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Abstract

A radical γ is prime-like if, for every prime ring A, the polynomial ring A[x] is γ -semisimple. In this
paper, we study properties of prime-like radicals. In particular, we give necessary and sufficient conditions
for a radical γ containing the prime radical β to be prime-like. This allows us to easily find distinct special
radicals that coincide on simple rings and on polynomial rings, which answers a question put by Ferrero.
It also allows us to reformulate a long-standing open problem of Gardner in terms of prime-like radicals.
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1. Introduction

In this paper, all rings are associative and all classes of rings are closed under
isomorphisms and contain the one-element ring 0. The fundamental definitions and
properties of radicals can be found in [1, 8]. A class µ of rings is said to be hereditary
if µ is closed under ideals. If µ is a hereditary class of rings, U(µ) denotes the
upper radical generated by µ , that is, the class of all rings which have no nonzero
homomorphic images in µ. For any class µ of rings, an ideal I of a ring A is called
a µ-ideal if the factor ring A/I is in µ. As usual, for a radical γ , the γ radical of
a ring A is denoted by γ (A) and the class of all γ -semisimple rings is denoted by
S(γ ). π denotes the class of all prime rings and β = U(π) denotes the prime radical.
The notation I C A means that I is a two-sided ideal of a ring A. An ideal I of a
ring A is said to be essential in A if I ∩ J 6= 0 for every nonzero two-sided ideal J
of A. A ring A is called an essential extension of a ring I if I is an essential ideal
of A. A class µ of rings is said to be essentially closed if µ= µk , where µk = {A |
A is an essential extension of some I ∈ µ} is the essential cover ofµ. A hereditary and
essentially closed class of prime rings is called a special class and the upper radical
generated by a special class is called a special radical. A hereditary radical containing
the prime radical β is called a supernilpotent radical. Given a ring A, the polynomial
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ring over A in a commuting indeterminate x is denoted by A[x]. We say that a radical γ
has the Amitsur property if γ (A[x])= (γ (A[x]) ∩ A)[x] for every ring A. A radical γ
is said to be polynomially extensible if A[x] ∈ γ for every ring A ∈ γ . A semiprime
ring R is called a ∗-ring [4] if R/I ∈ β for every nonzero ideal I of R. The non-
nil Jacobson radical ring W = {2x/(2y + 1) | x, y ∈ Z and (2x, 2y + 1)= 1} is an
example of a commutative ∗-ring without minimal ideals, as observed in [2, 3]. The
class of all ∗-rings is denoted by ∗. The importance of the class ∗k is underlined by
the two facts that follow.

THEOREM 1 [3, 9]. If R is a nonzero ∗-ring, then the smallest special (respectively,
supernilpotent) radical l̂R (respectively, lR) containing R is an atom in the lattice of
all special (respectively, supernilpotent) radicals.

THEOREM 2 [4, Proposition 2]. If R ∈ ∗k and µ is a special class of rings, then
R ∈ S(U(µ)) if and only if R ∈ µ. Thus, in particular, a ring R ∈ ∗k is Jacobson
semisimple if and only if R is primitive.

A radical γ is said to be prime-like if A[x] ∈ Sγ for any prime ring A. In this paper,
we study properties of prime-like radicals and show their connections with some open
problems in radical theory. In particular, we give necessary and sufficient conditions
for a radical γ containing β to be prime-like. This allows us to easily construct pairs of
distinct special radicals that coincide on simple rings and on polynomial rings, which
answers a question posed by M. Ferrero (see [13]). We also show that the long-
standing open question of Gardner [7, Problem 1], which asks whether β = U(∗k),
is equivalent to the question of whether the radical U(∗k) is prime-like. This gives a
reason for studying prime-like radicals.

2. Main results

We start with some examples of prime-like radicals.

THEOREM 3. The prime radical β as well as the smallest special radical l̂R generated
by any commutative ∗-ring R ∈ J , where J denotes the Jacobson radical, are prime-
like.

