 3.3 (and can also be deduced directly from it since ŨP

q (gln) maps onto ŨP
q (sln))

and its immediate corollary.
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Theorem 4.2 (FRT-like presentation of Ũq
P (sln)). Ũq

P (sln) is the unital
k[q, q−1]-algebra with generators given by the entries of the triangular matrices B :=
(βij)n

i,j=1 and Γ := (γij)n
i,j=1 and relations (notation of Theorem 3.3)

RB2B1 = B1B2R, RΓ2Γ1 = Γ1Γ2R, (4.1)

RopΓD
1 BD

2 = BD
2 ΓD

1 Rop, DβDγ = I = DγDβ , (4.2)

det(Dβ) = 1 = det(Dγ). (4.3)

The first (compact) relation in (3.13) above is equivalent to

n∑
i,k=1

qδi,k(ei,i ⊗I)(RopΓ−
1 B+

2 )(I ⊗ek,k) =
n∑

j,s=1

qδj,s(ej,j ⊗I)(B−
2 Γ+

1 Rop)(I ⊗es,s), (4.4)

and in expanded form it is equivalent to the set of relations (for all i, k, j, s = 1, . . . , n)

qδi,j γi,kβj,s + δi>j(q − q−1)qδi,s−δjkγj,kβi,s

= qδk,sβj,sγi,k + δs>k(q − q−1)qδi,s−δjkβj,kγi,s. (4.5)

Furthermore, ŨP
q (sln) has the unique Hopf algebra structure given by

∆(X) = X ⊗̇ X, ε(X) = I, S(X) = X−1, ∀X ∈ {B, Γ}. (4.6)

Corollary 4.3. The Poisson–Hopf k-algebra ŨP
1 (sln) is the polynomial algebra in the

variables
{β̄i,j}1�i�j�n ∪ {γ̄j,i}1�i�j�n

modulo the relations β̄1,1β̄2,2 · · · β̄n,n = 1, γ̄1,1γ̄2,2 · · · γ̄n,n = 1, β̄i,iγ̄i,i = 1 (for all i =
1, . . . n), with the Hopf structure given by

∆(X̄) = X̄ ⊗̇ X̄, ε(X̄) = I, S(X̄) = X̄−1, ∀X ∈ {B, Γ}

(with B and Γ as in Theorem 4.2) and with the unique Poisson structure such that

{x̄i,h, x̄i,�} = x̄i,hx̄i,�, {x̄h,j , x̄�,j} = x̄h,j x̄�,j , {x̄h,h, x̄�,�} = 0 (h < �)

{x̄i,j , x̄h,k} = 0 (i < h, j > k), {x̄i,j , x̄h,k} = 2x̄i,kx̄h,j (i < h, j < k),

}
(4.7)

with either all xpq being βpq (and βpq := 0 for all p > q) or all xpq being γpq (and γpq := 0
for all p < q), and

{β̄j,s, γ̄i,k} = (δi,j − δk,s)β̄j,sγ̄i,k + 2δi>j γ̄j,kβ̄i,s − 2δs>kβ̄j,kγ̄i,s. (4.8)

In particular ŨP
1 (sln) ∼= F [(SLn)∗

P ] as Poisson Hopf algebras, where (SLn)∗
P is the alge-

braic group of pairs of matrices (Γ, B), where Γ and B are lower and upper triangular
matrices, respectively, with determinant equal to 1, and the diagonals of Γ and B are
inverse to each other, with the Poisson structure dual to the Lie bialgebra structure
of sln.
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4.3. The quantum Frobenius morphisms F [(SLn)∗
P ] ∼= ŨP

1 (sln) ↪→ ŨP
ε (sln)

Once again, for quantum Frobenius morphisms one can repeat verbatim the discussion
made for UP

q (gln) for the case of UP
q (sln), via minimal changes where needed. Otherwise,

the results in the gln case induce similar results in the sln case via the defining epimor-
phism UP

q (gln) � UP
q (sln). Indeed, the latter is clearly compatible (in the obvious sense)

with specializations at roots of 1; therefore, the specializations of the epimorphism itself
yield the following commutative diagram:

F [(GLn)∗
P ] ∼= ŨP

1 (gln) ��

��

ŨP
ε (gln)

��
F [(SLn)∗

P ] ∼= ŨP
1 (sln) �� ŨP

ε (sln)

(for ε any root of 1) in which the vertical arrows are the above mentioned specialized
epimorphisms and the horizontal ones are the quantum Frobenius (mono)morphisms.

This yields at once the following analogue of Theorem 3.6.

Theorem 4.4. The quantum Frobenius morphism F [(SLn)∗
P ] ∼= ŨP

1 (sln) ↪→ ŨP
ε (sln)

is given by βi,j �→ β�
i,j , γj,i �→ γ�

j,i, for all i � j.
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