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Abstract

A result of André Weil allows one to describe rank n vector bundles on a smooth

complete algebraic curve up to isomorphism via a double quotient of the set GLn(A) of

regular matrices over the ring of adèles (over algebraically closed fields, this result

is also known to extend to G-torsors for a reductive algebraic group G). In the

present paper we develop analogous adelic descriptions for vector and principal bundles

on arbitrary Noetherian schemes, by proving an adelic descent theorem for perfect

complexes. We show that for Beilinson’s co-simplicial ring of adèles A•X , we have

an equivalence Perf(X) ' |Perf(A•X)| between perfect complexes on X and cartesian

perfect complexes for A•X . Using the Tannakian formalism for symmetric monoidal

∞-categories, we conclude that a Noetherian scheme can be reconstructed from the

co-simplicial ring of adèles. We view this statement as a scheme-theoretic analogue of

Gelfand–Naimark’s reconstruction theorem for locally compact topological spaces from

their ring of continuous functions. Several results for categories of perfect complexes

over (a strong form of) flasque sheaves of algebras are established, which might be of

independent interest.
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Introduction

For a smooth, irreducible, complete, algebraic curve X, we denote by F the field of rational

functions, by O the product
∏
x∈Xcl

Ôx ranging over closed points, and

A =
∏
x∈Xcl

′
F̂x = {(fx)x∈Xcl

|fx ∈ Ôx for almost all x}.

This object is called the ring of adèles. André Weil was probably the first to appreciate the close

connection between adèles and the geometry of curves (see the letter [Wei38b] to Hasse where the

case of line bundles is discussed, and [Wei38a] for the closely related notion of matrix divisors).

Theorem 0.1 (Weil). Let X be an algebraic curve, defined over an algebraically closed field k,

and let G be a reductive algebraic group. We then have an equivalence between the groupoid of

G-torsors on X, BG(X), and the groupoid defined by the double quotient [G(F )\G(A)/G(O)].

Weil’s theorem is central to the geometric Langlands programme, as it connects the arithmetic

conjectures to their geometric counterpart. For a survey of this connection see [Fre07]. The

interplay of Weil’s result with conformal field theory is discussed by Witten [Wit88, §V].

In this article we present a generalisation of Weil’s theorem to arbitrary Noetherian schemes.

We will deduce it from an adelic descent result for the perfect complexes. The co-simplicial ring

A•X was introduced by Beilinson in [Bei80], as a generalisation of the theory of adèles for curves.

A similar construction has also been obtained by Parshin for algebraic surfaces. If X is a curve,

the co-simplicial ring is given by the diagram

F ×OX //
// AX × F ×OX

oo
//
//
//
· · ·oo

oo

which captures the adelic rings F , OX and AX , and the various maps between them, used to

formulate Weil’s Theorem 0.1.

Theorem 0.2 (Adelic descent). Let X be a Noetherian scheme. We denote by A•X Beilinson’s

co-simplicial ring of adèles (see Definition 1.4). We have an equivalence of symmetric monoidal

∞-categories Perf(X)⊗ ' |Perf(A•X)⊗|, where the right-hand side denotes the ∞-category of

cartesian A•X -modules.

This theorem also holds for almost perfect complexes, as we show in Corollary 3.39. According

to Lieblich, the study of perfect complexes is the mother of all moduli problems (see the abstract

of [Lie06]). The Tannakian formalism enables us to make this philosophical principle precise.

Using the results of Bhatt [Bha16] and Bhatt and Halpern-Leistner [BHL15], we obtain a descent

result for G-torsors (we may replace BG by more general algebraic stacks).

Theorem 0.3. Let X be a Noetherian scheme. The geometric realisation of the simplicial affine

scheme SpecA•X in the category of Noetherian algebraic stacks with quasi-affine diagonal is

canonically equivalent to X. In particular, we have BG(X)' |BG(SpecA•X)|, if G is a Noetherian

affine algebraic group scheme. Let G be a special group scheme (for example, G = GLn). We

denote by G(A1
X)cocycle the subset consisting of φ ∈ G(A1

X) satisfying the cocycle condition

φ02 = φ01 ◦φ12 in G(A2
X). There is an equivalence of groupoids BG(X) ' [G(A1

X)cocycle/G(A0
X)].
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In characteristic 0, the assumption that G be Noetherian can often be dropped. We refer
the reader to Corollary 3.35. We refer the reader to § 3.2.4 for a more detailed discussion of the
adelic description of G-bundles on Noetherian schemes X. The case of punctured surfaces has
also been considered by Garland and Patnaik in [GP]. In [Par83], Parshin used adelic cocycles
for G-bundles as above to obtain formulae for Chern classes in adelic terms.

As a further consequence of the adelic descent formalism, we obtain an analogue of Gelfand–
Naimark’s reconstruction theorem for locally compact topological spaces [GN43]. Recall that
[GN43] shows that a locally compact topological space can be reconstructed from the ring of
continuous functions. It is well-known that a similar result cannot hold for non-affine schemes.
However, our result implies that a Noetherian scheme X can be reconstructed from the co-
simplicial ring of adèles.

Theorem 0.4. The functor A• : SchN ↪→ (Rng∆)op from the category of Noetherian schemes to
the dual category of co-simplicial commutative rings, has an explicit left-inverse, sending R• to
|SpecR•|.

It is instructive to meditate on the differences and similarities with Gelfand–Naimark’s
theorem. While their result copes with plain rings, our Theorem 0.4 requires a diagram of rings
(see Corollary 3.33 for a precise statement to which extent the co-simplicial structure is needed).
However, the necessary condition of local compactness for topological spaces is not unlike the
restriction that the scheme be Noetherian.

For a quasi-compact and quasi-separated scheme X we may choose a finite cover by affine
open subschemes {Ui}i=1,...,n. The coproduct U =

∐n
i=1 Ui is then still an affine scheme, and we

have a map U →X. Choosing a finite affine covering for U×XU , and iterating this procedure, we
arrive at a simplicial affine scheme U•→ X, which yields a hypercovering of X. The coordinate
ring yields a co-simplicial ring Γ(U•) associated to X. However, this construction is a priori not
functorial, since it depends on the chosen coverings. Nonetheless, using the construction X 7→XZ

introduced by Bhatt and Scholze [BS15], one obtains another functor as in Theorem 0.4 (the
author thanks Bhatt for bringing this to his attention).

Our Theorem 0.2 relies heavily on Beilinson’s [Bei80], which constructs a functor, sending
a quasi-coherent sheaf F on X to an A•X -module A•X(F). Beilinson observes that the latter
co-simplicial module gives rise to a chain complex, computing the cohomology of F . This chain
complex can be obtained by applying the Dold–Kan correspondence, or taking the alternating

sum of the face maps in each degree: [A0(F)
∂0−∂1−−−−→ A1(F) · · ·]. Beilinson’s result can be stated

as
H i(X,F) ' H i(DK(A•X(F))).

The reason is that the sheaves AkX : U 7→ AkU (F) are flasque, and hence it remains to show
that the corresponding complex of sheaves defines a flasque resolution of F . The details are
explained in [Hub91]. Since morphisms in Perf(X) are closely related to sheaf cohomology, it
is not difficult to deduce from Beilinson’s observation the existence of a fully faithful functor
Perf(X) ↪→ |Perf(A•X)|, amounting to a sort of a cohomological descent result. Our proof of
the adelic descent theorem is, hence, mainly concerned with establishing that this functor is
essentially surjective, that is, establishing effectivity of descent for objects in those∞-categories.
In heuristic terms, our theorem asserts that a perfect complex M on X can be described by an
iterative formal glueing procedure from the adelic parts A•X(M).

Our main theorem uses the language of stable∞-categories. Replacing Perf(X) and Perf(A•X)
by their homotopy categories would render the result incorrect. However, the theorem could
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be formulated in more classical language. The ∞-category of cartesian perfect modules over a
co-simplicial ring, such as Perf(A•X), has a model, as is discussed in [TV08, 1.2.12] by Toën and
Vezzosi.

Since the construction of A•X involves iterative completion and localisation procedures, the
formal descent result of Beauville and Laszlo [BL95] and Ben-Bassat and Temkin [BBT13] (for
quasi-coherent sheaves in each case) are closely related. These theorems allow one to glue sheaves
on a scheme X with respect to the formal neighbourhood of a closed subvariety Y , and its open
complement X\Y . Beauville–Laszlo developed such a descent theory for an affine scheme X,
and a closed subvariety Y given by a principal ideal. This result was motivated by the study of
conformal blocks [BL94]. The second article does not require the restrictions of X to be affine
and Y to be principal, however it utilises the theory of Berkovich spaces to formulate the glueing
result. Recently their theory has been extended to treat flags of subvarieties by Hennion, Porta
and Vezzosi [HPV16]. Our Theorem 0.2 gives a very similar descent theory, but uses all closed
subvarieties at once and avoids rigid geometry.

One of the key properties of the adèles allowing one to establish effectivity of adelic descent
data is a strengthening of the theory of flasque sheaves of algebras.

Theorem 0.5. Let X be a quasi-compact topological space and A a lâche sheaf of algebras (see
Definition 2.9), with ring of global sections R = Γ(A). The global section functor Γ : Mod(A)→
Mod(A) restricts to a symmetric monoidal equivalence Perf(A)⊗ ' Perf(R)⊗.

We show in Lemma 1.14 that the adèles AkX are lâche sheaves of algebras. The derived
equivalence underlying our theorems decomposes into two parts:

Perf(X) ' |Perf(A•X)| ' |Perf(A•X)|.

The second equivalence is deduced from Theorem 0.5. The first equivalence can be established
by local verifications.

1. A reminder of Beilinson–Parshin adèles

In [Bei80] Beilinson generalised the notion of adèles to arbitrary Noetherian schemes, and studied
the connection adèles bear with coherent cohomology. We briefly review his definition and the
main properties of relevance to us. Except for the assertion that adèles are flasque sheaves
(Corollary 1.15), we will not provide a proof for those statements and refer the reader instead
to Huber [Hub91]. Examples can be found in Morrow’s survey article about adèles and their
relation to higher local fields [Mor12].

1.1 Recollection
Henceforth we denote by X a Noetherian scheme, with underlying topological space |X| and
structure sheaf OX .

Definition 1.1. Let X be a scheme with underlying topological space |X|. For x, y ∈ |X| we
write x 6 y for x ∈ {y}; this defines a partially ordered set |X|6. We denote the set {(x0, . . . ,
xk) ∈ |X|×k+1|x0 6 · · · 6 xk} by |X|k.

One sees that |X|k is in fact the set of k-simplices of a simplicial set |X|•. This simplicial
structure will be reflected in a co-simplicial structure for Beilinson–Parshin adèles.
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Definition 1.2. The simplicial set |X|• : ∆op
→ Set is defined to be the functor, sending [n] ∈

∆op to the set of ordered maps [n]→ |X|6, where |X|6 refers to the partially ordered set defined
in Definition 1.1.

Following [Bei80] we define adèles with respect to a subset T ⊂ |X|k. The case of interest
to us will be T = |X|k, but the recursive nature of the definition necessitates a definition for
general subsets T ⊂ |X|k. We begin with the following preliminary definitions.

Definition 1.3. Let X be a Noetherian scheme and k ∈ N a non-negative integer:

(a) for x ∈ |X| and T ⊂ |X|k we define xT = {(x0 6 · · · 6 xk−1) ∈ |X|×k|(x0 6 · · · 6 xk−1 6
x) ∈ T};

(b) for x ∈ |X| we denote by Ox the local ring at x with maximal ideal mx; there is a canonical
morphism jrx : SpecOx/mr

x→ X.

It is convenient to define adèles in a higher-dimensional situation as sheaves of OX -modules.

Definition 1.4. Let X be a Noetherian scheme. The adèles are the unique family of exact
functors AX,T (−) : QCoh(X)→Mod(OX), indexed by subsets T ⊂ |X|k, satisfying the following
conditions:

(a) the functor AX,T (−) commutes with directed colimits;

(b) for F ∈ Coh(X) and k = 0 we have AX,T (F) =
∏
x∈T lim
←−r>0

(jrx)∗(jrx)∗F ;

(c) for F ∈ Coh(X) and k > 1 we have AX,T (F) =
∏
x∈|X| lim←−r>0

AX,xT ((jrx)∗(jrx)∗F).

We refer the reader to [Hub91] for a detailed verification that the above family of functors is
well-defined and exact. The ring of adéles with respect to T ⊂ |X|n is defined by taking global
sections of the sheaf of rings AX,T (OX). Moreover, it is important to emphasise that the sheaves
of OX -modules AX,T (F) are in general not quasi-coherent.

Definition 1.5. We denote the abelian group Γ(X,AX,T (F)) by AX,T (F); and reserve the
notation AX,T for AX,T (OX). By construction AX,T (F) is an AX,T -module.

As we already alluded to, the most interesting case for us is when T = |X|k. We reserve a
particular notation for this situation.

Definition 1.6. We denote the sheaf AX,|X|k(F) by AkX(F). The abelian group Γ(X,AkX(F))

will be denoted by AkX(F).

As the superscript indicates, these sheaves can be assembled into a co-simplicial object. The
proof of this can be found in [Hub91, Theorem 2.4.1].

Proposition 1.7. Let X be a Noetherian scheme, and T• ⊂ |X|• a simplicial subset. There is an
exact functor A•X,T• : QCoh(X) → Fun(∆,Mod(OX)), which commutes with directed colimits,
and maps ([k],F) to AX,Tk(F). We denote the functor Γ(X,A•X,T•(−)) : QCoh(X) → Fun(∆,
AbGrp) by A•X,T•(−); it is exact and commutes with directed colimits. The notation A•X(−) is
reserved for the functor corresponding to the case T• = |X|•. We shall write A•X to denote the
co-simplicial ring obtained by applying this functor to the structure sheaf OX .

Let X be an irreducible Noetherian scheme of dimension 1, and F a coherent sheaf on X. We
will discuss how the definitions above recover the classical theory of adèles for algebraic curves.
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Following classical conventions, we denote by

AX(F) =
∏

x∈|X|cl

′ F̂x ⊗Ôx Frac ÔX ,

the restricted product ranging over all closed points x ∈ |X|cl. We denote by

OX(F) =
∏
x∈Xcl

F̂x;

and by FX(F) the O-module Fη, where η is the generic point of X. With respect to this notation
we may identify the co-simplicial O-module A•X(F) with

FX(F)×OX(F) //
// AX(F)× FX(F)×OX(F)oo

//
//
//
· · ·oo

oo

where FX(F) → AX(F) is the diagonal inclusion, and OX(F) → AX(F) the canonical map.
Embracing the usual redundancies in co-simplicial objects, that is the continual re-appearance
of factors already seen at a lower degree level, we observe that Beilinson’s A•X captures the
classical theory of adèles.

It is also helpful to understand the co-simplicial structure in the local case. Let σ : [n]→ |X|6
be an element of |X|n. We denote the ring of adèles AX,{σ} corresponding to T = {σ} ⊂ |X|n by
AX,σ. Proposition 1.7 implies that for every map f : [m]→ [n] in ∆ we have a ring homomorphism
AX,σ◦f → AX,σ. The following assertion is also proven in [Hub91, Theorem 2.4.1].