PROOF. If A ∈ π , then A[x] ∈ π ⊆ Sβ. Therefore, β is prime-like.
Now, let R ∈ J be a commutative ∗-ring. Since J is a special radical, it follows

that l̂R ⊆ J . However, as R is a ∗-ring, it follows from [9] that l̂R = U(π\πR),
where πR is the class of all rings S which contain an essential ideal I isomorphic
to some accessible subring of R. Suppose that l̂R(A[x]) 6= 0 for some prime ring A.
Then, as l̂R ⊆ J and since J has the Amitsur property [8, Theorem 4.9.26], it
follows that l̂R(A[x])⊆ J (A[x])= (J (A[x]) ∩ A)[x] ∈ J . Thus, it follows from
[8, Proposition 4.9.27] that 0 6= (J (A[x]) ∩ A) is a nil ring. On the other hand,
J (A[x]) ∩ A ∈ π since J (A[x]) ∩ A C A ∈ π and π is hereditary. Moreover, as
A[x] ∈ π , it follows that A[x] ∈ πR since otherwise A[x] ∈ π\πR ⊆ S(l̂R) and we
have a contradiction. Then A[x] contains a nonzero ideal I which is isomorphic
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to some accessible subring of R. Since R is commutative, so is I . However, if a
prime ring contains a commutative nonzero accessible subring, then it follows from
[15, Lemma 3.2] that the ring is also commutative so A[x] is commutative. But in
a commutative ring the set of all nilpotent elements forms the prime radical of the
ring, so, as J (A[x]) ∩ A is a nil ring, we have 0 6= (J (A[x]) ∩ A)⊆ β(A[x]). But
as A[x] ∈ π , we have that β(A[x])= 0, which is a contradiction. So l̂R(A[x])= 0,
which shows that the radical l̂R is prime-like. 2

COROLLARY 4. A polynomially extensible radical γ containing β is prime-like if and
only if γ = β.

PROOF. Let γ be a polynomially extensible radical with β ⊆ γ .
If γ = β, then it follows from Theorem 3 that γ is prime-like.
Conversely, let γ be prime-like and suppose that β  γ . Then there exists 0 6= R ∈

γ ∩ π . But then 0 6= R[x] ∈ γ ∩ Sγ because γ is polynomially extensible and prime-
like, so we have a contradiction. Thus γ = β. 2

A long-standing open question [7, Problem 1] asks whether β = U(∗k). Since the
special radical U(∗k) is polynomially extensible [5], it follows from Corollary 4 that
this problem is equivalent to the following.

PROBLEM 5. Is the upper radical U(∗k) prime-like?

Our results that follow describe some properties of prime-like radicals.

LEMMA 6. Let γ be a prime-like radical. Then γ (A[x])= 0 for every semiprime
ring A.

PROOF. Let A be a semiprime ring. Then A is a subdirect sum of rings A/Iλ ∈ π ,
where λ ∈3 and

⋂
λ∈3 Iλ = {0}. We will show that A[x] is a subdirect sum of the

rings A[x]/Iλ[x]. Suppose that f (x) ∈
⋂
λ∈3 Iλ[x] and f (x)= a0 + a1x + · · · +

anxn . Then, since f (x) ∈ Iλ[x] for every λ ∈3, it follows that a0, a1, . . . , an ∈⋂
λ∈3 Iλ = {0}. So f (x)= 0, which shows that

⋂
λ∈3 Iλ[x] = {0}. Thus A[x] is a

subdirect sum of the rings A[x]/Iλ[x] ' (A/Iλ)[x]. Now, since A/Iλ ∈ π , for every
λ ∈3 and since γ is prime-like, it follows that (A/Iλ)[x] ∈ S(γ ), for every λ ∈3.
This implies that A[x] ∈ S(γ ) because semisimple classes are closed under subdirect
sums. 2

For a radical γ , let γx = {A | A[x] ∈ γ }.
A hereditary radical γ is said to be subidempotent if the radical class γ consists of

idempotent rings.

REMARK 7. It follows from [10, Proposition 4.1] that every subidempotent radical γ
has the Amitsur property and γx = {0} = β ∩ γ .

We have the following lemma.
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LEMMA 8. If γ is a radical with the Amitsur property and if either β ∩ γ = γx or
γx = {0}, then γ is prime-like.

PROOF. Let γ be a radical with the Amitsur property.
First, consider the case when β ∩ γ = γx . Let A ∈ π . Then γx (A) ∈ π ∩ γx =

π ∩ β ∩ γ = {0} so A ∈ Sγx . But, since γ has the Amitsur property, it then follows
from [14, Theorem 3.5] that A[x] ∈ Sγ . Thus γ is prime-like.

