
J. Austral. Math. Soc. (Series A) 27 (1979), 91-107

THE GAUSSIAN LAW AND LACUNARY
SETS OF CHARACTERS

E. DUDLEY and P. HALL

(Received 13 December 1977)

Abstract

Salem and Zygmund (1947, 1948), Baker (1972) and Dudley (1975) have shown that certain
lacunary sets P of characters of a compact abelian group have the property that sequences of the
form {EJI = j at P*}n°= j where <pk eP converge to the normal distribution if suitably normalized. In
this paper, a theorem of probability due to McLeish (1974) is applied to clarify and extend the
previous results.

Subject classification (Amer. Math. Soc. (MOS) 1970): 42 A 36, 42 A 44, 60 F 05.

1. Introduction

Throughout this paper, unless otherwise stated, the symbol G is used to denote
an arbitrary, infinite, compact, abelian group with Haar measure m, normalized
so that m(G) = 1. The character group of G is denoted by F and the unit character
is denoted by 1. For AzT, we write A~l for the set A~l ={(p~l: (peA) and we
say that A is symmetric if A — A ~1. A complex-valued function / defined on a

symmetric subset A of F is said to be symmetric if f(jp~l) = fty) for all <peA.
Note that this implies that/(^) is real if <p = tp'1 or cp2 = 1. The cardinality of a
set A is denoted by \A\ while the symbol A is used to denote symmetric difference.
The symbols N, Z, R and C are used to denote the usual sets of numbers. All other
notation not explained appears in Rudin (1960).

We use the symbol P to denote an infinite subset of F and the symbol u to denote
a complex-valued function defined on P\JP~1. The symbol y, possibly with sub-
scripts attached, is used to denote a sequence !? = {X(n)}*=, of pair wise-disjoint,
finite, nonempty symmetric subsets of F. We set

eoo = u
91
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92 E. Dudley and P. Hall [2]

S(n)= £ «W(?'

and

S(n)2dm^

(i . i) = ( :

The last calculation is a consequence of the orthogonality relations for characters
(that is, $G<py~1dm is zero if <p and y are distinct characters). Note that P(n),
Q(n), S(n) and B(n) depend on P, u and &'. However, for simplicity we do not
indicate this dependence explicitly except where confusion may arise. We have the
following definition.

DEFINITION 1.1. We say that a pair (P,Sf) is compatible if
(a) | Q(n)| -+ oo as n-* oo,

and
(b) {\P(n)\} is bounded.

We say that a triple (P, u, S?) is compatible if
(c) (/>, S?) is compatible,
(d) 5(n)->oo as w->oo,

and
(e) limn^a)JB(«)-1max((>eQ(n) \u(q>)\ = 0.
Observe that (P, SP) is compatible if and only if (P, i, Sf) is compatible where i

is the function mapping each ipePuP'1 onto 1. In the central limit theorem, the
limiting behaviour of the sequence {B(n)~lS(«)} is characterized. Conditions (d)
and (e) of the above definition are typical conditions needed for the law to hold while
condition (a) is necessary for (d) to hold. The central limit problem is more compli-
cated if we do not have condition (b).

DEFINITION 1.2. A compatible triple (P,u,£f) is said to be Gaussian if

lim B{nYl S(n) = N(0,1) in distribution;
n—*x

that is,
X f '

lim m{teG: B{nY1S(n){t)<y} = {2n)'i \ c\p(~it2)dt
n—*oo J — oo

for all yeR.
The general problem we tackle is to characterize Gaussian triples. In particular,

we investigate lacunary properties of the set P which ensure that a wide class of
compatible triples (P,u,^) are Gaussian. In Section 2, we examine invariance
properties of compatible triples with respect to the Gaussian property, while in
Section 3 we prove our main theorem. We apply our results to the classical case of

https://doi.org/10.1017/S1446788700016669 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016669
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the circle group in Section 4, and in Section 5 we consider applications in the general
case of an arbitrary compact Abelian group.

2. Invariance properties

In this section, we make the convention that if w, is a function defined on
PjKJPj1 fory=l and 2, and the M/S are the restrictions of a function u defined on
/ \ U P f 1KJP2\JPI1, then the function u,- is denoted by the symbol u where the
domain of the function is clearly understood.