Lemma 1.8. Let X and T• be as in Proposition 1.7. The co-simplicial ring A•X,T• injects into the
co-simplicial ring

[n] 7→
∏

σ:[n]→|X|6
AX,σ.

We also need the following observation, which is a consequence of the definitions of adèles.

Remark 1.9. If F is a quasi-coherent sheaf on X, set-theoretically supported on a finite union
of closed points Z ⊂ X, then we have F ' AkX(F).

Another observation which we will need is that for an affine Noetherian scheme X, the functor

AX,T (−) : QCoh(X)→ Mod(Γ(OX))

can be expressed as −⊗Γ(OX)AX,T . This is the case, since AX,T (−), and −⊗− commute with
filtered colimits. Since AX,T (−) takes values in flasque sheaves by [Hub91, Proposition 2.1.5] (see
also Corollary 1.15), we see that AX,T (−) is an exact functor. Therefore, AX,T is a flat algebra
over Γ(OX). We record this for later use.

Lemma 1.10. Let X = SpecR be an affine Noetherian scheme. Then AX,T is a flat R-algebra.

1.2 Functoriality
If f : X → Y is a morphism of Noetherian schemes, we have an induced map of partially
ordered sets |X|6 → |Y |6. Indeed, x ∈ {y} implies f(x) ∈ {f(y)}. In addition, we have an
induced morphism of local rings OY,f(x) → OX,x. These observations are the building blocks of
a functoriality property satisfied by adèles. To the best of the author’s knowledge, this property
has not yet been recorded in the literature.
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Lemma 1.11. Let f : X → Y be a morphism of Noetherian schemes, and F ∈ QCoh(Y ) a
quasi-coherent sheaf on Y . For T ⊂ |X|n and f(T ) ⊂ T ′ ⊂ |Y |n we have a morphism AY,T ′(F)→
f∗AX,T (f∗F) in Mod(OY ), fitting into the following commutative diagram.

F //

��

f∗f∗F

��
AY,T ′(F) // f∗AX,T (f∗F)

Commutativity of this diagram amounts to the construction inducing a map of augmented
co-simplicial objects in Mod(OY ) from F → A•Y (F) to f∗f∗F → f∗A•X(f∗F).

Proof of Lemma 1.11. The morphism AY,T ′(F)→ f∗AX,T (f∗F) is constructed by induction on
n (where T ⊂ |X|n). For n = 0 and F ∈ Coh(Y ), we have

AX,T (f∗F) =
∏
x∈T

lim
r>0

(jrx)∗j∗rxf
∗F ,

and AY,T ′ � AY,f(T )(F) =
∏
x∈f(T ) limr>0(jrx)∗j∗rxF . We have a map

F ⊗OY OY,f(x)→ f∗F ⊗OX OX,x
for each x ∈ T , which defines the required map for T ⊂ |X|0.

Assume that the morphism AY,T ′(F)→ f∗AX,T (f∗F) has been constructed for all T ⊂ |X|k
and f(T ) ⊂ T ′ ⊂ |Y |k, where k 6 n, such that we have the following commutative diagram.

F //

��

f∗f∗F

��
AY,T ′(F) // f∗AX,T (f∗F)

Let T ⊂ |X|n+1. For every x ∈ X, we then have a well-defined map AY,f(x)f(T )(F) →

f∗AX,xT (f∗F), since f(xT ) ⊂ f(x)f(T ) ⊂ f(x)T
′. This induces a morphism∏

x∈|X|
lim
r>0

AY,f(x)f(T )((jrf(x))∗j
∗
rf(x)f

∗F)→
∏
x∈|X|

lim
r>0

AX,xT ((jrx)∗j∗rxf
∗F). (1)

We have a commutative diagram

F //

��

f∗f∗F

��∏
x∈|X|

lim
r>0

AY,f(x)f(T )((jrf(x))∗j
∗
rf(x)f

∗F) //
∏
x∈|X|

lim
r>0

AX,xT ((jrx)∗j∗rxf
∗F)

(2)

which commutes levelwise (before taking the inverse limits and products) by the induction
hypothesis.

We precompose the map (1) with∏
y∈|Y |

lim
r>0

AY,yT ′((jry)∗j
∗
ryf
∗F) �

∏
y∈f(|X|)

lim
r>0

AY,yT ′((jry)∗j
∗
ryf
∗F)

→

∏
x∈|X|

lim
r>0

AY,f(x)f(T )((jrf(x))∗j
∗
rf(x)f

∗F) (3)
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to obtain the required morphism AY,T ′(F) → f∗AX,T (f∗F). The required commutativity
assumption holds by commutativity of (2). 2

Setting F = OY in the assertion above, we obtain the following result as a consequence.

Corollary 1.12. For a morphism of Noetherian schemes, we obtain a map of augmented co-
simplicial objects

OY //

��

f∗OX

��
A•Y (OY ) // f∗A•X(OX)

in sheaves of algebras on the topological space |Y |.

Taking global sections, we obtain a functor from Noetherian schemes to co-simplicial rings.

Definition 1.13. We denote the functor (SchN)op
→ (Rng∆), sending a Noetherian scheme X

to the co-simplicial ring A•X(OX) by A•.

As we have alluded to in Theorem 0.4, and will prove as Corollary 3.32, this functor has a
left-inverse.

1.3 Taking a closer look at the flasque sheaf of adèles
In this subsection we give a close analysis of flasqueness of the sheaf AX,T (F). We show that
the restriction map AX,T (F)→ AU,T∩|U |n(F) is not only surjective, but admits an AX,T (OX)-
linear section. As a consequence we obtain that AX,T (OX) is what we call a lâche sheaf of
algebras in Definition 2.9 (see also Corollary 2.17). A similar statement is contained in [Hub91,
Proposition 2.1.5], however the AX,T (OX)-linearity is not investigated in [Hub91].

Lemma 1.14. Let X be a Noetherian scheme, T ⊂ |X|n and F a quasi-coherent sheaf on X.
For every open subset U ⊂ X the restriction map AX,T (F)→ AU,T (F) has a section, which is
moreover AX,T (OX)-linear and functorial in F .

Proof. We denote the inclusion U ↪→ X by j, and will construct a section to the map of sheaves
AX,T (F) → j∗AU,T (F). Recall that for a coherent sheaf F we have an equivalence AX,T (F) '∏
x∈X lim
←−rAX,xT (j∗rxF), and j∗AU,T∩|U |n(F) ' ∏x∈U lim

←−rAU,xT∩|U |n−1
(j∗rxF). Suppose that we

have already constructed a section φF for AX,T ′(F)→ j∗AU,T ′(F) for T ′ ⊂ |X|n−1, such that for
each map F → G we obtain the following commutative square.

j∗AU,T ′(F)
φF //

��

AX,T ′(F)

��
j∗AU,T ′(G)

φG // AX,T ′(G)

We can then map the limit
∏
x∈U lim
←−rAU (xT ; j∗rxF) to

∏
x∈X lim
←−rAU (xT ; j∗rxF), by defining the

components of the map to be 0 for x ∈ X\U , and given by the section φ otherwise.
By induction we see that we may assume that T ⊂ |X|0. We may also assume that

F is coherent. Hence, AX,T (F) is equal to the product
∏
x∈T lim
←−rj

∗
rxF , and AU (T,F) to∏

x∈T∩U lim
←−rj

∗
rxF . The natural restriction map is given by the canonical projection. A canonical

section with the required properties is given by the identity map for components corresponding
to x ∈ U ∩ T , and the map 0 for x ∈ T\U . 2

1713

https://doi.org/10.1112/S0010437X17007217 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007217


M. Groechenig

As a corollary one obtains the following observation of Beilinson.

Corollary 1.15. The sheaves AX,T (F) are flasque.

In [Bei80] Beilinson continues to observe that for any quasi-coherent sheaf F the canonical
augmentation F → A•X(F) induces an equivalence F ' |A•X(F)|. A detailed proof is given by
Huber [Hub91, Theorem 4.1.1].

Theorem 1.16 (Beilinson). Let X be a Noetherian scheme and F a quasi-coherent sheaf on X.
The augmentation F → A•X(F) defines a co-simplicial resolution of F by flasque OX -modules.
Applying the global sections functor Γ(X,−) we obtain RΓ(X,F) = |A•X(F)|, where the co-
simplicial realisation | · | is taken in the derived ∞-category D(AbGrp) of abelian groups.

It is instructive to test the general considerations above on the special case of algebraic
curves. For the rest of this subsection we will thus assume that X is an algebraic curve. We
denote by AX the sheaf, assigning to an open subset U ⊂ X the ring of adèles AU . Similarly we
have sheaves FX and OX of rational functions and integral adèles.

The sheaves AX and OX satisfy the conclusion of Lemma 1.14, because a section over U ⊂ X
can be extended by 0, outside of U . Since FX(U) = FX(X), as long as U 6= ∅, we see that the
conclusion of Lemma 1.14 is trivially satisfied for F. Beilinson’s Theorem 1.16 is in the present
situation tantamount to the assertion that the complex

[OX → FX ⊕ OX → AX ]

is exact. In other words, we observe that a rational function without any poles on U ⊂X, defines
a regular function on U . While this is a tautology in the one-dimensional case, the general setting
of Noetherian schemes requires more subtle arguments from commutative algebra. We refer the
reader to the proof of [Hub91, Theorem 4.1.1] for more details.

2. Perfect complexes and lâche sheaves of algebras

In this section we introduce the notion of lâche sheaves of algebras and prove Theorem 0.5.

2.1 Lâche sheaves of algebras
The main example of a lâche sheaf of algebras A is Beilinson’s sheaf of adèles. This is the content
of Corollary 2.17 below.

2.1.1 Flasque sheaves. In this section we record a few well-known lemmas on flasque sheaves
for the convenience of the reader.

Lemma 2.1. If F is a sheaf on X, such that every point x ∈ X has an open neighbourhood U
with F|U flasque, then F is a flasque sheaf.

Proof. Let V ⊂X be an open subset and s ∈ F(V ) a section. We claim that there exists t ∈ F(X)
with t|V = s. Consider the set I of pairs (W, t), where W ⊂ X is an open subset containing V ,
and t ∈ F(W ), such that t|V = s. Inclusion of open subsets induces a partial ordering on I,
where we say that (W, t) 6 (W ′, t′) if W ⊂W ′, and t′|W = t. Moreover, I is inductively ordered,
that is, for every totally ordered subposet J ⊂ I, there exists a common upper bound i ∈ I, such
that we have i > j for all j ∈ J . Indeed, denoting the pair corresponding to j ∈ J by (Wj , tj),
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we have Wj ⊂ Wk for j 6 k in J , and tk|Wj = tj . If we define W =
⋃
j∈JWj , the fact that F

is a sheaf allows us to define a section t ∈ F(W ) with t|Wj = tj . In particular, (W, t) ∈ I is a
common upper bound for the elements of J .

Zorn’s lemma implies that the poset I has a maximal element (W, t). It remains to show that
W = X. Assume that there exists x ∈ X\W . By assumption, x has an open neighbourhood U ,
such that F|U is flasque. In particular, there exists a section r ∈ F(U), such that r|U∩W = t|U∩W .
By virtue of the sheaf property we obtain a section t′ ∈ F(W ∪ U), satisfying t′|W = t, which
contradicts maximality of (W, t). 2

Lemma 2.2. If X is a quasi-compact topological space and A a sheaf of algebras, then every
locally finitely generated A-module M which is flasque is globally finitely generated, that is there
exists a surjection An→ M.

Proof. For every point x ∈ X there exists a neighbourhood Ux, such that M|Ux is finitely
generated. Since X is quasi-compact, we may choose a finite subcover X =

⋃n
i=1 Ui, and

generating sections (sij)j=1,...ni . Because M is assumed to be flasque, we may extend each sij to
a global section tij , and see that this finite subset of Γ(X,M) generates M. 2

Lemma 2.3. Assume that we have a short exact sequence of A-modules with

0→ M2→ M1→ M0→ 0,

with Mi flasque for i > 0, then M0 is flasque as well.

Proof. Since flasque sheaves have no higher cohomology, we have H1(X,M2) = 0, and therefore
the following commutative diagram has exact rows

0 // M2(X) //

��

M1(X) //

��

M0(X) //

��

0

0 // M2(U) // M1(U) // M0(U) // 0

Commutativity of the right-hand square, and the fact that M1(X) � M1(U) � M0(U) is
surjective, implies surjectivity of M0(X)� M0(U). 2

Lemma 2.4. Let A be an arbitrary sheaf of algebras on a topological space X. Consider the
abelian category of sheaves of A-modules. The full subcategory, given by A-modules M, such
that M is a flasque sheaf, is extension-closed.

Proof. Assume that we have a short exact sequence of A-modules M1 ↪→ M2 � M3, with Mi

flasque for i = 1 and i = 3. Since flasque sheaves do not have higher cohomology, we see that for
every open subset U ⊂ X we have a short exact sequence of abelian groups M1(U) ↪→ M2(U)�
M3(U). In particular, we obtain a commutative diagram with exact rows

0 // M1(X) //

����

M2(X) //

��

M3(X) //

����

0

0 // M1(U) // M2(U) // M3(U) // 0

with the left and right vertical arrows being surjective. The snake lemma or a simple diagram
chase reveal that the vertical map in the middle also has to be surjective. This proves that M2

is a flasque sheaf. 2
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Definition 2.5. We denote the exact category, given by the extension-closed full subcategory

of Mod(A) consisting of modules whose underlying sheaf is flasque, by Modfl(A).

We refer the reader to [Kel96] and [Büh10] for the notion of derived categories of exact

categories. We also emphasise that we use the notation D(−) to denote the stable ∞-category

obtained by applying the dg-nerve construction of [Lur, § 1.3.1] to the dg-category of [Kel96].

We will also consider similarly constructed stable ∞-categories D+, D− and Db, corresponding

to complexes which are bounded below, bounded above and bounded, respectively.

It is important to emphasise that for a substantial part of this text we will not need to delve

deeply into the theory of stable ∞-categories. The homotopy category of a stable ∞-category is

naturally triangulated. To check that a functor F : C→ D is fully faithful, essentially surjective,

or an equivalence, it suffices to prove the same statement for its homotopy category (that is

a classical triangulated category). This is essentially a consequence of the Whitehead lemma.

Distinguished triangles X → Y → Z → ΣX correspond to so-called bi-cartesian squares

X //

��

Y

��
0 // Z

that is, commutative diagrams which are cartesian and co-cartesian. A functor C→ D between

stable ∞-categories is called exact, if it preserves bi-cartesian squares. In particular, this is the

case if and only if the induced functor Ho(C) → Ho(D) is exact in the sense of triangulated

categories. The embedding Modfl(A) ↪→ Mod(A) induces an exact functor of derived categories.

Lemma 2.6. The canonical functor D+(Modfl(A)) → D+(A), induced by the exact functor

Modfl(A) ↪→ Mod(A), is fully faithful.

