
BULL. AUSTRAL. MATH. SOC. 2 6 A 3 3 , 41A35

VOL. 74 (2006) [449-460]

ON APPROXIMATION PROPERTIES OF THE PARABOLIC
POTENTIALS

SIMTEN B. UYHAN, A.D. GADJIEV AND ILHAM A. ALIEV

In this paper the approximation properties of parabolic potentials HQ/ and Wf

generated by the heat operators ( — Ax + — ) and [E — Ax + — ), where
v at) \ at/

are studied as a —> 0+.

1. INTRODUCTION AND FORMULATION OF MAIN RESULTS

The parabolic potentials Haf and Haf (of Riesz and Bessel type, respectively) are
denned in the Fourier terms by

(1.1) F[H°f](x,t) = (\x\2 + it)-a/2F[f](x,t),

(1.2) F[Haf]{x,t) = (1 + \x\2 + itya/2F[f)(x,t),

where a > 0, x £ Rn, t £ R1.

These potentials are interpreted as negative fractional powers of the heat operators
(-Ax + d/dt) and (E - Ax + d/dt), that is formally,

Haf(x,t) = (-Ax

H°f(x, t) = (E-Ax + dldt)-a'2j{x, t)

n Q2
(E is identity operator and Ax — V -z-n is Laplacian).

*=i oxf.
The parabolic potentials were introduced by Jones [7] and Sampson [11] and studied

by Bagby, Gopala Rao, Chanillo, Nogin, Rubin, Aliev and many other mathematicians
(see: [1, 3, 4, 6, 9, 10]).
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In this paper we investigate the approximation properties of the families Haf and
HaJ as a —)• 0+. One should note that the classical Riesz and Bessel kernels as approxi-
mations of the identity have been studied by Kurokawa [8].

First, we shall give some necessary notations and auxiliary facts.

Let Rn+1 = R n x I 1 = {(x, t):xeRn,te R1}. Define Lp = Lp(Rn+1), 1 ^ p < oo
as the class of measurable functions / on Rn+1 with the norm

\f{x,t)\pdxdt\ ", dx = dxx...dxn.
Rn+1

Co = C0(Rn+1) will denote the class of all continuous functions on Kn+1 vanishing at
infinity. C = C(Rn+1) is the class of all continuous functions on Rn+1. We set, as usual,
ll/lloo = ess sup| / (x, t ) | and denote by W(x, t) the classical Gauss-Weierstrass kernel,

R n + 1

defined in Fourier terms by

F[W(.,t)](C) = Je~ix< W(x,t)dx =
R»

where t > 0, C € Rn and a; • £ = ô Ci H h a:nCn-

It is well known that

(1.3) W(x,t) = (47rf)-n/2exp(-|z[2/4t), t > 0, x € FT,

and

(1.4) fw(x,t)dx = l, VO0.

The potentials Haf and Haf, initially defined in terms of Fourier transform by (1.1)
and (1.2), have the following convolution type integral representations (see: [1, p. 396]).

1 f
\i.o) n J(x,i) = ; r

Rnx(0,oo)

R"x(0,oo)

The following theorem characterises the behaviour of the operators Ha and Ha on

Lp-spaces.

THEOREM A. (See [3, 6].) I. Let f e Lp, 1 ^ p < oo, 0 < a < (n + 2)/p and
q = (n + 2)p/(n+2-ap).

(a) The integral Haf(x, t) converges absolutely for almost all (x, t) € Rn+1.
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(b) For p > 1, the operator Ha is bounded from Lp into Lq.

(c) For p = 1, the operator H° is weak (1, q), that is,

meas{{x,t) : \H°f(x,t)\ > x] < {c\\f\yx)q, VA > 0,

where q = (n + 2)/(n + 2 — a).

II The operator Ha is bounded in Lp for all a ^ 0 and 1 ^ p ^ oo.

We shall need the following classes of "anisotropic" Lipschitz functions on Rn + 1 x R1.