DEFINITION 2.1. Let (Px,&'i) and (P2,^2) be compatible pairs. For j = 1 or 2,
denote by Pj(n) and Qj(n), the terms in (1.1) defined with respect to (Pj,Sfj). For
{/,*} = {1,2}, set

aj(n) = min{m eN: \ QM A &(m)| = min {| Qj(n) A Qk(r)\ :reN}}

and Aj = sup{|g/«) AQk(aj(n))\: neiV}. We say that ( P i . ^ i ) and (P2,S?2) are
Gaussian equivalent if both ^ and ^42 are finite. (Clearly Gaussian equivalence is an
equivalence relation.)

DEFINITION 2.2. Given pairs, (P, S^t) and (P, £f2), we say that Sf x is P-finer than
c9"2 or ^ 2 is P-coarser than ^ if there exists a nondecreasing sequence {«*}"= t of
positive integers such that Qi(nk) = Q2(k) for all keN. A sequence 5" is said to be
a P-basic sequence if for each neN, P(n) is empty or P(n) = {tp,(p~1} for some <p e T.

In the following lemma, some consequences of the previous definitions are given.
The proof is easy and is omitted.

LEMMA 2.3

(a) If (P, Sf) is compatible, then Sf is P-coarser than some P-basic sequence.
(b) / / ^ i is P-finer than Sf2, then it follows that
(i) a triple (P,u,Sf2) is compatible if and only if (P,u,S^i) is compatible and

{|^2(«)|} is bounded;
and

(ii) if(P, Sf2) is compatible, then (P,S?2) and(P,6^1) are Gaussian equivalent.
The following is the key theorem in this section.

THEOREM 2.4. Suppose that (Pu^i) and (P2,^2) are Gaussian equivalent and
that {Puu,!/'l) and {P2,u,£f2) ore compatible. Then if (Px,u,£f^) is Gaussian,
(P2, u, Sf2) is also Gaussian.

PROOF. Let Pj(n), Qj(n), Sj(n) and Bj{n) be the terms in (1.1) defined with respect
to (Pj, u, ^j). We use the notation introduced in Definition 2.1. Note that aj(n)-> oo
since otherwise there exists m such that | Qj(n) A Qk(m)\ <Aj for infinitely many n,
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contradicting the fact that \Qj(n)\-*oo (see Definition l . l(a)). From the definition

of B(n), we have

\Bl{ri)-B\(a2(n))\^A2 max \u{q>)\\

where the max is taken over all q> e Qi(a2(ri)) A Q2(ri). We conclude that

min{|l-2?2
2 (n)Bl(a2(n))l \l-Bl(n)B;2 (a2(n))\)

^A2max{B22(n)max{\u(<p)\2:ipeQ2(n)}, B2(a2(n))max{\u(<p)\2: (p^QiiflM)}}.
The right side of the above inequality tends to 0 as n approaches oo by Definition
l.l(e) and it follows that B2

x(n)BiHa2(ri))->\. Since {P^u,?,) is Gaussian, the
sequence {5f 1(a2(n)) Si(a2(n))} is tight in the probabilistic sense and it follows that

\n)-11
2

in measure. Hence, in order to show that (P2,u,Sf2) is Gaussian, it suffices to

show that

I S,(a2(n)) - S2(n)\ [ ^ ( ^ ( n ) ) ] " 1 ^ 0

in measure. This is an immediate consequence of Definition 1.1 (e), the fact that

1(a2(n))-+\ as n-»oo and the inequalities

\<<P)\

4:A2 max \u(g>)\

where T(ri) = Qi(a2{ri)) A Q2(n).

3. The main theorem

We begin by defining the key concepts needed.

DEFINITION 3.1. Suppose that (P,Sf) is compatible. Let

fl Ft/Ml}]: |{y:/(7)# 1}| = n, f[ f(j) = 1J I •
We say that (P,6^) is weakly dissociate if there exists B>0 such that R(n)^Bn for

all n. In particular, if R(n) = 0 for all « > 1, then we say that (P,SP) is strongly

dissociate.