Proof. According to a theorem of Keller [Kel96, Theorem 12.1] it suffices to check that every

short exact sequence of A-modules M1 ↪→ M2 � M3 with M1 flasque fits into a commutative

diagram with exact rows

0 // M1
// M2

//

��

M3
//

��

0

0 // M1
// M′2 // M′3 // 0

with M′2 and M′3 flasque. To produce this diagram, we recall that every A-module M can be

embedded into a flasque A-module. Indeed, the sheaf of discontinuous sections, that is, Mdc(U) =∏
x∈U Mx provides such an embedding. Let M2 ↪→ M′2 be an embedding of M2 into a flasque

A-module. Then, the quotient M′3 = M′2/M1 is also flasque by Lemma 2.3. 2

2.1.2 Flasque sheaves of algebras. In this subsection we ponder over what can be said about

quasi-coherent sheaves of A-modules, if the sheaves of algebras A itself is known to be flasque.

Recall that an A-module M is quasi-coherent, if every point x ∈ X has a neighbourhood U ⊂ X,

such that the restriction M|U can be represented as a cokernel of a morphism A⊕J |U → A⊕I |U
of free A-modules.
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Remark 2.7. For a general sheaf of algebras A the category QCoh(A) of quasi-coherent A-modules
is in general not closed under taking kernels in the abelian category of A-modules Mod(A).
In particular, one does not expect QCoh(A) to be abelian in general. If the restriction maps
A(V )→ A(U) for U ⊂ V belonging to a specific subbase for the topology are known to be flat,
QCoh(A) can be shown to be abelian. This assumption is too strong for the sheaves of algebras
we care about in this article.

We see from Lemma 2.1 that every locally finite free or locally finite projective sheaf of
A-modules is flasque (where A is itself a flasque sheaf of algebras). In general, one cannot expect
every quasi-coherent sheaf of A-modules to be flasque. However, we will see in the next subsection
that there are certain flasque sheaves of algebras for which this is true.

Lemma 2.8. Let A be a sheaf of algebras on X, such that every free A-module is flasque. We
denote by P(A) the exact category given by the idempotent completion of free A-modules, and
refer to its objects as projective A-modules. The functor D−(P(A)) ↪→ D−(Modfl(A)), induced
by the inclusion P(A) ↪→ Modfl(A), is fully faithful.

Proof. We will apply the dual of the result in Keller [Kel96, Theorem 12.1], by which it suffices to
check that every short exact sequence of flasque A-modules M1 ↪→ M2 � M3 with M3 projective
fits into a commutative diagram with exact rows

0 // M′1 //

��

M′2 //

��

M3
// 0

0 // M1
// M2

// M3
// 0

with M′1 and M′2 projective. Since M2 ∈ Modfl(A) is flasque by assumption, there exists a
surjection A⊕I → M2 for some index set I. Indeed, we can take I = {(U, s)|U ⊂ X open, s ∈
M2(U)}. Choosing an extension t(U,s) ∈ M2(X), satisfying t(U,s)|U = s for every element of I, we

obtain a surjective morphism of A-module A⊕I → M2.
Let M′2 = A⊕I , and define M ′1 to be the kernel of the composition M′2 → M2 → M3. Since

M3 is a direct summand of a free A-module, and M′2 is flasque, there exists a splitting to this
surjection. Therefore, M′1 belongs to P(A), since it is a direct summand of M′2. This concludes
the proof. 2

2.1.3 Definition of lâche sheaves of algebras. If A is a sheaf of algebras on a topological
space, then there is a strengthening of the notion of A being flasque.

Definition 2.9. A sheaf of algebras A on X is called lâche if for every open subset U ⊂ X and

every map of free AU -modules A⊕JU
f−→ A⊕IU , the kernel ker f is a flasque sheaf on U .

To see that there are non-trivial lâche sheaves of algebras, we let X be a topological space
where every open subset is also closed in the following example.

Example 2.10. Let X be a topological space, where every open subset is also closed. Then every
sheaf of abelian groups F is flasque. If U ⊂ X is open, and s ∈ F(U), then using the sheaf
property of F we see that there is a unique section t ∈ F(X), such that t|U = s and t|X\U = 0.
This is possible because X\U is open by assumption. Hence, every sheaf of algebras on X is
lâche.
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The lemma below implies that for a lâche sheaf of algebras A, and a morphism f : A⊕J → A⊕I

the sheaves im f and coker f are flasque as well.

Lemma 2.11. Let V1
f−→ V2 be a morphism of flasque sheaves, such that ker f is flasque. Then,

the sheaves im f , and coker f are flasque.

Proof. We have a short exact sequence ker f ↪→ V1 � im f , since the first two sheaves are
flasque, so is the third (Lemma 2.3). The same argument applies to the short exact sequence
im f ↪→ V2 � coker f , and implies that coker f is flasque. 2

We can further generalise the assertion.

Lemma 2.12. Let V1
f−→ V2 be a morphism of projective quasi-coherent A-modules (that is, direct

summands of free modules), where A is lâche. Then the sheaves ker f , im f and coker f are flasque.

Proof. Since every projective quasi-coherent A-module is a direct summand of a free A-module,
there exist quasi-coherent A-modules W1 and W2, such that Vi ⊕ Wi are free A-modules for
i = 1, 2. The induced map

f ⊕ id : V1 ⊕ (W1 ⊕W2 ⊕ V1 ⊕ V2)⊕N→ V2 ⊕ (W1 ⊕W2 ⊕ V1 ⊕ V2)⊕N

has the same kernel ker f ' ker(f ⊕ id). However, the Eilenberg swindle

(W1 ⊕W2 ⊕ V1 ⊕ V2)⊕N ' (W1)i ⊕ (W2)j ⊕ (W1 ⊕W2 ⊕ V1 ⊕ V2)⊕N

allows us to see that the two sides are, in fact, free A-modules. Therefore, the defining property
of lâche sheaf of algebras implies that ker f is flasque. Lemma 2.11 yields that im f and coker f
are flasque sheaves. 2

The considerations above imply, in particular, that every quasi-coherent A-module of a lâche
sheaf of algebras A is flasque. However, we have to keep in mind that the category of quasi-
coherent sheaves is not abelian in general, as we pointed out in Remark 2.7. We have the following
corollary to Lemma 2.12.

Corollary 2.13. If M• ∈ DMod(A) is a complex of sheaves of A-modules which is locally
quasi-isomorphic to an object of D(P(A)), then its cohomology sheaves Hi(M•) are flasque.

Proof. We have seen in Lemma 2.1 that a sheaf is flasque if and only if it is locally flasque.
Therefore, we may assume M ∈ D(P(A)). Let us choose an explicit presentation by a complex
(V •, d), where each V i is a projective A-module. We have Hi(M) ' (ker di)/(im di−1). By
Lemma 2.12, ker di and im di−1 are flasque. By Lemma 2.3, the quotient Hi(M) is flasque. 2

2.1.4 A criterion for being lâche. In this subsection we observe that every sheaf of algebras
A, which admits linear sections to the restriction maps A(X) → A(U), is in fact lâche. As a
consequence, we obtain that the sheaf of adèles on a Noetherian scheme is lâche (Corollary 2.17).

Definition 2.14. A sheaf of algebras A is called very flasque if for every open subset U ⊂ X
there exists an A(X)-linear section φU of the restriction map rU : A(X)→ A(U).
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Typically the section φU is given by a map which extends s ∈ A(U) by 0 outside of U , as in
the following example.

Example 2.15. Let X be a topological space where every open subset is closed and A an arbitrary
sheaf of algebras, then A is very flasque.

Proof. For an open subset U ⊂ X we have a map φ : A(U)→ A(X) which sends s ∈ A(U) to the
unique section ŝ ∈ A(X), such that ŝ|U = s, and ŝ|X\U = 0. This definition makes sense because
A is a sheaf, and X = U ∪X\U a disjoint open covering. Since this map is A(X)-linear, we have
shown that A is very flasque. 2

In hindsight we have shown in Lemma 1.14 that for every quasi-coherent sheaf of algebras
F on a Noetherian scheme X, the sheaves of algebras AX,T (F) are very flasque. See also
Corollary 2.17 below, where an important consequence of this observation is recorded.

The next lemma is the aforementioned criterion for a sheaf of algebras being lâche.

Lemma 2.16. A very flasque sheaf of algebras A is lâche.

Proof. Let f : A⊕JV → A⊕IV be an AV -linear map, where V ⊂ X is open. We have to show that
K = ker f is a flasque sheaf on V . For U ⊂ V open we have a commutative diagram

0 // K(V ) //

��

A⊕J(V ) //

��

A⊕I(V )

��
0 // K(U) // A⊕J(U) // A⊕I(U)

with exact rows, because taking global sections is a left exact functor. However, A(V )-linearity
of the section rV ◦ φU : A(U)→ A(V ) implies that we have a commutative diagram

0 // K(V ) // A⊕J(V ) // A⊕I(V )

0 // K(U) //

OO

A⊕J(U) //

OO

A⊕I(U)

OO

where the dashed arrow is provided by the universal property of kernels. The dashed arrow is
therefore right-inverse to the restriction map K(V )→ K(U), and we conclude that K = ker f
is flasque. 2

Corollary 2.17. For a Noetherian scheme X and a quasi-coherent sheaf F of algebras, the
sheaves of Beilinson–Parshin adèles AX,T (F) are lâche sheaves of algebras.

Proof. Lemma 1.14 asserts that AX,T (F) is very flasque. According to Lemma 2.16 this implies
that AX,T (F) is also lâche. 2

2.2 Perfect complexes
In this subsection we study the ∞-category of perfect complexes of A-modules. This is
necessary since the classical category of quasi-coherent A-modules is not necessarily abelian
(see Remark 2.7).
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Definition 2.18. Let P(A) denote the exact category obtained as the idempotent completion
of the exact category of free A-modules. We denote by D−(A) the ∞-category corresponding
to the full subcategory of D(Modfl(A)) given by complexes of flasque A-modules M•, which are
locally equivalent to objects of D−(P(A)). That is, there exists an open covering X =

⋃
i∈I Ui

and complexes N•i ∈ D−(P(A|Ui)) such that we have equivalences N•i ' M•|Ui .

Recall that every exact functor between exact categories induces a functor between derived
∞-categories.

Lemma 2.19. Let X be a quasi-compact topological space and A a lâche sheaf of algebras on X.
We denote by R = Γ(A) the ring of global sections of A. The global sections functor Γ : D−(A)→
D−(R), induced by the exact functor Γ : Modfl(A)→ Mod(R), is conservative.

Proof. Pick a complex M• = [· · · di−1

−−→ M i di−→ M i+1 di+1

−−→ · · ·] ∈ D(Modfl(A)) representing an

object of D−(A). By definition, we have Γ(M•) = [· · · Γ(di−1)−−−−→ Γ(M i)
Γ(di)−−−→ Γ(M i+1)

Γ(di+1)−−−−→ · · ·].
We shall assume that Γ(M•) is acyclic, that is quasi-isomorphic to the 0-complex in D−(R). To
establish conservativity of the functor Γ, we must show that M• is acyclic in D(Modfl(A)).

Since X is assumed to be quasi-compact, and M• locally quasi-isomorphic to an object of
D−(P(A)), we see that there exists an i ∈ Z, such that the cohomology sheavesHj(M•) = 0 vanish
for j > i. We claim that for such an integer i we have that Z i = ker di has no higher cohomology.
Indeed, by assumption the stupid truncation σiM

• = [· · ·→ 0→M i
→M i+1

→ · · ·] is a flasque
resolution of Z i[−i], by assumption on the vanishing of Hj(M•) for j > i. However, since Γ(M•)
has no cohomology in all degrees, we see that σiM

• has no cohomology in degrees j > i. This
shows that Z i has no higher cohomology.

Let us denote the image sheaf of di−1 by Bi. It fits into a short exact sequence Bi→M i� Z i.
Since M i and Z i are acyclic, one sees from the associated long exact sequence that Bi has no

higher cohomology if and only if Γ(M i)
Γ(di)−−−→ Γ(Z i) is surjective. By definition, the cokernel of

this map equals RiΓ(M•) = 0. This is the case because Γ(M•) is acyclic, and therefore all its
cohomology groups vanish.

We have a commutative diagram

M i−1 di−1
//

""

Z i

    
Bi
. �

>>

Hi

where the lower zigzag is a short exact sequence of sheaves without higher cohomology. Applying
the functor Γ (the short exact sequence is preserved by virtue of the fact that Bi has no higher
cohomology) we obtain

Γ(M i−1)
Γ(di−1) //

$$

Γ(Z i)

## ##
Γ(Bi)

- 


;;

Γ(Hi)

Using again that Γ(M•) has no non-zero cohomology groups, we see that Γ(di−1) is surjective,
and therefore so is the map Γ(Bi) → Γ(Z i). This implies Γ(Hi) = 0. However, we know from
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Corollary 2.13 that the cohomology sheaves of M• are locally flasque, and therefore flasque by
Lemma 2.1. Since a flasque sheaf without non-zero global sections is the zero sheaf, we obtain
Hi(M•) = 0. Continuing this process by downward induction, we obtain that all cohomology
sheaves of M• vanish.

To conclude the proof we need to show that M• is acyclic in D(Modfl(A)). By [Büh10,
Definition 10.1 and Remark 10.19] this is equivalent to the assertion that the sheaves Z i and Bi
are flasque. Since sheaves are flasque if they are locally flasque by Lemma 2.1, it suffices to show
that M• is locally acyclic.

By assumption we can cover X by open subsets U , such that M•|U is quasi-isomorphic to a
complex of projective A-modules P • ∈ D−(P(A|U )). In particular, we see that P • is a complex
of projective sheaves of A|U -modules [· · ·→ P i−1

→ P i → 0→ · · ·], such that Hk(P •) = 0 for
all k ∈ Z. This implies the existence of a factorisation

P i−2 //

## ##

P i−1

!! !!

// P i // 0

Qi−1
- 


;;

Qi

where the lower zigzags are short exact sequences. Since P i = Qi is projective, we see that the
first sequence splits, and therefore Qi−1 is projective too. Continuing by downward induction,
we see that Qj is projective for all integers j, and therefore P • ' 0 in D(P(A|U )). We have seen
in Lemma 2.8 that the functor D−(P(A|U )) ↪→ D−(Modfl(A|U )) is fully faithful. This shows that
M•|U ' 0 is acyclic, and therefore that the restriction of the sheaves Bi and Z i to U are flasque.
As discussed above this concludes the proof that M• is acyclic in D(Modfl(A)). 2

We also have a localisation functor.

Definition 2.20. For A a lâche sheaf of algebras on X, we have an exact functor between
exact categories −⊗RA : P(R)→ P(A) ↪→ Modfl(A). The induced exact functor between derived
∞-categories will be denoted by

Loc : D−(R)→ D−(A).

Proposition 2.21. If X is quasi-compact and A is lâche, then Γ : D−(A) → D−(R) is an
equivalence of ∞-categories, with inverse equivalence Loc.