Now, let γx = {0}. Then all rings are in Sγx and so, in particular, for any A ∈ π , we
have A ∈ Sγx . Then, arguing as in the first part of the proof, we get A[x] ∈ Sγ , which
means that γ is prime-like and this ends the proof. 2

The following is an immediate consequence of Lemma 8 and Remark 7.

COROLLARY 9. Every subidempotent radical is prime-like.

We also have the following corollary.

COROLLARY 10. The lower radical l(σ ) generated by a class σ of simple prime rings
is prime-like.

PROOF. Since σ is hereditary, so the radical l(σ ) is hereditary too. Moreover, l(σ )
consists of idempotent rings because all rings in σ are idempotent. Thus l(σ ) is a
subidempotent radical and it follows from Corollary 9 that l(σ ) is prime-like. 2

We say that a radical γ satisfies condition (z) if, for every ring A, A ∈ γ implies that
A0
∈ γ , where A0 denotes the ring with the zero multiplication on the additive group

of A.
Clearly, every radical containing the class of all nilpotent rings, in particular every

supernilpotent and every special radical, satisfies condition (z) but subidempotent
radicals do not satisfy this condition.

For our next result we need the following fact, which is well known. For
completeness, we include a proof, which is simpler than the one given in [12].

PROPOSITION 11 [6, 12]. For every radical γ and every ring A, if A ∈ β and A0
∈ γ ,

then A ∈ γ .

PROOF. Let A be a ring and let γ be a radical such that A ∈ β and A0
∈ γ . Since A ∈ β

and A0
∈ γ imply (A/γ (A)) ∈ β and (A/γ (A))0 ' (A0/(γ (A))0) ∈ γ , it suffices to

show that if A◦ ∈ γ and γ (A)= 0, then A = 0. Suppose that A2
6= 0 and consider the

ideal T = {t ∈ A | At = 0} of A. Since A2
6= 0, it follows that T 6= A. Then, as A ∈ β,

it follows that 0 6= (A/T ) ∈ β and so there exists an ideal I of A such that T  I
and I 2

⊆ T . Then there exists t ∈ I such that At 6= 0. Then (At)2 ⊆ AI 2
⊆ AT = 0.

Therefore, the mapping f : A0
→ At given by f (x)= xt is a ring epimorphism,

which implies that At ∈ γ because A0
∈ γ . But, as (At)2 = 0, it follows that At C

At + At A. Therefore, since At ∈ γ , we have that At ⊆ γ (At + At A) ∈ γ . Now,
since At + At A C A, it follows that γ (At + At A)C A and so γ (At + At A)⊆ γ (A).
This implies that 0 6= At ⊆ γ (A)= 0, which is a contradiction. Thus A2

= 0 and then
A ' A0

∈ γ , which ends the proof. 2
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PROPOSITION 12. If γ is a prime-like radical that satisfies condition (z), then
β ∩ γ = γx .

PROOF. Let γ be a prime-like radical that satisfies condition (z).
Let A ∈ β ∩ γ . Then A ∈ γ and, by condition (z), we have A0

∈ γ . However, since
(A[x])0 is isomorphic to the direct sum of copies of A0, this implies that (A[x])0 ∈ γ .
Moreover, since A ∈ β and since β is polynomially extensible [8, p. 275], it follows
that A[x] ∈ β. Then Proposition 11 implies that A[x] ∈ γ , which shows that A ∈ γx .
Thus β ∩ γ ⊆ γx .

To show that γx ⊆ β ∩ γ , let 0 6= A ∈ γx . Then, since γx ⊆ γ , we have that A ∈ γ .
Now, if A ∈ β, then we are done. So suppose A /∈ β. Then, since β = U(π), it follows
that A can be homomorphically mapped onto a nonzero ring A ∈ π . But then, since
γ is prime-like, it follows that A[x] ∈ Sγ . On the other hand, since A ∈ γx and since
γx (being a radical class [8, Theorem 4.9.15]) is homomorphically closed, it follows
that A ∈ γx . This means that A[x] ∈ γ and we have a contradiction. Thus γx ⊆ β ∩ γ ,
which ends the proof. 2

Note that Remark 7 shows that, even if a radical γ has the Amitsur property, the
fact that β ∩ γ = γx does not imply that γ satisfies condition (z), as subidempotent
radicals do not satisfy condition (z).

COROLLARY 13. Let γ be a radical with β ⊆ γ . Then γ is prime-like if and only if
γx = β and γ has the Amitsur property.