DEFINITION 3.2. Suppose that (P,&") is compatible. For peT, let

F{<P)= \J {yePiky.yv-iePiky}^ \J <pP{k)nP(k).

We say that (P, 5̂ ) is rfaft/e if there exists C>0 such that

forall«>er-{l}.
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REMARKS 3.3

(a) Clearly, a compatible pair (P, Sf) is strongly dissociate if and only if whenever
//, <n2< ...<nk and {<pj}k

J=l is a sequence such that <pj€P(nj), then 0*=i <Pj¥= 1.
(b) The term dissociate as applied to lacunary sets of characters is firmly estab-

lished in the literature (see Lopez and Ross (1975), 2.5). We generalize and slightly
modify Lopez and Ross's definition by saying that a set of characters P is k-
dissociate if whenever F is a finite subset of P which is asymmetric (that is, cp, <p~1 eF
implies that <p = tp~l) and m is a function fromF into { — k, — k+\, . . . , 0 ,1 , ...,k— 1,
k}, then the implication

Y\ yW = 1 implies that (pmiv) = 1 for all <peF
<peF

holds. We can readily establish that an infinite subset P of T is 1-dissociate if and
only if (P, S?) is strongly dissociate for each compatible pair (P, Sf). Similarly, we
can easily show that an infinite set P is a Rider set (see Lopez and Ross (1975),
2.13) if and only if (P,£f) is weakly dissociate for each compatible pair (P,£f).

(c) From a probabilistic viewpoint, weak dissociativity (or stability) ensures
that the sequence

{ I «WC=, (or{[ X wfo)?]2},"-!),
*>£/>(") «>£/"(")

when suitably normalized, is weakly stochastically dependent. The two conditions
together ensure that (P, u, £f) is Gaussian.

We now state the basic probability theorem on which our results depend. The
theorem is due to McLeish (1974) but his methods derive from Salem and Zygmund
(1947).

T H E O R E M 3.4. Let {XnJ: j = 1,2, ...,k2} be an array of random variables on a

probability triple (Q,!F,//). For neN, teR andi2 = -I, let

?"„= ft O+'tXmJ)
7 = 1

and

S n = £ XnJ.
7 = 1

Suppose that
(a) lim^^f Tndfi = 1;
(b) the sequence {Tn} is uniformly integrable;

(c) l im n _ 0 C X*i 1 X*j = 1 in measure; and

(d) lim,,^,- max J = l t2> ,nn|A'n,j| = 0 in measure.

It then follows that lim,,.,^ Sn = N(0,1) in distribution.
The following generalization of the above theorem is not essential to our key

results but is needed in Theorem 5.8 where we compute the limiting distribution of
non-Gaussian sequences. The proof follows closely that of McLeish (1974).
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THEOREM 3.5. / / in the previous theorem, conditions (b) and (d) hold while, for some
random variable X, we have for t>0

(a') limn^x J Tn exp ( - tX) dp = \ exp ( - tX) dfi, and
(c') l i m ^ ^ ^ ^ t XX j = X in measure,

jhen linin^a, Sn = Fin distribution where the distribution F has characteristic function

We apply Theorem 3.4 to obtain sufficient conditions for a compatible triple
{P, u, S?) to be Gaussian.

THEOREM 3.6. Suppose that (P, u, £f) is compatible. For 1< k ^ n, we set

T(n, k) = B- \ri) (S(k) - S(k -1))

and T{n): t-+Ul=l(l + itT(n,j)) for teR.
Suppose that the following are satisfied:
(a) linv,,,,, JGr(«)(0<//M = 1 for each teR, and
(b) Kmm^nfG(%=1T

2(n,k))2dm = 1.
Then the triple (P, u, SP) is Gaussian.

The proof of Theorem 3.6 is accomplished via the following lemmas.

LEMMA 3.7. Suppose that (P, u, £?) is compatible and p is an upper bound for
{\P{ri)\} {see Definition l.l(b)). Then we have the estimate:

for each teR.