Proof. There is a commutative triangle

P(R)
−⊗RA//

id %%

Modfl(A)

Γ
��

P(R)

of exact functors, inducing a natural equivalence of functors idD−(A) ' Loc ◦ Γ. We claim that
we also have an equivalence Γ ◦ Loc ' idD−(R). To see this, consider M• ∈ D−(A). We will show
that M• belongs to the essential image of Loc. Let g : P • → Γ(M•) be a projective replacement
of Γ(M•), given by an actual morphism between chain complexes in Mod(R). By the adjunction
between −⊗R A and Γ, this yields a morphism f : Loc(P •) ' Loc(Γ(M•)) → M• in D−(A).
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Since Γ(f) = g is a quasi-isomorphism, and Γ is conservative by Lemma 2.19, we see that f is an
equivalence. This implies that every M• ∈ D−(A) is in fact equivalent to an object of D−(P(A)).
Therefore, we have a natural equivalence Loc ◦Γ ' idD−(A) as a consequence of the commutative
diagram

P(A)
Γ //

id ##

P(R)

−⊗RA
��

P(A)

of exact functors, and Lemma 2.8, which asserted D−(P(A)) ↪→ D−(Modfl(A)). 2

Corollary 2.22. The functor Γ : D−(A)→ D−(R) can be promoted to a symmetric monoidal
equivalence of symmetric monoidal ∞-categories.

Proof. The functor Loc lifts to a symmetric monoidal functor, since −⊗RA is a symmetric
monoidal functor P (R)→ P (A). Therefore, also the inverse functor Γ can be canonically lifted
to a symmetric monoidal functor (see [Lur, Remark 2.1.3.8] applied to the special case of the
operad O⊗ = N(Fin∗), as explained in [Lur] in the paragraph preceding the cited remark). 2

Corollary 2.23. The functor Γ restricts to a symmetric monoidal equivalence of symmetric
monoidal stable ∞-categories

Perf(A)⊗→ Perf(R)⊗,

with inverse Loc.

Proof. This follows from the equivalence D−(A)⊗ ' D−(R)⊗ once we have shown that the
mutually inverse functors Γ and Loc induce functors Γ : Perf(A)→ Perf(R) and Loc : Perf(R)→
Perf(A). Since Loc is induced by −⊗RA it is clear that Loc sends perfect complexes to perfect
complexes.

To show that Γ preserves perfect complexes, one uses that they are dualisable in D−(A)⊗.
The details are as follows. We have shown in Lemma 2.6 that the functor

D+(Modfl(A)) ↪→ DMod+(A)

is fully faithful. In particular, let M• ∈ Perf(A) ⊂ DMod(A) be a chain complex, which is locally
equivalent to bounded complexes of projective A-modules. Since X is quasi-compact, every
perfect complex is automatically bounded, and therefore admits a bounded below resolution
by flasque A-modules. Therefore, M• ∈ D−(A). Moreover, (M•)∨ also belongs to D−(A), and M•

is dualisable in D−(A). Since Γ and Loc are symmetric monoidal functors, they preserve dualisable
objects. We conclude that Γ(M•) is a dualisable object in D−(R). However, all dualisable objects
in D(R) are known to be perfect complexes (see [EKMM07, Theorem III.7.9]), hence we have
Γ(M•) ∈ Perf(R). 2

We do not know whether an analogue of Corollary 2.23 holds for flasque sheaves of algebras.
However, for a locally compact (and therefore in particular Hausdorff) topological space X, it
was shown by Illusie in [GI71, Exposé II, Proposition 2.3.2] that a similar result holds for perfect
complexes over soft sheaves of algebras.

3. Adelic descent for perfect complexes and maps to stacks

This section is concerned with proving the adelic descent theorem, and exploring its consequences.
We refer the reader to Definition 1.4 for Beilinson’s sheaf of adèles.
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Theorem 3.1 (Adelic descent). For every Noetherian scheme X we have an equivalence of
symmetric monoidal ∞-categories

Perf(X)⊗ ' |Perf(A•X)⊗|,

where A•X denotes the co-simplicial ring of Beilinson–Parshin adèles, and |Perf(A•X)⊗| denotes
the totalisation of the co-simplicial object Perf(A•X)⊗ in the∞-category of small monoidal stable
∞-categories.

Let S• be a co-simplicial ring. Applying the functor Perf : Rng → ∞-Cat, assigning to a
ring R the stable ∞-category of perfect R-complexes, we obtain a co-simplicial object in stable
∞-categories, Perf(S•). The objects of the limit ∞-category |Perf(S•)| will also be referred to
as cartesian co-simplicial perfect S•-complexes. This formulation is inspired by a co-simplicial
formulation of Grothendieck’s faithfully flat descent theory. We briefly review this viewpoint to
motivate the following considerations. More details can be found in [Sta, Tag 039Y]. For R→ S
a ring homomorphism, we may define a co-simplicial ring S•, where Sk can be identified with
tensoring S with itself (k + 1)-times; Sk = S ⊗R · · · ⊗R S. A co-simplicial S•-module consists of
a co-simplicial R-module M•, such that Mk is an Sk-module, compatibly with the co-simplicial
structure on M• and S•. We say that M• is a cartesian S•-module, if for every [k] → [n] the
induced map Mk ⊗Rk Rn → Mn is an isomorphism of Rn-modules. Classical descent theory
asserts that for R→ S faithfully flat, we have an equivalence of categories between R-modules
and cartesian S•-modules.

3.1 Proof of the adelic descent theorem
The adelic descent Theorem 3.1 follows from an analogous assertion for sheaves of symmetric
monoidal ∞-categories.

Proposition 3.2. For every Noetherian scheme X we have an equivalence of sheaves of
symmetric monoidal ∞-categories

−⊗A•X : Perf(OX)⊗ ' |Perf(A•X)⊗|,

where A•X denotes the co-simplicial sheaf of algebras of Beilinson–Parshin adèles.

In order to deduce the aforementioned theorem from this result, one takes global section:
we have seen in Corollary 2.23 that taking global sections is a symmetric monoidal equivalence.
More details can be found in § 3.1.5.

3.1.1 The adelic realisation functor. Our proof requires an ∞-category which is closed
under small colimits and contains |Perf(A•X)|. This is necessary to apply Lurie’s adjoint functor
Theorem A.3.

Definition 3.3. For a sheaf of algebras A on a topological space X, we define QC(A) =
IndPerf(A). Let X be a Noetherian scheme, we define the category |QC(A•X)| to be the geometric
realisation of the co-simplicial object QC(A•X) in symmetric monoidal ∞-categories.

This definition is optimal for the sheaves of algebras considered in this paper but can diverge
from more standard definitions in pathological cases, as the following remark shows.
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Remark 3.4. If X is a scheme which is quasi-compact and quasi-separated, then QC(OX) is
equivalent to the full subcategory of DMod(OX) of complexes of sheaves with quasi-coherent
cohomology (see [Nee96, Proposition 2.5] for the quasi-compact and separated case, and [BV03,
Theorem 3.1.1] for the general statement). However, if these technical assumptions are not
satisfied, this is no longer the case. For a general scheme X we will denote by QC(X) the
full subcategory of DMod(OX) of complex of OX -modules with quasi-coherent cohomology.

Next we define the adelic realisation functor.

Definition 3.5. The adelic realisation functor Perf(OX)⊗ → Perf(A•X)⊗ is given by tensoring
a perfect complex of OX -modules with the co-simplicial sheaf of rings A•X . Since QC(OX)⊗ =
IndPerf(OX)⊗, and analogously QC(AkX) = IndPerf(AkX) for every [k] ∈ ∆ we obtain an extension
of this functor

−⊗A•X : QC(OX)⊗→ QC(A•X)⊗.

In light of Proposition 3.2 it is tempting to believe that the adelic descent functor QC(OX)→
|QC(A•X)| is an equivalence. However, due to pathological behaviour of complexes of modules over
infinite products of rings, we do not expect this to be true. The ∞-category |QC(A•X)| is stable,
and admits small colimits for formal reasons.

Lemma 3.6. The ∞-category |QC(A•X)| is stable, possesses a canonical symmetric monoidal
structure, and is closed under small colimits. Moreover, it is presentable.

Proof. By definition, |QC(A•X)| is the limit of a co-simplicial diagram of symmetric monoidal
stable ∞-categories. Therefore, it is stable (see [Lur, Proposition 1.1.4.6]) and symmetric
monoidal itself.

The ∞-categories QC(AkX) = IndPerf(AkX) are presentable for each k ∈ N (see [Lur07,
Theorem 5.5.1.1(4)]). Since a limit of presentable ∞-categories is again presentable [Lur07,
Proposition 5.5.3.13], we see that this is also the case for |QC(A•X)|. Presentable ∞-categories
possess small colimits by [Lur07, Definition 5.5.0.1]. 2

We also know that this ∞-category is locally small by Remark A.1.

3.1.2 The right adjoint to adelic realisation. The adelic realisation functor preserves small
coproducts. This follows from its definition using tensor products, and the description of mapping
spaces in the ∞-category |QC(A•X)| given in Lemma A.2. Since it is exact, it commutes with
small colimits by virtue of Proposition A.4. Moreover, we know that QC(X) = IndPerf(X) is
presentable. By Lurie’s adjoint functor theorem (Theorem A.3) we see that there exists a right
adjoint

∫
X : |QC(A•X)|→ QC(X).

Definition 3.7. The right adjoint to the functor−⊗OXA•X : QC(X)→ |QC(A•X)| will be denoted
by
∫
X : |QC(A•X)|→ QC(X).

It is possible to give a more concrete definition of the functor
∫
X . For a discussion in terms

of model categories we refer the reader to Toën–Vezzosi’s treatment [TV08, 1.2.12], which also
inspired the notation

∫
. We will content ourselves with the following observation: by virtue

of QC(X) = IndPerf(X), we may view objects in QC(X) as functors Perf(X)op
→ ∞-Gpd,

sending finite colimits in Perf(X) (that is, finite limits in Perf(X)op) to finite limits in ∞-Gpd.
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The adjunction between −⊗OXA•X and
∫
X implies that for N• ∈ QC(A•X),

∫
X N

• is the functor
Perf(X)op

→∞-Gpd, which informally is given by

M 7→ MapA•X
(M ⊗OX A•X , N

•).

It follows from the proof of the adjoint functor theorem that
∫
X is equivalent to the functor

MapA•X
(−⊗OXA•X ,−) : QC(AX)× Perf(X)op

→∞-Gpd.

We record this for later use.

Lemma 3.8. With respect to the embedding QC(X) = IndPerf(X) ⊂ Fun(Perf(X)op,∞-Gpd), we
have

∫
X ' MapA•X

(−⊗OXA•X ,−) : QC(A•X)× Perf(X)op
→∞-Gpd.

Another formal property of
∫
X of importance to us is its behaviour with respect to small

colimits. We will give a heuristic justification that
∫
X commutes with small colimits, before

engaging with the formal argument. Since |X| is a Noetherian topological space (that is, every
open subset is quasi-compact), we have Perf(A) ⊂ DMod(A)c, that is, every perfect complex of
A-modules is compact. Thinking informally of

∫
X as a functor QC(A•X)× Perf(X)op

→∞-Gpd,
we see that∫
X

⊕
i∈I

N•i '
⊕
i∈I

∫
X
N•i : M 7→ HomA•X

(
M ⊗OX A•X ,

⊕
i∈I

N•i

)
'
⊕
i∈I

HomA•X
(M ⊗OX A•X , N

•
i ).

The key observation of the heuristic reasoning above is that −⊗OXA•X preserves compact objects.
Therefore, we need a sufficient criterion for objects in QC(A•X) to be compact.

Lemma 3.9. Let M• ∈ QC(A•X) be a cartesian co-simplicial A•X -module. If M0 ∈ Perf(A0
X) ⊂

QC(A0
X), then M• is compact in QC(A•X).

Proof. Let (N•i )i∈I be an arbitrary small family of objects in QC(A•X), and f : M• →
⊕

i∈IN
•
i

an arbitrary morphism. It suffices to show that there exists a finite subset J ⊂ I, such that we
have a factorisation

M• //

$$

⊕
i∈J N

•
i

��⊕
i∈I N

•
i

(4)

To produce this factorisation, we will show that the space of commutative diagrams as drawn
above is either empty or contractible. Since Perf(A0

X) ⊂ QC(A0
X)c, by virtue of the definition

QC(A0
X) = IndPerf(A0

X), we see that we have a finite subset J ⊂ I and a factorisation M0
→⊕

i∈JN
0
i →

⊕
i∈IN

0
i . Since the modulesM• and (N•i )i∈I are cartesian, that is,Mk 'M0⊗A0

X
AkX ,

we see that we have a factorisation Mk
→
⊕

i∈JN
k
i →

⊕
i∈IN

k
i for all co-simplicial levels k > 0.

Consider the cartesian diagram of co-simplicial spaces

X• //

��

pt•

f

��
MapA•X

(M,
⊕

i∈J N
•
i ) // MapA•X

(M,
⊕

i∈I N
•
i )
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where pt• is the constant diagram, consisting levelwise of a single point, and the map
pt• → Map(M,

⊕
i∈IN

•
i ) corresponds to the element f ∈ |Map(M,

⊕
i∈IN

•
i )| (where we used

Lemma A.2). We know that the fibre X• → pt• is contractible: as we have remarked above,
the space of factorisations through

⊕
i∈JN

•
i →

⊕
i∈IN

•
i is either empty or contractible. We

have shown that in the case of f , a factorisation exists levelwise. Hence, we have a fibrewise
equivalence X•→ pt•.

Taking the limit of the co-simplicial diagram above, we obtain a cartesian diagram of spaces

pt //

��

pt

f

��
Map|QC(A•X)|(M,

⊕
i∈J N

•
i ) // Map|QC(A•X)|(M,

⊕
i∈I N

•
i )

which implies that there exists a unique factorisation as in (4). 2

Lemma 3.10. The functor
∫
X commutes with small colimits.

Proof. This follows from Lemma A.6, and the fact that −⊗OXA•X preserves perfect complexes,
that is, compact objects (by Lemma 3.9). 2

The fact that
∫

commutes with small colimits will be used in the proof of the following
lemma.

Lemma 3.11 (Projection formula). For every M ∈ QC(X), and N• ∈ QC(A•X) we have an
equivalence in QC(X) ∫

X
M ⊗OX N• 'M ⊗OX

∫
X
N•.

Proof. Since
∫
X commutes with small colimits by Lemma 3.10, we may assume without loss of

generality that M ∈ Perf(X). In Lemma 3.8 we have seen that under the equivalence QC(X) =
IndPerf(X), the functor

∫
X equivalent to HomA•X

(−⊗OXA•X ,−), that is,
∫
M ⊗N• is equivalent

to the functor (−⊗OXA•X)∨ ⊗A•X
M ⊗OX N• ' M ⊗OX (−⊗OXA•X)∨ ⊗A•X

N•. The right-hand
side is equivalent to M ⊗OX

∫
N•. 2

Lemma 3.12. The unit idPerf(OX)→
∫

(−⊗A•X) is an equivalence, that is, for every M ∈ QC(OX)

we have M
'−→
∫

(M ⊗ A•X).

Proof. This is a special case of Lemma 3.11, once we will have shown that
∫
A•X ' OX . By

definition, we have
∫
X A•X ' HomA•X

(A•X ,A
•
X) ' |A•X |, where the last equivalence uses the

description of Hom-spaces in limits of ∞-categories of Lemma A.2. By Theorem 1.16 the sheaf
|A•X | is canonically equivalent to OX , by means of the augmentation OX → A•X . 2

Consequently, we see that −⊗OXA•X is fully faithful.