A. T H E LIPSCHITZ CLASS Ap.

(1.7) A, = { / e Loo(R"+1) : \\f(x -y,t-r)- / ( z , t ) | L ^ cf(\y\2

B. T H E LOCAL LIPSCHITZ CLASS A ^ ( I O I * O ) -

(1.8) Ap(x0, t0) = {/ : | / ( i 0 - y, to - T) - f(x0, to)\ < cf(\y\2 + \r

(Here x,xo,y € R"; t,ta,r € R1 and 0 < 0 ^ 1.)

Throughout the paper the letters c, C\, C2,... Ci(S), 02(6),... are used for constants
(the constants Ci(6) depend on parameter 6 > 0). We shall write "<p(a) = O(ip(a)) as
a -> 0+" if \tp{a)\ ^ c ip(a) as a -> 0+.

The main theorems of the paper are as follows.

THEOREM 1. Let f e Lp(Rn + 1), 1 ^ p < 00, and A" is one of the operators Ha

andW. Then:

(a) If at a point (x, t) e Rn + 1 there exist limit

lim f(z, s) = I, —00 ̂  / ^ 00,
(z,«)-»(x,0

then lim Aaf(x,t) = /. In particular, if f is continuous at the point

(x,t) e~R"+1, then lim Aaf(x,t) = f(x,t).
a->0+

(b) If f € Lp n Co, the convergence lim Aaf = / is uniform on Rn+1. Jf
a->0+

/ € Lp fl C, the convergence is uniform on any compact K C Rn + 1.

THEOREM 2 . Jf / e Lp(Rn + 1), 1 < p < 00, then lim naf(x,t) = /(a;,*), where
Q f O +

Q-fO+
" + 1the iimit is understood in the Lp-norm, or pointwise for almost all (x, i) G R

The next theorem gives an estimation of the order of approximation of the "Lipchitz
functions" by the families H°f and Haf.

THEOREM 3 . Let Aa be either of the potentials Ha and Ua, a > 0. Then:

(a) If f € Lp n Ap, 1 < p < 00, 0 < P ^ 1, where Ap is the Lipschitz class

defined as in (1.7), then
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(1.9) \\Aaf-f\\oo=O(l)aasa^0+;

(b) If f € Lp n A0(xo,to), l ^ p < o o , 0 < / 3 s * l , where A0(xo,to) is the

Lipschitz class defined as (1.8), then

(1.10) Aaf{x0,t0)-f(x0,tli) = O(l)a as a -> 0+.

REMARK 1. It is interesting to observe that the order of approximation does not depend
on the "Lipschitz degree" /? of the function / .

2. PROOFS OF THE MAIN RESULTS

P R O O F OF THE THEOREM 1. (a) By making use of the Fubini theorem, we can
write the formulas (1.5) and (1.6) in the form of

oo

(2.1) Haf(x, t) = f ^ y f r^2'-1 ( | W(y, r)/(x - y, t - r)dy \ dr,

(2.2) HaJ(x,t) = ̂

0 R»
oo

We shall prove the statements of theorem in the case of Aa = Ha. (See Remark 2
below about the Ha).

Suppose a function f € Lp has the limit I G (—00,00) at the point (x, t) 6 Rn+1.
Using the identity (1.4) we get

00

Haf(x, t)-l = ̂ j - j r^2)- 1 J W(y, T)(f(x-y,t-T)-l e~T)dy dr.
0 R"

Given e > 0 there exist 8 > 0 such that

(2.3) \f(x -y,t-r)-l\<e and (1 - e~T) < e

for all \y\ < V8 and 0 < r < 8. We have

W(y, T) {f(x - y , t - r ) - l e~T)dydT
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(2.4)

r(a/2)
6 R"

= ix(a) + i2{a) + i3{a)

1 J W(y, r) (f(x - y , t - r ) -

The application of the estimates (2.3) leads to

1 I W(y,T)\f{x-y,t-T)-l\dydT
\y\<V6

5)
~ T{a/2)£J

0 R"
6

a/2)