PROOF. Noting (1.1) and using Holder's inequality, we have

* = 1 <peP(k)

t I H<P)\2
k = 1 <peP(k)

= P-

Hence we have

11
k=\

I t2T\n,k)\
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LEMMA 3.8. Suppose that (P, u, £f) is compatible and r is a positive real number.
Then the following are equivalent:

(a) lim,,.,^^-! T2(n,k) = r in measure,
(b) Hm^fcdJUi T2(n,k))2dm = 2r-r2.

PROOF. AS shown in the previous proof, we have

I T\n,k)
k=\

and so the sequence YA=I T2(n,k) is uniformly bounded. For such a sequence of
random variables and for any s>0, convergence in measure to another variable
is equivalent to convergence in U. Since J c Z*=i T2{n,k)dm = 1, condition (b) of
the lemma is equivalent to the condition:

lim £ T2{n,k)-r\ dm = 0

which is simply convergence in L2.

LEMMA 3.9. If(P,u,Sf) is compatible, then we have

lim max ||7T»,*)L = °-

PROOF. Note that

\\nn,k)\\<x>=\\B-i(n) X
<peP(k)

4,pB~l(ri) max \u{tp)\.
(peP(k)

The lemma now follows from Definition 1.1 (e).

PROOF OF THEOREM 3.6. We apply Theorem 3.4. Let Q = G, & = the Borel
o--field of G, fi = m (Haar measure) and Xn<k = T(n,k) for k = 1,2, ...,n. Condition
(b) of Theorem 3.4 is satisfied by Lemma 3.7, condition (c) of Theorem 3.4 is
equivalent to (b) of Lemma 3.8 with r = 1, while Lemma 3.9 ensures that condition
(d) automatically holds. It follows that if (a) and (b) of Theorem 3.6 hold then
Bin)-1 S(n) = Y,UiT(n<k) converges to #(0,1) in distribution, that is, (P,u,^)
is Gaussian.

The principal theorem in this section follows.

THEOREM 3.10. Suppose that (P,u,Sf) is compatible. It follows that
(a) if {P, Sf) is weakly dissociate, then condition (a) of Theorem 3.6 is satisfied;

and
(b) if (P, £f) is stable, then condition (b) of Theorem 3.6 is satisfied. Hence if

(P, Sf) is weakly dissociate and stable, then (P, u, £f) is Gaussian.
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PROOF OF (a). Expanding we obtain

[8]

Z 100*
A O 7=1

where the inner summation is taken over all subsets {tpu<Pi> •••>%} of Q(n) having
the property that each set P(j) contains at most one element of {<Pi,(p2, • • • ,%}•
For R(k) as in Definition 3.1. we obtain, using the orthogonality relations,

If.T(n)(t)dm-1 £ \t\kB-\n) max \u(<p)\k R(k).
k=\

Let <xn = ^" ' (nJmax^eQ^)!^)! and /? = supt R
1/k(k). Noting that an~»0 as n->oo

(see Definition 1.1 (e)), we have for all n such that \t\a.nR<\ the estimate:

T{n)(t)dm-\

It follows that li = 1 as desired.

PROOF OF (b). Recalling the expression for F{y/), i//eF given in Definition 3.2,
we have

Since 52(n) =

Z Z E
=1 ver «?F(

Z Z
Z W<P)\2+ Z

(n) icer-{l

' w e conclude that

u((p)u{y,<p-l)V

( £
We note that if <peF(y/)nQ(n), then y/tp-leF(y/)nQ(n). Using Definition 3.2,
Holder's inequality and the estimate \u((p) u(y/<p~ x ) | ^ |M(9>)|2 + \u(y/tp~ ^ l 2 , we obtain

£ T2(n,k)) dm-I
k=l /

» Z (2 Z
r { 1 ) F ( )
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Now if <p eP(k)nF(y/) for some k, then <p e y/Pik) and hence y/ e (pP(k). It follows that
for each <p e Q(n), the term |M(^)|4 appears at mostp times in the double summation
above where P = max \P(k)\. We deduce that

\( E T\n,k)Jdm-l

max

The convergence of the right side of the above inequality follows from Definition
l.l(e).

4. Applications to the circle group

In this section, we consider the circle group G = T which we represent as the
interval [Q,2n) with addition modulo2n. Haar measure is (27c)"1 times Lebesgue
measure while the character group F is Z, the additive group of integers, where for
each neZ we associate the character en: f->exp(int). The lacunary sets we consider
are defined as follows.

