EVALUATION OF DETERMINANT OF 11TH ORDER IN THE THEORY OF PARTITIONS

S. MANZUR HUSSAIN

(received 16 May 1960)

Determinants [1] of 5th and 7th orders have already been discussed in connection with the Theorems 4 and 5 of Atkin and Swinnerton-Dyer [2]. The determinant under consideration occurs in the investigation of Dyson's rank function for q = 11 given by Atkin and Hussain [3]. As regards the notation it may be mentioned that the author has adopted the same as that of Atkin and Hussain [3]. Let

(1.1)

$$a = -x^{-4} P(2)/P(1),$$
 $b = x^{-5} P(4)/P(2)$
 $c = x^2 P(3)/P(4),$ $d = -x^{-3} P(5)/P(3).$
 $e = -x^{10} P(1)/P(5),$

Let Δ_{11}/y^5 be equivalent to

b	0	0	0	cx4	0	x ⁶	ex^7	0	dx9	ax^{10}
ax^{-1}	Ь	0	0	0	cx4	0	x^6	ex^7	0	dx ⁹
dx^{-2}	ax^{-1}	ь	0	0	0	cx4	0	x ⁶	ex^7	0
0	dx^{-2}	ax^{-1}	b	0	0	0	cx4	0	x ⁶	ex7
ex-4	0	dx^{-2}	ax^{-1}	ь	0	0	0	cx^4	0	x ⁶
x-5	ex-4	0	dx^{-2}	ax^{-1}	ь	0	0	0	cx4	0
0	x^{-5}	ex-4	0	dx^{-2}	ax^{-1}	b	0	0	0	cx ⁴
cx-7	0	x^{-5}	ex-4	0	dx^{-2}	ax^{-1}	b	0	0	0
0	cx-7	0	x^{-5}	ex-4	0	dx^{-2}	ax^{-1}	ь	0	0
0	0	cx-7	0	x^{-5}	ex-4	0	dx^{-2}	ax^{-1}	b	0
0	0	0	cx^{-7}	0	x^{-5}	ex-4	0	dx^{-2}	ax^{-1}	b

Then

(1.2)
$$\Delta_{11}/y^5 = \lambda \mu - 17\lambda^2 - 108\mu + 346\lambda - 131.$$

Multiplying the (i + 1)th row by $x^i w_r^i$ where i = 0 to 10 and adding it is found that $(aw_r + b + cw_r^7 + dw_r^2 + ew_r^4 + w_r^5)$ is a common factor where w_r is an 11th root of unity.

151

152

Thus

$$\begin{split} \Delta_{11}/y^5 &= \prod_{r=1}^{11} (aw_r + b + cw_r^7 + dw_r^2 + ew_r^{15} + w_r^5), \\ &= \prod_{r=1}^{11} (aw_r^{-4} + bw_r^{-5} + cw_r^2 + dw_r^{-3} + ew_r^{10} + 1); \\ &= y^{-5} f^{12}(y)/f^{12}(y^{11}); \\ &= \lambda \mu - 17\lambda^2 - 108\mu + 364\lambda - 131; \end{split}$$

Vide the results (11.4) to (11.7) of Atkin and Hussain (3).

References

- [1] Proceedings of the Pakistan Statistical Association 6 (1957) 27-28
- [2] A.O.L. Atkin and P. Swinnerton-Dyer, Some properties of Partition, Proc. London Math. Society (3) 4 (1953) pp. 84-106.
- [3] A.O.L. Atkin and S. M. Hussain, some properties of Partition (2) Transactions of the American Math, Society, 89, (1958) 184-200.

University of the Panajb, Lahore, (West Pakistan).