PROOF. Let γ be a prime-like radical with β ⊆ γ .
Then γ satisfies condition (z) and Proposition 12 implies that β = β ∩ γ = γx . To

show that γ has the Amitsur property, let A ∈ Sγx . Then, since γx = β, it follows that
A ∈ Sβ. But then it follows from Lemma 6 that A[x] ∈ Sγ . This, in view of [14,
Theorem 3.5], shows that γ has the Amitsur property.

Conversely, let a radical γ ⊇ β with the Amitsur property be such that γx = β. Let
A ∈ π . Then, as β = U(π), it follows that A ∈ Sγx . Then, since γ has the Amitsur
property, it follows from [14, Theorem 3.5] that A[x] ∈ Sγ , which shows that γ is
prime-like. 2

We are now ready to give our characterization of prime-like radicals γ with β ⊆ γ .

THEOREM 14. Let γ be a radical with β ⊆ γ . Then γ is prime-like if and only if
γ (A[x])= (β(A))[x] = β(A[x]), for every ring A.

PROOF. Let A be any ring and let γ be a prime-like radical with β ⊆ γ . It is
well known [8, p. 275] that (β(A))[x] = β(A[x]). So it suffices to show that
γ (A[x])= (β(A))[x]. Now, since γ is a prime-like radical with β ⊆ γ , it follows from
Corollary 13 that γx = β and γ has the Amitsur property. Then (γ (A[x]) ∩ A)[x] =
γ (A[x]) ∈ γ , which implies that γ (A[x]) ∩ A ∈ γx . Consequently, γ (A[x]) ∩ A ⊆
γx (A)= β(A). Then γ (A[x])= (γ (A[x]) ∩ A)[x] ⊆ β(A)[x]. But, since β(A)=
γx (A) ∈ γx , it follows that β(A)[x] ∈ γ . Thus, as β(A)[x]C A[x], it follows that
β(A)[x] ⊆ γ (A[x]). Thus γ (A[x])= (β(A))[x].
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Conversely, let γ be a radical with β ⊆ γ and γ (A[x])= (β(A))[x], for every
ring A. Then, since for every prime ring A we have β(A)= 0, it follows that
γ (A[x])= (β(A))[x] = 0, which shows that γ is prime-like. 2

Ferrero [13] asked whether two distinct special radicals may coincide on all simple
rings as well as on polynomial rings A[x] for all rings A. An affirmative answer was
given in both [11] and [15]. We will now show that our Theorem 14 provides an easier
way of finding special radicals that satisfy Ferrero’s requirements.

COROLLARY 15. For any special and prime-like radical γ ! β whose semisimple
class contains all prime simple rings (for example, l̂W is such a radical), the prime
radical β and the radical γ satisfy Ferrero’s requirements.

PROOF. Since γ is special and prime-like, it follows from Theorem 14 that γ (A[x])=
β(A[x]), for every ring A. Let A be a simple ring. Then either A2

= 0 or A2
= A ∈ π .

In the first case, A ∈ β  γ so β(A)= A = γ (A). In the second case, β(A)= 0=
γ (A) since all simple prime rings are in Sγ , which ends the proof. 2

It is well known [1, Theorem 1, p. 233] that the collection Ls of all special radicals
forms a complete lattice with respect to inclusion of radical classes, where the meet and
the joint of a family of special radicals γλ, λ ∈3, are defined by

∧
λ∈3 γλ =

⋂
λ∈3 γλ

and 5λ∈3γλ = U(
⋂
λ∈3(Sγλ ∩ π)), respectively. We conclude the paper with the

following theorem.

THEOREM 16. The collection Ls pl of all special and prime-like radicals is a complete
sublattice of the lattice Ls of all special radicals. The radical l̂W is an atom of Ls pl .

PROOF. Let γλ, λ ∈3 be a family of special and prime-like radicals. Then it follows
from Corollary 13 that, for every λ ∈3, we have that (γλ)x = β and γλ has the Amitsur
property. Then, it follows from [15, Proposition 3.9] that

∧
λ∈3 γλ has the Amitsur

property. We will show that (
∧
λ∈3 γλ)x = β. Since

∧
λ∈3 γλ is a special radical, it

follows from [8, Proposition 4.9.20] that so is (
∧
λ∈3 γλ)x . Thus β ⊆ (

∧
λ∈3 γλ)x .