DEFINITION 4.1. Let P = {nk: k eN} be an infinite subset of N such that nk+1>nk

for each k and let q = inf{n t + 1«^1: keN}. We say that P is a q-set. If P is a
<7-set for q > 1, then P is called a Hadamard set.

Salem and Zygmund (1947, 1948) proved the following theorem.

THEOREM 4.2. Let P be a Hadamard set and let ^ = {{~n,n}}™= x. / / (P,u, ¥) is
compatible, then it is Gaussian.
We not only derive this theorem from our results but prove a stronger version. As
a preliminary, we formulate:

DEFINITION 4.3. We say that a sequence {rk} of positive integers increases rapidly if,
for all fl, /•„+1 >Xt= I /*• We say that a sequence 5" = {X(n)}£L t (of finite, symmetric,
pairwise disjoint subsets of Z) is dissociate if there exists a sequence {rjJ^Lj of
positive integers and an injection 0: N->N such that {rk} increases rapidly and

Bin)-I

£ rt < |/w| < reM for all w e X(n).

The relationship between the concept of dissociativity given above and that
which appears in Definition 3.1 is described in the following theorem.

THEOREM 4.4. / / Sf is dissociate and (P, Sf) is compatible, then (P, Sf) is strongly
dissociate.
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PROOF. Suppose that S? is defined with respect to a rapidly increasing sequence
{rk}£°= t. It is readily seen that a sum of the form

m j — 1

where £ rk<n}^rj, e,e{-l,0,l} and em = 1

is greater than or equal to nm—Y%=t rk and hence is nonzero. It follows that {P,Sf)
is strongly dissociate.

In considering Hadamard sets, it will prove useful to consider dissociate sequences
£? of a certain form. By way of notation, we write I[n, m] where 1 < n < m for the set

I[n,m] = {reZ: n<:\r\^m}.

We call I[n, m] an interval, n the lower end point of the interval and m the upper end
point.

THEOREM 4.5. Suppose that Sf = {X(n)}™=l is a sequence such that each X(n)
is contained in an interval /„ and In(~\Im = 0 for n^m. Let {xk}^=l be the sequence
of lower end points of In arranged in increasing order and {/?*}"= i the corresponding
sequence of upper end points. Suppose that

a = i r t / a* + i / ? f c 1>l and

Then S? is a dissociate sequence.
(Hereafter such sequences will be described as sequences of type a.)

PROOF. Let /? = a ( a - l ) " 1 . An easy argument shows that /?,</?•'"*/?* for j
and a further computation shows that Yj=i PJ < a A <«*+1 ̂  A+1. It follows that
{Pj)f= i increases rapidly and hence Sf is dissociate.

We need one more concept before the connection between Hadamard sets and
dissociate sequences can be described.

DEFINITION 4.6. A segment of a sequence {H*}^ t is a finite subsequence of the
form nk,nk+1,...,nj for some l^k^j. For teN, we say that a rearrangement
{Wj} of {rtk} is t-related to {«J if each «fc belongs to a sequence of t elements which
is a segment of {mj} and of {«;}.

COMMENTS 4.7

(a) Except when t = 1, the ^-relation is not an equivalence relation since transi-
tivity fails to hold.

(b) Every rearrangement of {nk} is 1-related to {nk}.
(c) If a rearrangement {mj} is t+ 1-related to {nk}, then it is also f-related to {nk}.
We have the following theorem.

THEOREM 4.8. Let P = {nk: ksN} be a q-set for q>\ and let t be the smallest

positive integer such that q'~l^(q—\)~l. Let {mj} be a rearrangement of {«j} which
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is t-related to {ttj}. IfS? is any sequence such thatP(j) = {njj, —mj}for allj, then there
exists a sequence y t of type a for some <x^q such that (P,£f) and (P,yt) are
Gaussian equivalent (see Definition 2.1).