Corollary 3.13. The functor −⊗OXA•X : QC(X) = IndPerf(X) ↪→ QC(A•X) is fully faithful.

We will also use a minor variation of the notions introduced in the last two paragraphs. Let
|Z| be a closed subset of X, and denote by A•X,|Z| the co-simplicial sheaf of algebras, given by

setting T• = |Z|• ⊂ |X|• in Proposition 1.7. There is a natural morphism of sheaves of algebras
A•X → A•X,|Z|. We will also need to consider the full subcategory |Perf |Z|(A•X)|, consisting of

objects, whose restriction (in the sense of sheaves) to |Perf(A•X\Z)| is 0.
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Lemma 3.14. The functor −⊗A•X
A•X,|Z| : |Perf |Z|(A•X)| ↪→ |Perf(A•X,|Z|)| is fully faithful.

Proof. The morphism of co-simplicial rings A•X → A•X,|Z| has the property that it is levelwise
the projection to a factor ring. That is, for each n > 0, we have a decomposition

AnX ' AnX,|Z|n × AnX,|X|n\|Z|n .

By induction one shows that for M• ∈ |Perf |Z|(A•X)|, we have Mn ⊗AnX
AnX,|X|n\|Z|n ' 0.

This holds for n = 0 by virtue of the assumption that M0|X\Z ' 0. We assume by induction

that it holds for k 6 n, and we will show that Mn+1 ⊗An+1
X

An+1
X,|X|n+1\|Z|n+1

' 0. To see this, we

observe that An+1
X,|X|n+1\|Z|n+1

decomposes as a product An+1
X,T1
× An+1

X,T2
. The subset T1 ⊂ |X|n+1

consists of all chains (x0 6 · · · 6 xn+1), with (x0 6 · · · 6 xn) ∈ |X|n\|Z|n, and xn+1 ∈ |Z|; and
T2 ⊂ |X|n+1 consists of chains (x0 6 · · · 6 xn+1) with xn+1 ∈ |X|\|Z|. We have equivalences

Mn+1 ⊗An+1
X

An+1
X,T1

'Mn ⊗AnX
AnX,|X|n\|Z|n ⊗An

X,|X|n\|Z|n
An+1
X,T1

' 0

and
Mn+1 ⊗An+1

X
An+1
X,T2

'M0 ⊗A0
X
A0
X,|X|0\|Z|0 ⊗A0

X,|X|0\|Z|0
An+1
X,T2

' 0

by the induction hypothesis. This implies the vanishing assertion.
We have seen that for every n > 0 the functor −⊗AnX

AnX,|Z|n is fully faithful, when restricted

to the full subcategory of Perf(AnX), consisting of objects which are equivalent to 0, after tensoring
with −⊗AnX

AnX,|X|n\|Z|n . That is, for two objects M•, N• in this category, we have an equivalence

Map(Mn, Nn) ' Map(Mn ⊗AnX
AnX,|Z|n , N

n ⊗AnX
AnX,|Z|n)

for every n > 0. This implies that

lim
[n]∈∆

Map(Mn, Nn)→ lim
[n]∈∆

Map(Mn ⊗AnX
AnX,|Z|n , N

n ⊗AnX
AnX,|Z|n)

is an equivalence too. Using Lemma A.2, we identify both sides with the mapping spaces in the
limit ∞-categories and see that the functor

−⊗A•X
A•X,|Z| : |Perf |Z|(A•X)| ↪→ |Perf(A•X,|Z|)|

is fully faithful. 2

Corollary 3.15. Let
∫
X,|Z| : QC(A•X,|Z|) → QC(X) be the right adjoint to −⊗OXA•X,|Z|. We

have an equivalence of functors∫
X,|Z|

◦ (−⊗A•X
A•X,|Z|) '

∫
X

: |Perf |Z|(A•X)|→ QC(X).

That is, for every M• in |Perf |Z|(A•X)|, we have a natural equivalence
∫
XM

• '
∫
X,|Z|(M

• ⊗A•X

A•X,|Z|).

Proof. For M• in |Perf |Z|(A•X)|, we have
∫
XM

• ∈ QCZ(X). Therefore, it suffices to consider only
perfect complexes in X with set-theoretic support |Z|. The right-hand side functor agrees with
Map(−⊗OXA•X ,−) : PerfZ(X)op × |Perf |Z|(A•X)| → ∞-Gpd. By Lemma 3.14 it is equivalent to
Map(−⊗OXA•X,|Z|,−⊗A•X

A•X,|Z|), hence to
∫
X,|Z| ◦(−⊗A•X

A•X,|Z|). 2
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3.1.3 Modules over product rings. This subsection relies on Bhatt’s treatment of perfect
complexes over product rings R =

∏
i∈I Ri, where I is a small set [Bha16, § 7]. At first we review

his characterisation of perfect R-complexes. Let {Mi}i∈I be a family of perfect Ri-complexes.
This requires a definition: we say that a family of complexes of Ri-modules {Mi}i∈I is globally
bounded, if there exist two integers m,n ∈ Z, such that Hj(Mi) 6= 0 implies m 6 j 6 n, for all
i ∈ I.

Theorem 3.16 (Bhatt). Let I be a small set and {Ri}i∈I a small family of commutative rings.
We denote the ring

∏
i∈I Ri by R. Then the functor Perf(R) →

∏
i∈I Perf(Ri) induced by

tensoring along the projection maps pi : R→ Ri, induces an equivalence with the full subcategory
of globally bounded families of perfect complexes.

In particular, this theorem implies that we have a fully faithful functor

Perf(R) ↪→
∏
i∈I

Perf(Ri),

and, moreover, it characterises the essential image of this embedding. The functor QC(R) →∏
i∈I QC(Ri) is not fully faithful. In the following example we illustrate this behaviour by alluding

to classical, non-derived tensor products and modules over infinite product rings.

Example 3.17. Let I be an infinite small set and {Ri}i∈I a collection of non-trivial rings. Let
R =

∏
i∈I Ri be the infinite product. We define an equivalence relation ∼ on R, where we say

that (xi)i∈I ∼ (yi)i∈I , if and only if xi = yi for all but finitely many indices i. We define the
R-module M to be R/ ∼. By construction, we have M ⊗R Ri = 0 for all i ∈ I, although M 6= 0.

This failure of fidelity is the reason that we cannot expect the functor QC(X)→ |QC(A•X)|
to be an equivalence. This remark will become clear by inspecting the argument of Lemma 3.21
below.

3.1.4 Conservativity. The following assertion is key in our argument that −⊗A•X is an
equivalence of categories, with inverse

∫
.

Proposition 3.18. If X is affine, then the functor
∫

: |Perf(A•X)|→ QC(X) is conservative.

The proof is scattered over this subsection, and broken down into several lemmas. Our
argument relies on two technical results: an invariance property for derived∞-categories with set-
theoretic support condition, given by the Thomason–Trobaugh theorem [TT90, Theorem 2.6.3],
and the theory of modules over product rings, described in § 3.1.3. For the convenience of the
reader, we have allowed ourselves to state Thomason–Trobaugh’s result in a way which can be
directly applied to our context. We refer the reader to the original reference for a more general
statement.

Theorem 3.19 (Thomason–Trobaugh). Let R be a Noetherian ring, let I be an ideal and let
PerfI(R) denote the full subcategory of Perf(R) consisting of perfect complexes set-theoretically
supported at the closed subset of SpecR corresponding to I. We denote by R̂I the completion of R
at I. Then, tensoring along R→ R̂I induces an equivalence of symmetric monoidal∞-categories
PerfI(R) ∼= Perf

Î
(R̂I).

From now on we fix 0 6= N• ∈ Perf(A•X); and will show that
∫
N• 6= 0. We begin with an

easy observation first.
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Lemma 3.20. Let X be an affine Noetherian scheme. For every 0 6= N• ∈ Perf(A•X) there exists
a point x ∈ X, and a perfect complex F ∈ Perf{x}(X), such that F ⊗OX N• 6= 0.

Proof. Since N0 6= 0, it follows from Bhatt’s Theorem 3.16 that there is a (not necessarily
closed) point x ∈ X with N0 ⊗A0

X
Ôx 6= 0. Since N• is non-zero there exists a point x ∈ X,

such that the perfect complex of Ôx-modules N0 ⊗A0
X
Ôx is non-zero. The Yoneda embedding

restricts to a fully faithful functor Perf(Ôx) ↪→ IndPerf{x}(X) (see the reformulation of [Efi10]
in [BGW14, Propositions 5.2 and 5.4]). Therefore, there exists an object F ∈ Perf{x}(X), such

that Hom(F∨, N• ⊗A0
X
Ôx) = F ⊗OX N0 ⊗A0

X
Ôx 6= 0. This implies F ⊗OX N• 6= 0. 2

Lemma 3.21. If X is affine, and N• ∈ Perf(A•X), then there exists a closed point x ∈ X such

that N0 ⊗A0
X
Ôx 6= 0.

Proof. We apply Lemma 3.20 to deduce the existence of a (not necessarily closed) point y ∈ X,

such that N0 ⊗A0
X
Ôy 6= 0. We choose F ∈ Perf{y}(Ôy), such that N0 ⊗A0

X
Ôy ⊗Ôy F 6= 0

(existence of such a point y and a complex F are guaranteed by Lemma 3.20). It is clear that

N0⊗A0
X
Ôy ⊗Oy F 6= 0 implies N0⊗A0

X
Ôy 6= 0. This justifies making this replacement. However,

note that N• ⊗OX F ∈ QC(A•X), because F might not be perfect as a complex of OX -module.
Nonetheless we may view N0 ⊗OX F as an object in Perf{y}(Oy).

Let x ∈ {y} be a closed point. Observe that such an x exists, because X is affine (every

ideal is contained in a maximal ideal). We claim that N0⊗A0
X
Ôx 6= 0 as well. Indeed, we have a

map co-simplicial sheaves of algebras f : A•X → A•X,T• , where T• ⊂ |X|• is the minimal simplicial
subset containing the chains (x), (y), and (x < y).

By [Hub91, Proposition 3.3.3], the ring A1
X,T1

is isomorphic to a product A0 × A(x < z),
where the first factor corresponds to the degenerate part of the co-simplicial ring.

The maps A0
X → Ôz for z = x, y factor through A0

X,T0
(OX). We have the following

commutative diagram (see [Hub91, Proposition 3.2.1] for how A(x < y) fits in there).

Oy //

��

Ôx ⊗OX Oy

��

Ôxoo

Ôy // A(x < y) Ôxoo

We recall that the set-theoretic support condition N• ⊗OX F ∈ QC{y}(Oy) ∼= QC{y}(Ôy) holds
(where the equivalence is given by pullback, see Thomason–Trobaugh’s theorem (Theorem 3.19)),
and we assume by contradiction N0 ⊗A0 Ôx = 0. The first line of the commutative diagram
contains the two face maps of the co-simplicial object A•X,T• . Using our assumptions we therefore
obtain

(N0 ⊗OX F ⊗A0 Ôy)×Ôy A(x < y) ' N0 ⊗OX F ⊗A0 Ôx = 0.

Since N0 ⊗OX F ∈ Perf{y}(OY ) ' Perf{y}(ÔY ) (using Thomason–Trobaugh’s theorem
(Theorem 3.19)), commutativity of the left-hand square implies therefore

(N0 ⊗OX F ⊗A0 Ôy)⊗Oy (Ôx ⊗OX Oy) = 0.

The ring homomorphism Oy → Ôx ⊗OX Oy is the co-base change of the fully faithful ring

homomorphism Ox→ Ôx. Therefore, we have N0⊗OXF⊗A0 Ôy = 0, which is a contradiction. 2
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The following lemma could also be deduced from a more elementary argument. We give a
more abstract proof, which uses a categorical viewpoint on ring completions.

Lemma 3.22. Let X be an affine Noetherian scheme. For every 0 6= N• ∈ Perf(A•X) there exists
a closed point x ∈ X, and a perfect complex F ∈ Perf{x}(X), such that F ⊗OX N• 6= 0.

Proof. We have seen in Lemma 3.21 that there exists a closed point x ∈ X, such that the perfect
complex of Ôx-modules N0⊗A0

X
Ôx is non-zero. Using the strategy as in the proof of Lemma 3.20,

we deduce the existence of a perfect complex F ∈ Perf{x}(X), such that F⊗OXN• 6= 0. 2

In the following we denote by Hi(−) the degree i cohomology sheaf of a complex of sheaves.
Recall that we have functors AX,T (−) : QCoh(X)→ Mod(OX), as defined in Definition 1.4. As
before, we denote by A0

X(−) the functor for T = |X|.

Lemma 3.23. Let M ∈ QC(X) = IndPerf(X), then Hi(M ⊗OX AX,T ) ' AX,T (Hi(M)).

Proof. By definition, the functor AX,T (−) ' QCoh(X) → Mod(OX) commutes with filtered
colimits. Since the same is true for Hi(−) and −⊗OXAX,T (OX), we see that we may assume that
M is a perfect complex. Since the statement is local, we may assume that M can be represented
by a bounded complex (V •) of free sheaves of finite generation V i = OmiX . In particular, Hi is
represented as the cohomology sheaf in degree i of the chain complex

· · ·→ Omi−1

X → OmiX → O
mi+1

X → · · · .
Since AX,T (−) is exact, we obtain a chain complex

· · ·→ AX,T (Omi−1

X )→ AX,T (OmiX )→ AX,T (Omi−1

X )→ · · · ,
and an equivalence of middle cohomology sheaves. The second chain complex can be identified
with M ⊗OX AX,T . This implies the assertion. 2

Proof of Proposition 3.18. Let 0 6= N• ∈ Perf(A•X) and F ∈ Perf(X) as in Lemma 3.22. In
particular, there exists a closed point x, such that F ∈ Perf{x}(X). By the projection formula
(Lemma 3.11) we have ∫

(N• ⊗OX F ) ∼= F ⊗OX
∫
N•.

Therefore, it suffices to show that this expression is 6= 0, to deduce that
∫
N• 6= 0. Henceforth,

we replace N• by N• ⊗ F , that is, we have N•|X\{x} = 0. Since pullback along Spec Ôx → X
induces an equivalence of ∞-categories (using Thomason–Trobaugh’s theorem (Theorem 3.19))

Perf{x}(X)→ Perf{x}(Ôx),

one obtains N0 ∼= M ⊗OX A0
X , for some M ∈ Perf{x}(X). Let di : A0

X → AnX be an arbitrary
boundary map, and φi : OX → AnX the map given by composition with the augmentation. We
claim that M →M ⊗ AnX is a quasi-isomorphism of complexes of OX -modules. Indeed, passing
to the cohomology sheaves, we obtain using Lemma 3.23

Hi(M)→ AnX(Hi(M)).

This is an isomorphism, since Hi(M) is set-theoretically supported at the closed point x
(Remark 1.9).

Hence, we see that N• ⊗OX F is equivalent to the constant object M ⊗OX A•X in Perf(A•X),
which implies

∫
N• ⊗OX F ∼= N0 ⊗OX F 6= 0. 2
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3.1.5 Conclusion of the argument. Henceforth, we assume that X is an affine Noetherian
scheme. In this subsection we prove that for M• ∈ |Perf(A•X)| the object

∫
M• is also perfect.

