EVALUATION OF DETERMINANT OF'11TH ORDER IN THE THEORY OF PARTITIONS

S. MANZUR HUSSAIN

(received 16 May 1960)

Determinants [1] of 5th and 7th orders have already been discussed in connection with the Theorems 4 and 5 of Atkin and Swinnerton-Dyer [2]. The determinant under consideration occurs in the investigation of Dyson's rank function for $q=11$ given by Atkin and Hussain [3]. As regards the notation it may be mentioned that the author has adopted the same as that of Atkin and Hussain [3].
Let

$$
\begin{array}{ll}
a=-x^{-4} P(2) / P(1), & b=x^{-5} P(4) / P(2) \\
c=x^{2} P(3) / P(4), & d=-x^{-3} P(5) / P(3) . \tag{1.1}\\
e=-x^{10} P(1) / P(5), &
\end{array}
$$

Let Δ_{11} / y^{5} be equivalent to
$\left|\begin{array}{lllllllllll|}b & 0 & 0 & 0 & c x^{4} & 0 & x^{6} & e x^{7} & 0 & d x^{9} & a x^{10} \\ a x^{-1} & b & 0 & 0 & 0 & c x^{4} & 0 & x^{6} & e x^{7} & 0 & d x^{9} \\ d x^{-2} & a x^{-1} & b & 0 & 0 & 0 & c x^{4} & 0 & x^{6} & e x^{7} & 0 \\ 0 & d x^{-2} & a x^{-1} & b & 0 & 0 & 0 & c x^{4} & 0 & x^{6} & e x^{7} \\ e x^{-4} & 0 & d x^{-2} & a x^{-1} & b & 0 & 0 & 0 & c x^{4} & 0 & x^{6} \\ x^{-5} & e x^{-4} & 0 & d x^{-2} & a x^{-1} & b & 0 & 0 & 0 & c x^{4} & 0 \\ 0 & x^{-5} & e x^{-4} & 0 & d x^{-2} & a x^{-1} & b & 0 & 0 & 0 & c x^{4} \\ c x^{-7} & 0 & x^{-5} & e x^{-4} & 0 & d x^{-2} & a x^{-1} & b & 0 & 0 & 0 \\ 0 & c x^{-7} & 0 & x^{-5} & e x^{-4} & 0 & d x^{-2} & a x^{-1} & b & 0 & 0 \\ 0 & 0 & c x^{-7} & 0 & x^{-5} & e x^{-4} & 0 & d x^{-2} & a x^{-1} & b & 0 \\ 0 & 0 & 0 & c x^{-7} & 0 & x^{-5} & e x^{-4} & 0 & d x^{-2} & a x^{-1} & b\end{array}\right|$

Then

$$
\begin{equation*}
\Delta_{11} / y^{5}=\lambda \mu-17 \lambda^{2}-108 \mu+346 \lambda-131 . \tag{1.2}
\end{equation*}
$$

Multiplying the $(i+1)$ th row by $x^{i} w_{r}^{i}$ where $i=0$ to 10 and adding it is found that $\left(a w_{r}+b+c w_{r}^{7}+d w_{r}^{2}+e w w_{r}^{4}+w_{r}^{5}\right)$ is a common factor where w_{r} is an llth root of unity.

Thus

$$
\begin{aligned}
\Delta_{11} / y^{5} & =\prod_{r=1}^{11}\left(a w_{r}+b+c w_{r}^{7}+d w w_{r}^{2}+e w w_{r}^{15}+w w_{r}^{5}\right) \\
& =\prod_{r=1}^{11}\left(a w_{r}^{-4}+b w_{r}^{-5}+c w_{r}^{2}+d w_{r}^{-3}+e w w_{r}^{10}+1\right) \\
& =y^{-5} f^{12}(y) / f^{12}\left(y^{11}\right) \\
& =\lambda \mu-17 \lambda^{2}-108 \mu+364 \lambda-131
\end{aligned}
$$

Vide the results (11.4) to (11.7) of Atkin and Hussain (3).

References

[1] Proceedings of the Pakistan Statistical Association 6 (1957) 27-28
[2] A.O.L. Atkin and P. Swinnerton-Dyer, Some properties of Partition, Proc. London Math. Society (3) 4 (1953) pp. 84-106.
[3] A.O.L. Atkin and S. M. Hussain, some properties of Partition (2) Transactions of the American Math, Society, 89, (1958) 184-200.

University of the Panajb, Lahore, (West Pakistan).