PROOF. For eachyeJV, let y(j) be the largest integer not exceeding 2? such that
mj,m]+u...,mj+ya-)_i is a segment of {nk}. We define inductively a sequence

}f= i a s follows. Let r(l) = 0. Having defined r(j), we put

\r(j+l)=

It is clear that r(j+l)-r(j)<2t. We now show that y(r(j)+\)^t for a l l / Ob-
serve that since m^ belongs to a sequence of length t which is a segment of {«,} and
of {nij}, we have y(r(l) +1)5* t. It is clear that if y(r(/)+1) = It, then y(r(j+1)+1)
= y{r(j) +1 +1) Ss t. On the other hand, if y(r(j) +1) < 2f, then since r(j+1) = r(y) +
y(r(j)+1) ^ follows that /Mr(j+i) and /Mru+i)+i are not consecutive elements of the
sequence {nk}. Since mHJ+iy + 1 belongs to a sequence of length / which is a segment
of {nk} and {mk}, we conclude that y(r(j+\)+\)^t. We have thus shown that
KKyH 1)5*' for all / and it follows that r(y +1)-/•(./) Jsf.

Summarizing, we have a sequence {r(j)} of nonnegative integers such that
(i) r(l) = 0;

(ii) f <r(;+ l)-/-O)<2/ for each./;
and

(iii) /MrU)+1,wr(J)+2, ...,mrU+1) is a segment of {«*} for eachy.
We define &'l={X1(n)}^=1 by setting X^n) = I[mrM + 1,mr(n+1)] for each n.
Since .S^ is P-coarser than Sf (see Definition 2.2), the pairs (P,SP) and (P^x)
are Gaussian equivalent by Lemma 2.3(b)(ii). (Clearly (P, y s ) is compatible.)

We conclude the proof by showing that ^ is a dissociate sequence of type a
for some a^^. Let {a,} be the sequence of lower end points of the X^nys arranged
in increasing order and let {/?,} be the corresponding sequence of upper end points.
Each IXJ, Pj eP and hence

a = inf <xk+1 Pll ^ in f nJ+1 njl = q.

On the other hand, if Pk = nj for some/ then since r(j+l) — r(j)^t we have
{nj+i>nj + 2> •••>nj+t}^I[<Xk+i,Pk+i]- Hence we have pk+l ^nj + , and it follows that

The theorem is proved.
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To complete the preliminary theorems dealing with Hadamard sets, we show that
a compatible pair (P, ̂ ) is necessarily stable (see Definition 3.2) if P is a Hadamard
set.

THEOREM 4.9. Let P be a Hadamard set and suppose that (P, £f) is compatible.
Then (P, &) is stable.

PROOF. Suppose that P = {nk: k e N} is a ^-set and let m be the smallest integer
such that qm> 2(1 —q'1)*1. Given neW, we examine the set D = {keN: nk + nj = n
or nk — nj = n for some j ^k}. Note that if nk + nj = n for some j^k, then we have

(4.1) ^n^nk^n.

On the other hand, if nk—nj = n for somey ^k , then we have n ̂ n k and nk—nk_1^Ln.
Since nk_lnk~

l ^q'1, we have

(4.2)

Combining (4.1) and (4.2), we conclude that if keD, then

Thus we see that if k,k+jeD, then Wn^/i^"1 =$2(1—ty"1)"1. However, since P
is a <jr-set, we have nJ+knk

l ^qJ and consequently we have 9 ^ 2 ( 1 — q'1)'1 which
implies thaty < m. We conclude that D has at most m elements. Noting the definition
of F(n) given in Definition 3.2, we have for neN,

F(ri)^{nk: nk + nj =n or nk — nj = n for somey}
u{ — nk: nj—nk = n for somej}.

It follows that \F(n)\^2\D\^2m. Similarly we have \F(-n)\^2m. The pa i r (P ,^)
is therefore stable.

We now state and prove our major theorem in this section.

THEOREM 4.10. Let P = {nk: keN} be a q-set for some q> 1 and let t be the least
positive integer such that q'~l >{q— I )" 1 . Let (P,u,£f) be a compatible triple such
that for each j , P(j) = { — mj,mj} where {mjJeN} is a t-related rearrangement of
{nk,keN}. Then the triple (P,u,S?) is Gaussian.