Now, let A ∈ (
∧
λ∈3 γλ)x . Then A[x] ∈

∧
λ∈3 γλ so A[x] ∈ γλ for every λ ∈3. This

means that A ∈ (γλ)x for every λ ∈3 and, since (γλ)x = β, it follows that A ∈ β. Thus
(
∧
λ∈3 γλ)x = β and so it follows from Corollary 13 that

∧
λ∈3 γλ is prime-like.

We will now show that 5λ∈3γλ is prime-like. Let A ∈ π . Then A[x] ∈ π .
Moreover, since each γλ, λ ∈3 is prime-like, it follows that A[x] ∈ Sγλ for
every λ ∈3. Thus A[x] ∈

⋂
λ∈3(Sγλ ∩ π)⊆ S(U(

⋂
λ∈3(Sγλ ∩ π))). Thus A[x] ∈

S(5λ∈3γλ), which shows that 5λ∈3γλ is prime-like.
It follows from Theorem 1 that l̂W is an atom of Ls . Moreover, Theorem 3 implies

that l̂W is a prime-like radical. Thus, since Ls pl is a complete sublattice of Ls , it
follows from Theorem 16 that l̂W is an atom of Ls pl , which ends the proof. 2

References
[1] V. A. Andrunakievich and Yu. M. Ryabukhin, Radicals of Algebra and Structure Theory (Nauka,

Moscow, 1979) (in Russian).
[2] H. France-Jackson, ‘*-rings and their radicals’, Quaestiones Math. 8 (1985), 231–239.

https://doi.org/10.1017/S0004972709001129 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001129


[7] On prime-like radicals 119

[3] H. France-Jackson, ‘On atoms of the lattice of supernilpotent radicals’, Quaestiones Math. 10
(1987), 251–255.

[4] H. France-Jackson, ‘Rings related to special atoms’, Quaestiones Math. 24 (2001), 105–109.
[5] H. France-Jackson, ‘On supernilpotent radicals with the Amitsur property’, Bull. Aust. Math. Soc.

80 (2009), 423–429.
[6] B. J. Gardner, ‘Sub-prime radicals determined by zerorings’, Bull. Aust. Math. Soc. 12 (1975),

95–97.
[7] B. J. Gardner, ‘Some recent results and open problems concerning special radicals’, in: Radical

Theory (Proceedings of the 1988 Sendai Conference, Sendai, 24–30 July 1988), (ed. S. Kyuno)
(Uchida Rokakuho Pub. Co. Ltd, Tokyo, Japan, 1989), pp. 25–56.

[8] B. J. Gardner and R. Wiegandt, Radical Theory of Rings (Marcel Dekker Inc., New York, 2004).
[9] H. Korolczuk, ‘A note on the lattice of special radicals’, Bull. Pol. Acad. Sci. Math. 29 (1981),

103–104.
[10] N. V. Loi and R. Wiegandt, ‘On the Amitsur property of radicals’, Algebra Discrete Math. 3 (2006),

92–100.
[11] S. Tumurbat, ‘On special radicals coinciding on simple rings and on polynomial rings’, J. Algebra

Appl. 2(1) (2003), 51–56.
[12] S. Tumurbat and R. Wiegandt, ‘Principally left hereditary and principally left strong radicals’,

Algebra Colloq. 8(4) (2001), 409–418.
[13] S. Tumurbat and R. Wiegandt, ‘A note on special radicals and partitions of simple rings’, Comm.

Algebra 30(4) (2002), 1769–1777.
[14] S. Tumurbat and R. Wiegandt, ‘Radicals of polynomial rings’, Soochow J. Math. 29(4) (2003),

425–434.
[15] S. Tumurbat and R. Wiegandt, ‘On radicals with Amitsur property’, Comm. Algebra 32(3) (2004),

1219–1227.

S. TUMURBAT, Department of Algebra, University of Mongolia, PO Box 75,
Ulaan Baatar 20, Mongolia
e-mail: stumurbat@hotmail.com

H. FRANCE-JACKSON, Department of Mathematics and Applied Mathematics,
Nelson Mandela Metropolitan University, Summerstrand Campus (South),
PO Box 77000, Port Elizabeth 6031, South Africa
e-mail: cbf@easterncape.co.uk

https://doi.org/10.1017/S0004972709001129 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001129