Let us estimate 12(1). We have

6

(2.6) t2(a)^-±- -1 J W(y:T)\f(x-y,t-r)\dyd7
\y\>V6

(0)
0 \y\>V6

Taking into account (1.3) and the Holder inequality we get for small a > 0

W

0 \y\>VS

6

[ ll/llp / /" r((Q/2)-l-(n/2))p'dr

F(a/2) \7
0 1

(set y = 2^z , dy = 2n(p')-n/2rn/2<k)

11/11,
!r(^

i/p'
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(use e-l*!2 = e-(l*l2/2)e-(l*P/2) ^ e-(Ma/a>c-(*7*-) for | l / ^

y / P (
(2.7) <

By a similar way,

R) 0

(set y = 2 ^ , dy = 2nrn/2dz)

r(a/2)
0

f e-W
J

r(a/2) y
r)dT [ e-\*\>/2dz

(2.8) = c2(«5)|/|a.

From (2.6), (2.7) and (2.8) it follows that

(2.9) *a(a)< (ci(<J)||/||P + ca(J)|/|)a = C3(J)o as a

Let us now estimate i3(a). We have

oo

R"

(2.10) =i'3

By (1.4) it follows that

(2.11) tJ(Q) = " / T^2>-1e-TdT ^ 4V " ' ^ c5(<J)|/|a as

Further, using Holder's inequality, we have for a < s ^

W

R"
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WZJk. f f T((a/2)-l-(n/2))p'dT I e-(|y|V/4r) dy\
r ( . . .

6 R»
VP1 f r . \ W

t R"
(2.12)

Therefore, from (2.10), (2.11) and (2.12) we have

(2.13) i3(a) ^ (c5(6)\l\ + CB(tf)||/||P)a = c7(S)a as a -»• 0+.

Finally, from (2.4), (2.5), (2.9) and (2.13) it follows that

The last estimate yields

Since e > 0 is arbitrary we have

lim \Haf(x,t)-l\ =0.

O-+0+

Let now / = +oo, that is lim f{y,r) = +oo (the case of I = —oo is examined

analogously).

For a given M > 0 there exists 6 > 0 such that }{x — y,t — r) > M for any \y\ < \[&,
0 < r < 5. Using this observation we have

6

. . . r
W{y, r)f(x -y,t- r)dydr

\y\<y/S
S

o
oo

.(Q/2)-I / w(y^ r)f(x — y,t — r)dydr

6 R"

(2.14) =;"i(o

It is clear that
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0 IvKv'S
6

^ 2 ' 1 f W dx
1 } dX

0

6

-CxT{a/2)]T }
0

S

0

s

* f'*'"
0 0

M 2 „,„,„ M

Further, by making use of the estimates for i'2(ct) and i'3(a) (see (2.7) and (2.12),
respectively), we have

(2.16) \32(<*)\< Ci^ll/Hpo and |j3(o)| ^ c2(6)\\f\\pa.

Thus, it follows from (2.14), (2.15) and (2.16) that

M ">'2-ci(6)\\f\\pa-c2(6)\\f\\pa,

and therefore,
liminf Haf(x, t) ^ c3M, (c3 > 0).
O-+0+

Since M > 0 is arbitrary, the last estimate yields that lim Haf(x,t) — oo.
a-+0+

(b) Let now / e Lp D CQ. The condition f £ Co yields that for any e > 0 there
exists 5 > 0 such that

sup \f(x-y,t-r) - f(x,t)\ < e and (1 - e~T) < e
(x,t)eRn+1

for all |y| < \/5 and 0 < r < <5.
Setting / = f{x,t) in (2.4) and using (2.17), we have as in proof of part (a) (see,

(2.4), (2.5), (2.9) and (2.13))

Il/Iloo)<*a .. , /•„ m n f II fC2((J)
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The latter estimate yields that l i m s u p | | i / a / - fW^ ^ ( l + ||/||oo)£, and therefore,

lim||tf°/-/Hoo = 0. °-0+ D
o-»0+

REMARK 2. The proof of the statements of Theorem 1 for Aa — %a follows the same
lines and is based on the equality

le-T I W(y, r) {f(x -y,t-r)-l) dydr
0 K"

5

= fci/2) / r ( Q / 2 ) " l e " T / ^(2/.r)(/(x - y,t - T) - l)dydr
0

R)
0 \y\><S6
oo

(2.17) + f ^ / 2 ) / r W 2 ) ~ l e " T /
6 R"

Slight additional technicalities related to the factor e~T are left to the reader.