We first show (Corollary 3.28) that this statement holds generically, that is, there exists a non-
empty open subset U ⊂ X, such that

∫
M•|U ∈ Perf(U). We use this result as a stepping stone,

together with the Noetherian property of X, to show that
∫
M• is in fact a perfect complex. The

key observation to deduce this, is Lemma 3.26, which asserts that for a generic point η of X,
M0 ⊗A0

X
Oη ' 0 implies the existence of a non-empty open subset V ⊂ X, such that M•|V ' 0.

Lemma 3.24. Let X be a Noetherian scheme and let |Z| ⊂X be a closed subset, with η a generic
point of |Z| and U an affine open neighbourhood of η such that U ∩ |Z| is irreducible. We have
that the canonical map A•X,|Z|•(Oη)|U → Ôη is a homotopy equivalence of co-simplicial sheaves
of algebras.

We refer the reader to [Sta, Tag 019U] for a detailed review of the definition of a homotopy
between maps of co-simplicial objects in a category C. In brief, we say that f , g : U• → V • are
homotopic, if for every n > 0 and every α : [n]→ [1] we have maps hn,α : Un → V n, such that
for f : [k]→ [n] the diagram

Uk
f //

hk,α◦f
��

Un

hn,α

��
V k f // V n

commutes. We also require that the original maps fn and gn are obtained as hn,0 and hn,1, where
i : [n]→ [1] is the constant map with value i, for i ∈ [1].

There is an equivalent definition, which makes sense in any ∞-category, possessing finite
products, so in particular in the ∞-category of small ∞-categories. We refer the reader to
Definition A.8. In Lemma A.9 we show that two homotopy equivalent co-simplicial objects in
∞-categories have canonically equivalent limit ∞-categories.

There is also a notion of homotopy for maps between simplicial sets. Let S6 be a partially
ordered set, with a maximal element η, and we will mainly care about S6 = |U ∩ Z|6 with the
generic point η. We have the simplicial set of ordered chains S•, where Sn = {x0 6 · · · 6 xn}.
We have a homotopy

hn,α(x0 6 · · · 6 xn) = x0 6 · · · 6 xk 6 η · · · 6 η,

where k is the maximal element of [n], such that α(k) = 0. This defines a homotopy between the
identity of the simplicial set S• of ordered chains and the constant map S•→ {η} ⊂ S•. In other
words, the constant simplicial set {η}• is a deformation retract of S•. This is a minor variation
of [Sta, Tag 08Q3]. The proof of the lemma above will use this homotopy hn,α, which contracts
|U ∩ Z|• onto the generic point.

Proof of Lemma 3.24. From now on we replace X by U without loss of generality. Recall that
the co-simplicial algebra A•X,|Z|(Oη) is a subobject of the co-simplicial algebra

[n] 7→
∏

[n]→|Z|6
AX,σ(Oη)

(Lemma 1.8). For σ : [n]→ |Z|6 we denote by σ+ the map [n+ 1]→ |Z|6, which restricts to σ
along the map [n]→ [n+1], and sends n+1 to η. By definition, we have AX,σ(Oη) = AX,σ+(OX).

1731

https://doi.org/10.1112/S0010437X17007217 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007217


M. Groechenig

Therefore, we have for α : [n]→ [1] that the chain of points corresponding to hn,α(σ)+ can be
extended to the chain σ+, that is, there is a canonical inclusion

iσ,α : AX,hn,α(σ)(Oη)→ AX,σ(Oη).
We define the homotopy as a map

hn,α :
∏

σ:[n]→|Z|6
AX,σ(Oη)→

∏
σ:[n]→|Z|6

AX,σ(Oη),

sending (xσ)σ:[n]→|Z|6 to (iσ,α(xhn,α(σ)))σ:[n]→|Z|6 . It remains to verify that the homotopy hn,α

respects the subobject A•X,|Z|(Oη).
To see this for a given α : [n]→ [1], we observe that the ring homomorphism hn,α : AnX(Oη)→

AnX(Oη) can be obtained using the co-simplicial structure A•X(Oη). For α : [n]→ [1], we denote
by [k] = α−1(0)+ the preimage of 0, with an additional maximal element η adjoined (otherwise
k could be empty). We let s : [k]→ [n]+ be the inclusion, which identifies [k]\{η} with α−1(0),
and preserves maxima. We define r : [n]+→ [k] to be the unique map in ∆, preserving maxima,
and satisfying r ◦ s = id[k]. We let p = s ◦ r : [n]+ → [n]+, and define T = {(x0 6 · · · 6
xn+1 ∈ |X|n+1|xn+1 = η)}. By virtue of [Hub91, § § 2.2 and 2.3] we have a morphism AnX(Oη) =
An+1
X,T (OX)→ An+1

X,T (OX) = AnX(Oη), which agrees with hn,α on the local factors. This shows that
the homotopies hn,α are well-defined.

Hence, we have constructed a homotopy between idA•
X,|Z|(Oη) and the composition

A•X,|Z|(Oη)→ (Ôη)•→ A•X,|Z|(Oη).
This concludes the proof. 2

Since homotopy equivalent co-simplicial rings have equivalent categories of cartesian modules
by Lemma A.9, we obtain the following consequence.

Corollary 3.25. For X an affine Noetherian scheme, with a closed subset |Z| ⊂ X, and M• ∈
|Perf |Z|(A•X)| (that is, M•|X\|Z| ' 0, see also Lemma 3.14), for every generic point η of |Z|, the
stalk (

∫
M•)η is a perfect Oη-complex.

Proof. By the projection formula (Lemma 3.11) we have (
∫
M•)η '

∫
(M• ⊗OX Oη). The co-

simplicial object M•⊗OX Oη can be viewed as an A•X,|Z|•(Oη)-module by Lemma 3.14. Since the

co-simplicial sheaf of algebras A•X,|Z|•(Oη) is homotopy equivalent to the constant co-simplicial

sheaf of algebras Ôη, with homotopy inverse given by the projection A•X,|Z|•(Oη)→ Ôη, we have
an equivalence

|Perf(A•X,|Z|•(Oη))|→ Perf(Ôη), (5)

inverse to the realisation functor given by tensoring along A•X,|Z|•(Oη)→ Ôη. By Corollary 3.15
we have an equivalence of functors∫

X,|Z|
◦ (−⊗A•X

A•X,|Z|) '
∫
X

: |Perf |Z|(A•X)|→ QC|Z|(X).

This implies that (
∫
M•)η is a perfect Ôη-complex. Therefore, we see that the equivalence of (5)

restricted to the full subcategory Perf |Z|(A•X) lands in Perf{η}(Ôη). In Theorem 3.19, we have
recorded the result of Thomason–Trobaugh that this category is equivalent to Perf{η}(Oη). This
shows that (

∫
M•)η is a perfect complex of Oη-modules. 2
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Lemma 3.26. Let X be an affine Noetherian scheme, |Z| ⊂ X a closed subset and M• ∈
|Perf(A•X,|Z|•)|, such that for η a generic point of |Z|, we have M0 ⊗A0

X,|Z|
Ôη ' 0. Then, there

exists an open neighbourhood V ⊂ X of η, such that M•|V ' 0.

Proof. We begin by discussing the special case |X| = |Z| to which we will eventually reduce the
general case.

Let A0
X,<η =

∏
x<η Ôx, which is a factor of A0

X =
∏
x∈|X| Ôx. By assumption, A0

X,<η ⊗OX Oη
is a factor of A1

X . Via the co-simplicial structure, the second ring receives a map from A0
X,<η and

also from Oη (another factor of A0
X):

A0
X,<η

&&
A0
X,<η ⊗OX Oη �

� // A1
X

Oη

88

The assumption M0 ⊗A0
X
Oη ' 0 implies therefore also M1 ⊗A1

X
(A0

X,<η ⊗OX Oη) ' 0.

Using that M• ∈ |Perf(A•X)| is a cartesian co-simplicial perfect complex, we see that

0 'M0 ⊗A0
X

(A0
X,<η ⊗Oη) 'M0 ⊗OX Oη,

where we have used that M0 ⊗A0
X
Oη ' 0.

We can write Oη as a filtered colimit of rings colimf∈OXOX,f , and hence see that

A0
X,|Z|,<η ⊗OX Oη ' colimf∈OXA

0
X,|Z|,<η ⊗OX OX,f

is a filtered colimit of rings.
By [TT90, Proposition 3.20], if R = colimi∈IRi is a filtered colimit of rings, and for j ∈ I,

Mj ∈ Perf(Rj), such that Mj ⊗Rj R ' 0, then there exists i > j, such that Mj ⊗Rj Ri ' 0 (in
[TT90] it is shown that the homotopy category of perfect complexes of R-modules is equivalent
to the filtered colimit of the homotopy category of perfect complexes of Ri-modules).

Since our sheaves of algebras are lâche, we may apply this result, since by virtue of
Corollary 2.23 the categories over perfect complexes over these sheaves of algebras are equivalent
to perfect complexes over the rings of global sections. Hence, we see that there exists f ∈ OX ,
such that (M0 ⊗A0

X
A0
X,<η)⊗Of ' 0. Restricting both sides to the open subset V ⊂ X defined

by localisation at f , we obtain M0|V ' 0, because (Of )|V ' O. This concludes the proof of the
case |X| = |Z|.

Let i : Z ↪→ X be a closed immersion, such that its underlying closed subset is the one of
interest |Z|. By Lemma 1.11 we have a canonical map A•X,|Z|→ i∗A•Z . Tensoring along this map

produces a functor |Perf(A•X,|Z|)|→ |Perf(A•Z)|.
For any M• in |Perf(A•X,|Z|)|, such that M0 ⊗A•

X,|Z|
ÔX,η ' 0, we obtain therefore by

functoriality N• = M• ⊗A•
X,|Z|

A•X , which also satisfies vanishing at the generic point. Our

treatment of the special case |X| = |Z| can therefore be applied to Z, and we obtain an open
subscheme U ⊂ Z, such that for every x ∈ U we have N0 ⊗A•X

ÔZ,x ' 0.
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To conclude the proof it remains to show that we also have M0 ⊗A•
X,|Z|

ÔX,x ' 0 for every

x ∈ U . This is simply a consequence of Nakayama’s lemma: the map ÔX,x→ ÔZ,x is a morphism
of local rings inducing an isomorphism of residue field. Since a perfect complex over a local ring
is acyclic if and only if it is acyclic over the residue fields, this concludes the proof. 2

The following non-example demonstrates how the property of being 0 at the generic point
spreads out to an open neighbourhood.

Example 3.27. Consider the example X = SpecZ, we then have a perfect A0
X -complex given

by 0×∏p prime Fp by Bhatt’s Theorem 3.16 for perfect complexes over product rings. Here the

factor 0 reminds us that the Q-factor of A0
X acts trivially the product. We claim that this perfect

complex cannot be M0 of an adelic descent datum M• ∈ |Perf(A•X)|. Indeed, if it was, then we
would have M0 ⊗A0

X
Q ' 0, as can be seen by tensoring M0 with the ring homomorphism given

by the composition A0
X → Q→ A1

X , which corresponds to one of the face maps. By construction,
M0 ⊗A0

X
Q is already 0. However, there is a second face map A0

X → A1
X , which agrees with the

natural map (A0
X → A1

X ⊗ Q) away from the degenerate part of A1
X . Since tensoring along the

face maps should produce quasi-isomorphic perfect complexes, we see that M0⊗Q ' 0. However,
the element (1, . . .)p prime ∈ H0(M0) is not annihilated by any f ∈ OX(X) = Z.

We will now put this spreading-out property of adelic descent data to use, to show that for
M ∈ |Perf(A•X)| the complex

∫
M is generically perfect.

Corollary 3.28. Let X be an affine Noetherian scheme, let |Z| ⊂ X be a closed subset and let
M• ∈ |Perf |Z|(A•X)|. For every generic point η of |Z| exists an open neighbourhood U ⊂ X, such
that (

∫
M•)|U is a perfect complex on U .

Proof. Choose an isomorphism of (
∫
M•) → colimi∈INi with a filtered colimit of perfect

complexes on X. By Corollary 3.25, we know that (
∫
M•)η is a perfect Oη-complex. Therefore,

we see that there exists an index j ∈ I, such that we have a factorisation

(
∫
M•)η

s //

%%

(Nj)η,

r

��
(
∫
M•)η

and we see that p = s ◦ r defines an idempotent on (Nj)η, such that the corresponding direct
summand is equivalent to (

∫
M•)η. Since Nj is perfect, there exists an affine open subset U ⊂X,

and an idempotent p on Nj |U , which extends the one over Oη. Passing to the corresponding
direct summand N ′j of Nj |U , we see that we have constructed a direct summand N ′j , with
a map to (

∫
M•)|U , which induces an equivalence at η. By adjunction, we have a morphism

N ′j ⊗OX A•X,|Z|→M•, which is an equivalence after tensoring with −⊗A0
X,|Z|
Oη. By Lemma 3.26

there exists an open subset V ⊂ U , such that N ′j ⊗OX A•V,|Z|∩V →M•|V is an equivalence. This

implies that (
∫
M•)|V is equivalent to N ′j |V , and thus is a perfect complex. 2

Proof of Proposition 3.2. As before we assume that X is an affine scheme. For every adelic
descent datum M• ∈ |Perf(A•X)|, we will show that

∫
M• is perfect. Thus, by conservativity of

∫
,

and the fact that −⊗OXA•X is fully faithful, we can apply Lemma A.7 to conclude the proof.
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Let η be a generic point of X. By virtue of Corollary 3.28 there exists an open neighbourhood
U , and a perfect complex N ∈ Perf(U), together with an isomorphism N ⊗OU A•X 'M |U . After
replacing U by a smaller open subset, we may assume that it is a standard affine open U = Xf .
We would like to extend this map to X, and then take the cofibre thereof. However, in general
it is not possible to extend a perfect complex from an open subset, unless its K-theory class
extends [TT90, Proposition 5.2.2]. Hence, we consider instead M•0 = M• ⊕ ΣM , and N ′0 ⊕ ΣN ,
whose K-theory class is 0, but contain the perfect complexes we care about as a direct summand.
We may assume that N ′0 = N ′′0 |U , where N ′′0 ∈ Perf(X). Let j : U ↪→ X be the corresponding
open immersion, we have a map

N ′′0 → j∗j∗N ′′0 → j∗j∗
∫
M•0 ,

and we explain in Lemma 3.29 below there exists a line bundle L, such that we have a map
N0 = N ′′0 ⊗ L →

∫
M•0 , which induces an equivalence, when restricted to U . We consider the

cofibre C of the adjoint N0 ⊗OX A•X →M•0 , and define M•1 = C ⊕ ΣC.
Since M0

1 ⊗A0
X
Oη ' 0, we see that M1 ∈ Perf(A•X,|Z|) for a closed subset |Z| ⊂ X by

Lemma 3.26. Iterating this process, we obtain a sequence (M•n)n∈N of objects in Perf(A•X),
together with an increasing sequence of open subsets Un ⊂ |X|, such that

∫
M•n|Un is perfect.