PROOF. Theorem 4.8 guarantees the existence of a dissociate sequence y ,
which is P-coarser than Sf and such that (P, y ) and (P,S^t) are Gaussian equivalent.
By Lemma 2.3(b)(i), the triple (P, u, Sf) is compatible. Applying Theorem 4.4 and
Theorem 4.9, we deduce that (P, ,5^,) is strongly dissociate and stable and hence
(P ,M,y x ) is Gaussian by Theorem 3.10. Finally, we conclude that (P,u,Sf) is
Gaussian by Theorem 2.4.
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COMMENTS 4.11

(a) Theorem 4.10 is an improvement on the classical result, Theorem 4.2. It

asserts that Hadamard sets are 'Gaussian' in relation to sequences which are

essentially different from the 'natural ' sequence S? = {— n,«}. This is not an obvious

result since the Hadamard condition is defined in terms of the order property of

N which is specified by the sequence Sf.

(b) We are unable to find an example of a Hadamard set P and a sequence £f

such that (P, u, Sf) is compatible but not Gaussian for some function u.

(c) If P is a <7-set for some q ^ 2, then t = 1 in Theorem 4.10 and hence Theorem

4.10 and Comment 4.7(b) combine to show that (P,u,£f) is Gaussian whenever

(P, u, Sf) is compatible. In the next section, we show that this result is a corollary

to a more general result.

5. Applications to an arbitrary compact abelian group

We return to the setting of an arbitrary compact abelian group G and begin
with the definition of some lacunary properties.

DEFINITION 5.1. We say that a subset P , of a set of characters P is asymmetric
if <p,<p~l ePi implies that <p = <p~l. Given PsF, let Pt be a maximal asymmetric
subset of P. For n e N, we let

R(n) = \{S: P^i-1,0,1}: £ \S(<p)\ = n, \{ ^<« = 1}|.

(Note that since a maximal asymmetric subset Pt of P is any subset such that
exactly one of <p and q>~1 belongs to P , for each <peP, the number R(n) is indepen-
dent of the particular maximal asymmetric subset Pt chosen.) We say that P is a
Rider set if /?(«)<B" for some B>0 and all n. In particular, we say that P is a
l-dissociate set if R(n) = 0 for all n. (See Remarks 3.3(b).)

REMARKS 5.2. Rider sets were studied firstly by Steckin (1956) and later by Rider
(1966) as well as by other authors. They are important in the study of Sidon sets.
Sets which are the finite unions of Rider sets are Sidon sets. The converse of this
last statement is so far as the authors are aware an open problem. See Lopez and
Ross (1975), p. 17 and p. 24 for further details.

The following theorem which is easily proved pinpoints the relevance of Rider
sets to the Gaussian property.

THEOREM 5.3. Let P^T. The following properties are equivalent:
(a) P is a Rider (l-dissociate) set;
(b) (P,£f) is weakly (strongly) dissociate whenever (P,Sf) is compatible; and
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(c) (P, S?) is weakly (strongly) dissociate whenever 6? is a P-basic sequence and
(P, y ) is compatible.

In the following theorem we summarize some well-known results dealing with
the relationship between Hadamard sets and dissociate sets.

THEOREM 5.4. Let G = T,T = Z.

(a) For q^2, each q-set is a l-dissociate set.
(b) Each Hadamard set is the finite union of l-dissociate sets.
(c) There exists a l-dissociate subset ofZ which is not the finite union of Hadamard

sets.

PROOF

(a) Suppose that P = {nk: k e N} is a ^-set for some q^2. For j^k, we have
nJ^qJ~knk^2i~knk. For £>e{—1,0,1}, j = 1,2, ...,k, we have

k k

nk+i+ £ £

We conclude that P is l-dissociate.
(b) For meN, we write i > =U"=o 1 ^ / where Pj = {nkm_j: keN}. We readily

check that each P} is an a,-set for some a ,^qm. Choose m such that q™^2.
(c) An example of a l-dissociate set which is not the finite union of Hadamard

sets is the set {2" + 2m2: n,meN and (m — l)2^n<nt2}. The example is due to
Hewitt and Zuckerman (1959) and is discussed in Lopez and Ross (1975),
p. 25.