REMARK 3. In the estimation of i'2(a) and i'3{a) we use the Holder inequality when
p > 1. An attentive examination shows that the estimates for i'2{a) and i'3{a) are true
also for p = 1. This follows from the facts that the quantities

A1(6)= sup sup M"'2'"1 W{y, r))
0 < a < 1 0 < r < S

\v\>y/S

and
A2(6) = sup sup M0/2)-1 W{y, r))

0<a<l ^ .
T > 6

are finite.

PROOF OF THEOREM 2: The Lp-continuity of the translation operator yields that
for V £ > 0 t h e r e e x i s t S > 0 s u c h t h a t \\f(x - y , t - T) - f(x, t)\\ < e for a l l \y\ < \/5

and 0 < r < <5. Using this and relation (2.18) for / = f{x,t), we have

\\naf(x,t)-f(x,t)\\p

6

<o/2)-ic-r J W(y,T)\\f(x-y,t-T)-f(x,t)\\pdydT
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0

oo

I l [ (a/2)-l -T
+ r(a/2) J T

S R"

(2.18) = ki(a) + hia) + k3(a).

Further,
00

(2:19) fc!(a) < ̂ j^r J r^^e^dT J W(y,T)dy =
0

(5

0

0

^ . . . ( s e e ( 2 . 8 ) ) . . .

(2.20) <

ks(a) ̂  ^ff} f r(al2)'le-T dr j ' W(y,r) dy

It follows from (2.19)-(2.22) that lim+||'HQ/(x, t) - f(x, t)\\ = 0. By similar reason,

for / e Lp n Co Wf -> / , uniformly as a ->• 0+.

Since the class Lp D Co is dense in Lp, (1 < p < oo) and ||WQ/||P ^ | |/ | |p, V a > 0,
it follows from [12, p. 60, Theorem 3.12] that lim Haf{x,t) = f{x,t) for almost all

(x,t)eRn+1. D
P R O O F OF T H E O R E M 3: (a) We shall prove only the case when Aa - Ha. In the

case of Aa = Ha the statements are proved in a similar way (see Remark 2).

Let / € Lpn A0 and Aa = Ha. Setting I = f(x,t) in (2.4) and using (2.9) and (2.13)

we have
\Haf(x,t) - f(x,t)\ s: n(a) + z2(a) + i3(a),

where

(2.22) i2(o) < (Cl(<5) \\f\\p + c2(6) | | / | U ) « = c3(6)a,
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and

(2.23) is(o) ^ (c5((5) Il/Hoo + <*(*) | | / | | p )a - c?(S)a, (a -4 0+).

Let us estimate i\(a). We have

6

0 \y\<Vi

Taking into account that 1 — e~T = r + O( l ) r 2 as r —>• 0+ and

||/(x - y, t - T) - /(a:,tJlL ^ C/ (|y|2 + r )^ 2 ,

we get

s

^ j \ ^ Jr 2 ^ dr1 JrW(y,r) (\y\2

R"

After changing the variable y with v ^ z a simple calculation leads to i[(a) = O(l)a as
a -> 0+. Further, using (1.4) we have

-(a /2 ) rfr = O( l )a as a -¥ 0+,

and therefore, i i(a) = O( l )a as a —> 0+.

Now from (2.23) it follows that \\Haf - / I U = O( l )a as a -> 0+.

Part (b) of the theorem is proved analogously, just replacing the expression || • • • ||oowith

REMARK 4. The analogues of Theorems 1-3 can be formulated and proved for Parabolic
potentials associated with the singular Laplace-Bessel differential operator

k=1
 axk ux"

For detailed information about these potentials the reader is referred to [2, 5].
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