Since X is Noetherian, this sequence stabilises, that is Un = U for n� 0. We must have U = |X|,
because otherwise we could choose a generic point of the complement, and continue the iterative
process described above. Since M•n contains M• as a direct summand, we conclude that

∫
M• is

a perfect complex. 2

Lemma 3.29. Let X = SpecR be an affine scheme and f ∈ Γ(X,OX) a function. We follow
the standard notation to denote by U = Xf the open subset of X given by the complement of
the vanishing locus of f , and by j the corresponding open inclusion. Assume that we have a
perfect complex M , on X, as well as a complex of quasi-coherent sheaves N and a morphism
M → j∗j∗N . Then there exists a line bundle L, which restricts to OU on U , such that we have
a morphism M ⊗ L→ N .

Proof. To see this we use the standard correspondence between perfect complexes on affine
schemes, and perfect complexes over their rings of functions. We have an isomorphism OU (U) =

Rf ' colimn∈N[R
f−→ R

f−→ · · ·]. Let L′ = OX be the trivial line bundle, and OX → L′ be
the morphism given by multiplication with f . We can therefore rewrite this filtered colimit by
RF ' colimn∈N(L′)⊗n, where the transition maps are induced by the map OX → L′.

Since tensor products, and thus localisation at f , commute with filtered colimits, this implies
that j∗j∗N corresponds to the complex of R-modules colimn∈NN ⊗ (L′)⊗n. Thus, we have
a map M → colimn∈NN ⊗ (L′)⊗n, and since M is perfect, and thus compact (see [TT90,
Theorem 2.4.2(e)]), we see that there exists an integer n ∈ N, such that we have a factorisation
M → N ⊗ (L′)⊗n→ j∗j∗N . The commutative diagram

(L′)⊗nN //

��

N

�� %%
M // (L′)⊗nN // j∗j∗N

shows that for L = (L′)⊗−n, we have a factorisation M ⊗ L→ N → j∗j∗N . 2
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3.2 Adelic reconstruction
In this subsection we collect various corollaries of our adelic descent result, Theorem 3.1. Applying
the Tannakian formalism for symmetric monoidal ∞-categories, we can show that a Noetherian
scheme X can be reconstructed from the co-simplicial ring A•X . We will also give an adelic
description of G-torsors on X, for any Noetherian affine group scheme, analogously to Weil’s
Theorem 0.1 for algebraic curves, which inspired the present work.

Our results rely heavily on the Tannakian formalism for symmetric monoidal stable
∞-categories, as developed by Lurie in [Lur11], and further refined by Bhatt [Bha16] and Bhatt
and Halpern-Leistner [BHL15].

Theorem 3.30 (Bhatt–Halpern-Leistner). (a) The category AlgSpqcqs of quasi-compact and
quasi-separated algebraic spaces embeds fully faithfully into (st⊗)op, the dual ∞-category of
small symmetric monoidal stable ∞-categories, by means of the functor

Perf(−)⊗ : (AlgSpqcqs)op ↪→ st⊗.

(b) The functor APerfcn(−)⊗ from the ∞-category of spectral Noetherian stacks (DStckN)op

to the ∞-category of symmetric monoidal ∞-categories ∞-Cat⊗ is fully faithful.

Recall that APerf denotes the ∞-category of almost perfect, that is, pseudo-coherent
complexes. That is, a complex which can locally be presented as a bounded above complex
of finitely generated locally projective sheaves of modules. The subscript cn refers to the full
subcategory of connective objects, that is complexes which are concentrated in non-positive
degrees.

3.2.1 For schemes. By a well-known theorem of Gelfand and Naimark [GN43], every locally
compact space X can be reconstructed from the ring of continuous real-valued functions. It is
equally well-known that a single ring is not sufficient to capture the delicate geometry of an
arbitrary non-affine scheme. The result below shows however that for a Noetherian scheme X,
the co-simplicial ring of adèles A•X allows one to reconstruct X. It is intriguing to observe that
local compactness for topological spaces is not dissimilar from the Noetherian hypothesis for
schemes. To iterate further on this philosophical point, we remind ourselves that a Banach
space is finite-dimensional if and only if it is locally compact. The Noetherian condition enforces
finite-dimensionality of the local rings, and guarantees that ideals are finitely generated.

Theorem 3.31. For any Noetherian scheme X we have a canonical isomorphism of schemes
|SpecA•X | 'X, where the colimit |·| is taken in the category of quasi-compact and quasi-separated
schemes.

Proof. We use Bhatt’s Tannakian reconstruction result, as presented in [Bha16]. Theorem 3.1
gives a symmetric monoidal equivalence

Perf(X)⊗ ' |(Perf(A•X))⊗|.
By [Bha16, Corollary 1.6] we may deduce the existence of an augmentation SpecA•X → X,
yielding an equivalence |SpecA•X | → X in the category of quasi-compact and quasi-separated
schemes. 2

Bhatt’s [Bha16] allows one to reconstruct a quasi-compact and quasi-separated algebraic
space X from the symmetric monoidal ∞-category Perf(X)⊗. This result extends work by Lurie
[Lur11], and the classical Tannakian philosophy in general.
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Corollary 3.32. The functor A• : (SchN)op
→ Rng∆, sending a Noetherian scheme X to A•X ,

is faithful.

Proof. We denote by st⊗ the ∞-category of small symmetric monoidal ∞-categories. It is
shown by Bhatt’s Theorem 3.30(a) that there is a fully faithful functor (Schqcqs)op

→ st⊗.
As our construction has shown, the restriction of this functor to Noetherian schemes, factors
through (SchN)op

→ Rng∆
→ st⊗ the category of co-simplicial rings. This shows that the functor

(SchN)op
→ Rng∆ is faithful. 2

Since the category of quasi-compact and quasi-separated schemes is classical, that is a
1-category, the colimit |SpecA•X | can actually be identified with a co-equaliser.

Corollary 3.33. For any Noetherian scheme X we have a canonical equivalence

colim[SpecA1
X ⇒ SpecA0

X ] ' X,

where the co-equaliser is taken in the category of quasi-compact and quasi-separated schemes.

The formalism of derived categories also leads to a rich theory in the case of stacks. Before
commenting on this, we continue Remark 3.4.

Remark 3.34. For an algebraic stack Y one defines QC(Y) to be the limit of stable ∞-categories

QC(Y) = lim
SpecR→Y

QC(R).

The recent paper [BHL15] by Bhatt and Halpern-Leistner extends the aforementioned
Tannakian reconstruction result to (spectral) stacks Y which have property that the derived
∞-category QC(Y) is compactly generated. This condition can be restrictive in positive
characteristic. We refer the reader to Hall and Rydh’s article [HR15], containing many examples
of stacks which do not have this compact generation property.

However, it is no longer sufficient to consider only perfect complexes, additionally the notion
of connectivity becomes relevant. A complex is said to be connective if it is supported in non-
positive degrees.

Corollary 3.35. If Y is a spectral stack with quasi-affine diagonal, such that the derived
category QC(Y) is compactly generated, and X is a Noetherian scheme, then we have Y(X) '
|Y(A•X)|.

Proof. Theorem 3.31 implies that we have an augmentation SpecA•X → X. This induces a
canonical augmentation Map(X,Y) → Map(SpecA•X ,Y). To show that it is an equivalence
of ∞-groupoids, we use that by [BHL15, Theorem 4.1] we have fully faithful embedding of
∞-groupoids

Map(S,Y) ↪→ FunL⊗(QC(Y),QC(S)),

for any scheme S, where the right-hand side denotes symmetric monoidal functors which
commute with colimits. The essential image of this embedding is given by functors which preserve
connective objects.

Since Y is compactly generated, that is QC(Y) ' IndQC(Y)c, we have

FunL⊗(QC(Y),QC(X)) ' Fun⊗(QC(Y)c,Perf(X)).
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This yields the following commutative diagram.

Map(X,Y) //
� _

��

|Map(SpecA•X ,Y)|
� _

��
Fun⊗(QC(Y)c,Perf(X))

' // |Fun⊗(QC(Y)c,Perf(A•X))|

Since the lower horizontal arrow is an equivalence, and the right-hand vertical arrow is fully
faithful, we see that the top horizontal functor Map(X,Y)→ |Map(SpecA•X ,Y)| is fully faithful.
It remains to show that it is essentially surjective.

Let F • : QC(Y)c→ Perf(A•X) be a cartesian section, corresponding to an object in

|Map(SpecA•X ,Y)| ↪→ |Fun⊗(QC(Y)c,Perf(A•X))| ' Fun⊗(QC(Y)c,Perf(X)).

By the stated equivalence this amounts to a symmetric monoidal functor F : QC(Y)c→ Perf(X).
To show that it comes from a morphism X → Y it suffices to show by [BHL15, Theorem 4.1]
that the induced symmetric monoidal functor F : QC(Y)→ QC(X) preserves connective objects.
By Lemma 3.23 a complex M• of quasi-coherent sheaves is connective if and only if M• ⊗OX A0

X

is connective (see the first paragraph of the proof of Corollary 3.38 for a similar application of
Lemma 3.23). Since the functor F 0 preserves connective objects by assumption, this shows that
so does F , and hence it belongs to the image of Map(X,Y). 2

In positive characteristic, stacks of interest rarely satisfy the condition of QC(Y) being
compactly generated. For instance, it may fail for BG, where G is a reductive algebraic group.
Nonetheless, as we recalled in Theorem 3.30, Bhatt and Halpern-Leistner [BHL15] also treat
the more general case of Noetherian spectral stacks, without the restrictive assumption of
compact generation. We will investigate the consequences of their result and adelic descent
theory in § 3.2.3. This requires an analysis of pseudo-coherent complexes.

3.2.2 Pseudo-coherence. In this subsection we study the behaviour of pseudo-coherence, also
known as almost perfect complexes, with respect to the equivalence QC(X) ' |QC(A•X)|.

Lemma 3.36. The functor A0
X(−) : QCoh(X)→ Mod(OX) is conservative.

Proof. Assume that M ∈ QCoh(X) is a quasi-coherent sheaf on X, such that A0
X(M) = 0. We

have Γ(U,M) = lim∆Γ(U,AkX(M)), where the limit is taken in the category of abelian groups.
This limit agrees with the equaliser of [Γ(U,A0

X(M))⇒ Γ(U,A1
X(M))], and therefore we see that

Γ(U,M) = 0 for all open subsets U . This implies M = 0. 2

Corollary 3.37. If M ∈ QCoh(X) is a quasi-coherent sheaf, such that A0
X(M) is locally finitely

generated, then M is locally finitely generated.

Proof. Assume that X is not locally finitely generated. Then, after replacing X by a suitable
affine open subset U , we may construct a surjection O⊕IU �M , with I an infinite set, such that

for every finite subset J ⊂ I, the restriction O⊕JU →M is not surjective. We denote the cokernel
of this map by CJ .

However, we know that A0
U (M) is finitely generated (by Lemma 2.2 a locally finitely generated

AU -module is globally finitely generated). Hence, there must exist a finite subset J ⊂ I, such that
A0
U (OU )⊕J � A0

U (M) is a surjection. Therefore, by the exactness of A0
U , we obtain A0

U (CJ) = 0.
However, by Lemma 3.36, we see that CJ = 0, and therefore the map O⊕JX �M is a surjection
as well. This contradicts our assumption. 2
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Corollary 3.38. Let M ∈ QC(X) be such that M ⊗OX A0
X is pseudo-coherent, then M is

pseudo-coherent.

Proof. Since X is Noetherian, we only have to show that Hi(M) = 0 for i� 0, and that every
Hi(M) is locally finitely generated (see [Sta, Tag 066E]). The first assertion follows directly
from Lemmas 3.23 and 3.36. Indeed, we know that Hi(M ⊗OX A0

X) ' A0
X(Hi(M)), and that

the functor A0
X(−) is conservative. Therefore, we see that vanishing of Hi(M ⊗OX A0

X) in high
degrees must imply the same statement for M .

To show that all cohomology sheaves Hi(M) are locally finitely generated, we may restrict
X to an affine open subscheme U ⊂ X. We may assume that M |U ⊗OU A0

U is a bounded above
complex of finitely generated free A0

U -modules. Therefore, there exists a degree i, such that
Hj(M ⊗OX A0

X) = 0 for all j > i + 1. In particular, we see that Hi(M ⊗OX AiU ) is finitely
generated. Since we have that Hi(M ⊗OX A0

U ) ' A0
U (Hi(M)), we see from Corollary 3.37 that

Hi(M) is finitely generated.
Consider the distinguished triangle τ6i−1M |U → M |U → Hi(M)[−i]|U . Since U is

Noetherian, the finitely generated module Hi is pseudo-coherent, and by applying the exact
functor −⊗OXA0

X we obtain that τ6i−1M ⊗OX A0
X is also pseudo-coherent. Hence, we conclude

that also Hi−1(τ6i−1M)|U = Hi−1(M)|U is finitely generated. Iterating this argument, we see
that all cohomology sheaves are locally finitely generated. 2

We remind the reader that the subscript ⊗ in C⊗ refers to the pair given by an ∞-category
C and a symmetric monoidal structure on C.

Corollary 3.39. We have an equivalence APerf(X) ' |APerf(A•X)| for pseudo-coherent
complexes. Similarly, we have an equivalence of symmetric monoidal∞-categories APerfcn(X)⊗ '
|APerfcn(A•X)⊗|, of almost perfect (that is, pseudo-coherent) and connective complexes.

Proof. We have seen that |SpecA•X | → X is an equivalence in the category Schqcqs of
quasi-compact and quasi-separated schemes. In particular, we have morphisms of schemes
SpecA•X → X, which induce a functor APerf(X)→ APerf(A•X), preserving connective objects,
and compatible with the equivalence Perf(X) ' |Perf(A•X)|.

The adelic realisation functor −⊗OXA•X : QC(X) → |QC(A•X)| preserves almost perfect
objects and so does the localisation functor Loc : APerf(A•X)→ APerf(A•X), since it is defined as
the tensor product −⊗A•XA

•
X .

We have seen in Lemma 3.23 that for every complex M ∈ QC(X) we have A•X(Hi(M)) =
Hi(A•X ⊗OX M). Together with Theorem 1.16 this implies Hi(M) = |Hi(M ⊗OX A•X)|. We see
that M is connective if and only if A•X⊗OXM is. We have seen in Corollary 3.38 that M ∈ QC(X)
is pseudo-coherent, if and only if A•X ⊗OX M is pseudo-coherent. This shows that the image of
a pseudo-coherent, and connective M ∈ APerfcn(A•X) lies inside APerfcn(X).

We conclude that both directions of the equivalence IndPerf(X) ' Ind|Perf(A•X)| respect
almost perfect and connective objects. Hence, we obtain the equivalences APerf(X) '
|APerf(A•X)| and APerfcn(X) ' |APerfcn(A•X)|. 2

3.2.3 Adèles and maps to Noetherian stacks. We will see that X remains the colimit of the
diagram SpecA•X in the ∞-category of Noetherian stacks.

Theorem 3.40. Let X be a Noetherian scheme, and Y a spectral Noetherian stack with quasi-
affine diagonal. We then have a canonical equivalence Y(X) ' Y(SpecA•X), that is, X the
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equivalent to the colimit |SpecA•X | in the ∞-category of spectral Noetherian stacks with quasi-
affine diagonal.