Theorem 3.10 and Theorem 5.3 combine to show that a compatible triple
(P, u, £f) is Gaussian where P is a Rider set if the pair (P, £f) is stable. If (P, S?)
is compatible, then Sf is P-coarser than a P-basic sequence Sf^ by Lemma 2.3(a).
Since (P,Sf) and {P,Sf^ are Gaussian equivalent by Lemma 2.3(b)(ii), (P,u,y)
will be Gaussian if (P, u, 5^,) is Gaussian by Theorem 2.4. On the other hand, by
reference to Definition 3.2, we note that (P,^i) is stable if (P,Sf) is stable. It
follows that we can restrict our attention to deriving a condition for a compatible
pair (P, £f) to be stable given that Sf is a P-basic sequence.

For Sf a P-basic sequence and P ( « ) # 0 , we write P(n) = {^Jul^"1}. It will
be seen that characters of order two play a special role in our results. We write
A = {<peT: <p2 = I}. For yeT— {1}, we derive

F(y) = in •• <p\ = yMv>k * • <Pu2 = ?}•
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It is clear that F(y) is empty unless y =<p2 for some <peF. If <peF and <P2T^I, we
have

F(<p2) = {n- <P\ = 9

= U P(n)n(pA.

The above argument yields:

THEOREM 5.5. Let P be a Rider set and (P, u, Sf) a compatible triple. Then (P, u, £f)
is Gaussian if there exists msN such that U"= iP(ri)ri<pA has at most m elements
for each (peY — A.

We have the following slightly more general form of the above theorem.

THEOREM 5.6. Let P be a Rider set and suppose that there exists meN such that
\Pn<pA\ ^m for all (per—A. Then each compatible triple (P,u,S?) is Gaussian.

As a corollary we deduce:

COROLLARY 5.7. / / G is connected and P a Rider set, then each compatible triple
(P, u, Sf) is Gaussian.

We suspect that the converse to Theorem 5.6 is true. Such a converse states that
if P is a Rider set such thatdPn^AI: q> e T — A) is unbounded, then some compatible
triple (P, u, £f) is not Gaussian. The following is a partial converse.

THEOREM 5.8. Let P be a Rider set and suppose that Pr\fA is infinite for some
<p £ F — A. Then some compatible triple (P, u, £?) is not Gaussian.

PROOF. Note that at most one element of the form p* for k e N can belong to A.
Using the fact that <p~1 PnA is infinite and an easy induction argument, we construct
a sequence {yj}f= t of elements of <p~1 PnA such that for each k and each choice of
£/ = 0 or 1 we have that

k

<p"Y\yjJ = I implies that £t = e2 = ... ek = 0 and q>" = 1.
. 7 = 1

Let u be the function mapping each element in PuP'1 onto 1 and let if = {{<pyj,
<P~* yj}}f=v We apply Theorem 3.5 for Q = G, & = the Borel a-algebra of G,
H = m (Haar measure) and where tor j = 1,2,...,«,
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We note that

in the notation of Theorem 3.5.
Observe that by choice of the sequence {yj}, we can write

rn= ft
i

where R is a linear combination of characters distinct from <p" for neZ. Hence we
have, in particular,

= Xkdm for all keN.

Since exp(—tX) is the uniform limit of its power series, we deduce that

Tnexp(-tX)dm=\ exp(-tX)dm.
Jo JG

Condition (a') of Theorem 3.5 is satisfied and hence (P, u, S?) is not Gaussian.

COMMENTS 5.9

(a) Theorem 5.6 is a significant improvement on Theorem 3.1 of Dudley (1975).
As an example, consider G = f|j°= t Gj where each Gj is the multiplicative group
{1, — 1, i, —i}. Let <pj be the character mapping an element of G onto itsyth com-
ponent. The set P = {q>j <pj+ t,(pj:jeN} does not have property (R2) (see Definition
2.1 of Dudley (1975)) since (<Pj9j + i)2yj~2 = 1. However, P is a 1-dissociate set
and \Pr«pA\ < 2 for all p e F - A.

(b) Theorem 5.4(a) and Corollary 5.7 combine to show that if P s Z is a #-set
for some q > 2, then each compatible triple (P, M, Sf) is Gaussian. (See Comments
4.1 l(c).)
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