Proof. We have shown in Corollary 3.39 that we have an equivalence APerf(X)⊗ ' |APerf(A•X)⊗|.
By means of [BHL15, Lemma 3.12 and Theorem 1.4] we see that this equivalence realises X as
a colimit of SpecA•X in the category of spectral Noetherian stacks. 2

If Y is a classical Noetherian stack, that is a groupoid-valued functor Affop
→ Grpd, we may

take advantage of the fact that Grpd form a 2-category to simplify the limit |Y(SpecA•X)|.

Corollary 3.41. Let Y be a Noetherian stack with quasi-affine diagonal, taking values in the
2-category of groupoids. Then, we have an equivalence of groupoids

Y(X) ' lim[Y(A0
X)⇒ Y(A1

X)→→→ Y(A2
X)],

where the limit is taken in the 2-category of groupoids.

3.2.4 The special case of G-bundles. A special case of Corollary 3.41 of particular interest
to us is the following generalisation of Weil’s theorem to arbitrary Noetherian schemes.

Corollary 3.42. Let G be an affine Noetherian group scheme, and X a Noetherian scheme.
Then we have a canonical equivalence

BG(X) ' lim[BG(A0
X)⇒ BG(A1

X)→→→ BG(A2
X)].

For G = GLn and a scheme U , BGLn(U) is equivalent to the groupoid Vectn(U) of rank n
vector bundles on U . We write Vectfn(U) for full subgroupoid, consisting only of trivial rank n
bundles.

Let E ∈ Vectn(X) be a rank n vector bundle on X. Since finitely generated projective
modules over local rings are free, we may choose a trivialisation Ex ' O⊕nx , for every x ∈ |X|.
This implies that A0

X(E) is a trivial rank n module over A0
X . Hence, we obtain an equivalence

Vectn(X) ' lim[Vectfn(A0
X)⇒ Vectfn(A1

X)→→→ Vectfn(A2
X)].

For E ∈ Vectn(X) we denote the corresponding objects in Vectfn(AiX) by Ei. The choice of
a trivialisation E0 ' (A0

X)⊕n induces two trivialisations ψi : E1 ' (A1
X)⊕n for i = 0, 1. The

trivialisations are obtained by means of the defining property of a cartesian module. Let ∂i :
{i} ↪→ {0, 1} = [1] in ∆. Since E• is a cartesian A•X -module, we have E1 ' E0 ⊗A0

X ,∂i
A1
X . We

let φ ∈ GLn(A1
X) be the linear map φ = ψ0 ◦ ψ−1

1 : (A1
X)⊕n→ (A1

X)⊕n.
For 0 6 i < j 6 2, we denote by ∂ij : {i, j} ↪→ {0, 1, 2} = [2] in ∆. We denote by φij =

φ⊗A1
X ,∂ij

A2
X ∈ GLn(A2

X). By construction of φ the cocycle identity φ02 = φ01 ◦ φ12 is satisfied.

Vice versa, every φ ∈ GLn(A1
X), satisfying the cocycle identity φ02 = φ01 ◦ φ12, corresponds

to an object E• ∈ lim[Vectfn(A0
X)⇒ Vectfn(A1

X)→→→ Vectfn(A2
X)], plus the choice of a trivialisation

E0 ' (A0
X)⊕n. Summarising we obtain interpretation of Corollary 3.42.

Corollary 3.43. Let X be a Noetherian scheme and G a special group scheme (that is, every
G-bundle on a Noetherian scheme is Zariski-locally trivial). We denote by G(A1

X)cocycle the subset
consisting of φ ∈ G(A1

X) satisfying the cocycle condition φ02 = φ01 ◦ φ12 in G(A2
X). Then, we

have an equivalence of groupoids BG(X) ' [G(A1
X)cocycle/G(A0

X)].
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When X is a curve, Weil’s formulation BG(X) ' [G(FX)\G(AX)/G(OX)] can be directly
deduced from the aforementioned one. Recall that A1

X = FX ×OX ×AX , and that A2
X = A1

X for
dimension reasons. Therefore, G(A1

X)cocycle = G(A1
X), and we obtain the quotient

[G(FX)×G(OX)×G(AX)/G(FX)×G(OX)] ' [G(FX)\G(AX)/G(OX)].

Remark 3.44. In [Hub91, § 5.2] Huber defines rational adèles a•X . The arguments of this paper
also apply to a•X , in fact the proofs can be slightly simplified in this case.
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Appendix A. Results from ∞-category theory

An∞-category C is called small if it is equivalent to an∞-category modelled by a quasi-category
whose underlying simplicial set is small. If C is a classical category, this is tantamount to C being
equivalent to a category, for which the class of objects, and morphism sets for every pair of
objects, form small sets.

We say that C is locally small if for every pair of objects X,Y , the mapping space Map(X,Y )
can be modelled by a small Kan complex (see [Lur07, Definition 5.4.1.7]). For a classical category
C this amounts to the condition that Map(X,Y ) is a small set.

We will only consider locally small ∞-categories. Because we are sometimes taking limits of
∞-categories (over small diagrams), it is important to observe that this operation will preserve
local smallness.

Remark A.1. Let C− : K → ∞-Cat be a diagram of ∞-categories, such that K is a small
simplicial set, and for each k ∈ K we have that Ck is a locally small ∞-category. Then, the
limit limk∈KCk is also a locally small ∞-category.

The reader may easily verify this assertion with the help of [Lur07, Corollary 3.3.3.2], which
identifies the limit C = limk∈KCk with the ∞-category of cartesian sections, of a cartesian
fibration C̃ → K, corresponding to the functor C−. This implies that the mapping spaces in
C are equivalent to the mapping spaces in the ∞-category of cartesian sections of C̃ → K. If
X,Y : K → C̃ are two such sections, then we obtain

Map(X,Y ) ' lim
k∈K

Map(Xk, Yk).

Since small limits of small spaces remain small, we conclude that C is locally small. The
description of mapping spaces in limits of ∞-categories will be recorded for future reference.
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Lemma A.2. Let C− : K → C be a diagram of ∞-categories, parametrised by a small simplicial
set K. We denote by C = limk∈KCk the limit of this diagram. Given objects X,Y ∈ C, we have
a canonical equivalence of spaces Map(X,Y ) ' limk∈K(Xk, Yk).

The following result is [Lur07, Corollary 5.5.2.9 and Remark 5.5.2.10].

Theorem A.3 (Lurie’s adjoint functor theorem). Let F : C → D be a functor between stable
∞-categories. If C is presentable and D locally small, then F admits a right adjoint G : D→ C,
if and only if F preserves small colimits.

We refer the reader to [Lur, Proposition 1.4.4.1.] for a proof of the following result.

Proposition A.4. If C is a stable∞-category, admitting arbitrary coproducts, then C possesses
all small colimits. Moreover, let F : C → D be an exact functor between cocomplete stable
∞-categories, commuting with small coproducts. Then, F commutes with small colimits.

The notion of compact objects in stable ∞-categories will be essential to us. There are two
equivalent characterisations of compactness. We refer the reader to [Lur, Proposition 1.4.4.1] for
a proof of equivalence.

Definition A.5. Let C be a stable∞-category. An object X ∈ C is called compact, if Hom(X,−)
commutes with small coproducts. Equivalently, for (Yi)i∈I ∈ C, a small family of objects in C,
for every morphism X →

⊕
i∈IYi, there exists a finite subset J ⊂ I, such that the map factors

through
⊕

i∈JYi→
⊕

i∈IYi.

The full subcategory of compact objects of C will be denoted by Cc. We say that C is compactly
generated, if C ' IndCc.

Lemma A.6. Let F : C→ D be an exact functor between cocomplete stable∞-categories, with a
right adjoint G. If C is compactly generated, and F preserves compact objects, then G commutes
with small colimits.

Proof. By Proposition A.4 it suffices to show that G commutes with small coproducts. That is,
for {Yi}i∈I , where I is a small set indexing objects in D, we have to show that the natural map⊕

i∈IG(Yi)→ G(
⊕

i∈IYi) is an equivalence. Since C is compactly generated, this is equivalent
to

Hom

(
X,
⊕
i∈I

G(Yi)

)
→ Hom

(
X,G

(⊕
i∈I

Yi

))
being an equivalence for every compact object X ∈ C. Compactness of X, and the adjunction
between F and G allows us to show instead that the map⊕

i∈I
Hom(F (X), Yi)→

⊕
i∈I

Hom(F (X), Yi)

is an equivalence. However, this is a morphism equivalent to the identity map. 2

The following is a well-known criterion for an adjunction to be an equivalence.

Lemma A.7. Let F : C → D be a functor between ∞-categories with right adjoint G. If F is
fully faithful and G is conservative, then F and G are mutually inverse equivalences.
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Proof. Since F is fully faithful, the unit idC → GF is an equivalence of functors. It remains to
check that the co-unit FG → idD is an equivalence. By assumption, G is conservative, therefore
it suffices to prove that GFG → G is an equivalence of functors. By the standard properties of
adjunctions, the composition

G ' idC G ' GFG → G idD ' G

is equivalent to the identity map. Thus, the co-unit FG → idD is an equivalence, and we conclude
the proof. 2

Let D be a small stable ∞-category, admitting finite limits. We will define a functor

Map(−,−) : ∆op × D∆
→ D∆,

sending a co-simplicial object U• in D and [n] ∈ ∆ to a co-simplicial object Map([n], U•). Recall
that we have a category ∆/[n], whose objects are morphisms [k] → [n]. It is endowed with a
forgetful functor to ∆, and this construction is contravariantly functorial in [n]. The co-simplicial
object Map([n], U•) is given by considering the functor ∆/[n]→∆→ D, and taking the fibrewise
limit along ∆/[n]→ ∆ to obtain a functor Map([n], U•) : ∆→ D.

Definition A.8. Let U•, V • : ∆ → D be two co-simplicial objects in a small ∞-category D,
admitting finite limits. A homotopy between f, g : U•→ V • is a morphism h : U•→Map([1], V •),
such that ev0 ◦h ' f and ev1 ◦h ' g. Here evi : Map([1], V •)→ V • denotes the evaluation map,
induced by the inclusion [0] ' {i} ↪→ [1].

We refer the reader to [Sta, Tag 019U] for a detailed explanation for how this recovers the
explicit definition given earlier, in the case that D is a classical category (with small colimits).
The reason for considering the notion of homotopy between morphisms of simplicial objects, is
the following lemma.

Lemma A.9. Let C• be a co-simplicial small ∞-category. Then, the map c : C• → Map([1],
C•), corresponding to the map s : [1] → [0] of simplicial sets, induces an equivalence of the
∞-categories obtained by totalisation |C•| → |Map([1],C•)|. In particular, we see that two
homotopy equivalent co-simplicial small ∞-categories have equivalent totalisations.

Proof. For co-simplicial objects in the full subcategory of small ∞-groupoids ∞-Gpd this
assertion is well-known, and follows for instance from Meyer’s [Mey90, Theorem 2.4] or Bousfield’s
[Bou03, Proposition 2.13] results. We will apply their result in our proof of the analogous
assumption for co-simplicial objects in small ∞-categories. We will show first that the functor
|c| : |C•| ↪→ |Map([1],C•)| is fully faithful. Given X,Y ∈ |C•|, we recall Lemma A.2, which
asserts that Map(X,Y ) is itself the totalisation of a co-simplicial object in∞-Gpd, Map(X•, Y •).
It follows directly from the definitions that Map(c(X)•, c(Y )•) ' |Map([1],Map(X•, Y •))|. We
may therefore conclude that Map(X,Y ) ' Map(c(X), c(Y )), and thus that c is fully faithful. It
remains to show that c is essentially surjective. For a small ∞-category D, we denote by D× the
maximal ∞-groupoid in D, obtained by discarding all non-equivalences in D. In fact, we have a
functor (−)× :∞-Cat→∞-Gpd. We therefore see, that the morphism of co-simplicial objects in
∞-Gpd, c× : (C•)×→ Map([1],C•)× ' Map([1], (C•)×) induces an equivalence after totalisation.
This implies that c is essentially surjective. 2
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Appendix B. Notation

|X| underlying topological space of a scheme X

|X|6 partially ordered set of points in |X| ordered by specialisation

|X|• simplicial set of chains of points in |X|, ordered by specialisation

A•X co-simplicial ring of adèles

A•X co-simplicial sheaf of algebras of adèles

AX,T (F) the value of the functor of Definition 1.4 applied to a quasi-coherent sheaf F

AkX,T the value of the functor above applied to OX and T = |X|k
SchN category of Noetherian schemes

Schqcqs category of quasi-compact and quasi-separated schemes

BG stack of G-bundles

Mod(R) category of R-modules, where R is a ring or a sheaf of rings

P(R) exact category of projective R-modules (R is a ring)

P(A) exact category of direct summands of free A-modules (A is a sheaf of algebras)

D−(A) see Definition 2.18

D(C) derived ∞-category of an exact category C

DMod(A) derived ∞-category of Mod(A), where A is a ring or a sheaf of algebras

Perf(A) full subcategory of DMod(A) consisting of perfect complexes

Perf |Z|(A) full subcategory of Perf(A) consisting of perfect complexes set-theoretically

supported on a closed subset |Z|
QC(A) IndPerf(A), if A is a ring (on a point), it is equivalent to DMod(A)

QC|Z|(A) full subcategory of QC(A) consisting of complexes set-theoretically supported on

a closed subset |Z|
QC(X) QC(OX) if X is quasi-compact and quasi-separated, see Remarks 3.4 and 3.34 for

more general definitions

Cc full subcategory of compact objects of a stable ∞-category C

APerf(A) full subcategory of QC(A) corresponding to pseudo-coherent complexes

∞-Cat ∞-category of small ∞-categories

Cat 2-category of small categories

∞-Gpd ∞-category of small ∞-groupoids, Kan complexes or spaces

Grpd 2-category of groupoids

st ∞-category of small stable ∞-categories

MapC(X,Y ) mapping space between two objects X,Y in an ∞-category C

HomC(X,Y ) mapping spectrum between two objects X,Y in a stable ∞-category C, or chain

complex, if C is R-linear

(−)⊗ subscript used to refer to symmetric monoidal ∞-categories or also ∞-categories

of symmetric monoidal ∞-categories

|X•| limit (that is, geometric realisation, or totalisation) of the co-simplicial diagram

X• in an ∞-category C
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|X•| colimit (that is, geometric realisation, or totalisation) of the simplicial diagram
X• in an ∞-category C

' denotes an equivalence of two objects in an∞-category, including the special case
of an equivalence of two small ∞-categories
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Bei80 A. Beilinson, Residues and adèles, Funktsional. Anal. i Prilozhen. 14 (1980), 44–45;
MR 565095 (81f:14010).

BBT13 O. Ben-Bassat and M. Temkin, Berkovich spaces and tubular descent, Adv. Math. 234 (2013),
217–238; MR 3003930.

Bha16 B. Bhatt, Algebraization and Tannaka duality, Camb. J. Math. 4 (2016), 403–461;
MR 3572635.

BHL15 B. Bhatt and D. Halpern-Leistner, Tannaka duality revisited, Preprint (2015),
arXiv:1507.01925.

BS15 B. Bhatt and P. Scholze, The pro-étale topology for schemes, Astérisque 369 (2015), 99–201;
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