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Coskewness Risk Decomposition, Covariation
Risk, and Intertemporal Asset Pricing
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Abstract
We develop an intertemporal asset pricing model where cash-flow news, discount-rate
news, and their second moments are priced by the market. This model generalizes the
market-return decomposition framework, showing that intertemporal considerations imply
a decomposition of squared market returns (coskewness risk). Our model accounts for 68%
of the return variation across portfolios sorted by size, book-to-market ratio, momentum,
investment, and profitability for a modern U.S. sample period. Further, our findings high-
light the importance of covariation risk, that is, the risk of simultaneous unfavorable shocks
to cash flows and discount rates, in understanding equity risk premia.

I. Introduction
Understanding risk factors that explain variation in the cross section of ex-

pected stock returns is a fundamental issue in the asset pricing literature. One
stream of research examines the determinants of expected stock returns within
an intertemporal portfolio-selection framework (Campbell (1993), Bansal and
Yaron (2004), Campbell and Vuolteenaho (2004), Bansal, Kiku, Shaliastovich,
and Yaron (2014), and Campbell, Giglio, Polk, and Turley (2018)).1 Assuming
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conditional log-normality and using linear approximations of the Epstein–Zin
(1991) pricing kernel, these studies show that long-term investors care about
not only a stock’s covariance with the market portfolio (as in Sharpe (1964)
and Lintner (1965)) but also the stock’s covariance with fluctuations in the ex-
pected returns and variances of their investments. Another important strand of
the asset pricing literature emphasizes the role of the nonlinearity of the pricing
kernel while typically ignoring intertemporal hedging considerations (Kraus and
Litzenberger (1976), Lim (1989), Harvey and Siddique (2000), and Barone-Adesi,
Gagliardini, and Urga (2004)). These studies model a pricing kernel in which both
the covariance and the coskewness of a risky asset (i.e., the covariance of asset re-
turns with the square of market returns) are priced.

Our study is positioned at the intersection of these two strands of literature.
Recognizing the importance of accounting for both intertemporal investor con-
siderations and the nonlinearity of the pricing kernel, we develop a nonlinear in-
tertemporal asset pricing model (nonlinear ICAPM). We show that intertemporal
investor considerations coupled with the nonlinearity of the pricing kernel give
rise to an asset pricing model in which cash-flow news, discount-rate news, and
their second moments are priced.

The intuition underlying our model builds on insights from the intertemporal
asset pricing research (e.g., Campbell (1993), Campbell and Vuolteenaho (2004)).
Consistent with the value of an asset being the discounted stream of projected cash
flows and using the assumption of log-normally distributed returns, these studies
show that long-term investors are concerned about two types of risk: i) the risk of
receiving bad news about future cash flows and ii) the risk of an increase in the
discount rate. In the first case, wealth decreases and investment opportunities are
unchanged, whereas in the second case, wealth decreases but future investment
opportunities are expected to improve, thereby partially compensating investors
for the current decline in their wealth (Campbell and Vuolteenaho (2004)).

Our model shows that when the assumption of log-normally distributed re-
turns is relaxed, long-term investors are also concerned about the risks from the
second-order moments of cash-flow and discount-rate news.2 The importance of
accounting for these risks arises from investor prudence, that is, the propensity
to engage in precautionary savings in order to forearm oneself against future un-
certainty (Kimball (1990), Harvey and Siddique (1999)). Specifically, our model
suggests that investors will have higher marginal utility when they simultane-
ously receive bad news about future cash flows and expect higher macroeco-
nomic uncertainty. In such times, higher discount rates will reflect higher levels
of macroeconomic uncertainty (for a given set of investment opportunities) and
thus increased probabilities of future declines in wealth and consumption, rather
than better investment opportunities as in Campbell and Vuolteenaho (2004). Our
model attributes a higher risk premium to stocks that underperform during periods
of simultaneous unfavorable shocks to cash flows and discount rates.

2As Campbell ((2003), pp. 815–816) points out, the assumption of conditional log-normality, al-
though expedient for theoretical asset pricing modeling, is unrealistic given the patterns in stock re-
turns documented by prior research. In particular, prior studies document that stock returns standard-
ized by the conditional mean and conditional standard deviation are significantly skewed and fat tailed
(Harvey and Siddique (1999), Bali, Mo, and Tang (2008)).
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Consistent with the previous discussion, our model includes the following
news terms: i) cash-flow news, ii) discount-rate news, iii) cash-flow-variation
news (the shock to squared cash-flow news), iv) discount-rate-variation news
(the shock to squared discount-rate news), and v) covariation news (the shock
to the product of cash-flow news and discount-rate news). The first two news
terms are the components of unexpected market returns derived by Campbell
and Vuolteenaho (2004), based on a linear approximation of the Epstein–Zin
(1991) pricing kernel. The remaining three second-order terms are the products
of coskewness risk decomposition, which we derive from the second-order ap-
proximation of the pricing kernel.3 These second-order terms do not appear in
Campbell and Vuolteenaho’s (2004) model, which is derived under the assump-
tion of conditional log-normality. When this assumption is relaxed, the nonlinear-
ity of the Epstein–Zin (1991) pricing kernel implies that second-order components
capture states in which pricing kernel realizations deviate substantially from their
mean (Chen, Cosimano, and Himonas (2013)).4 Our model implies that investors
are willing to pay a premium for assets that hedge an increase in the stand-alone
variations of cash-flow news and discount-rate news. The covariation effect works
in the opposite direction to the variation effect: Investors are willing to pay a pre-
mium to hedge the risk of being hurt simultaneously by unfavorable cash-flow
news and unfavorable discount-rate news.

We evaluate the performance of our model using the cross section of portfo-
lio returns sorted by size, book-to-market ratio, past stock performance (momen-
tum), investments, and profitability.5 We find that small-cap stocks have greater
exposure to covariation risk compared with large-cap stocks. Further, we find that
stocks with good past performance (past winners) have greater exposure to co-
variation risk compared with stocks with poor past performance (past losers).
The model explains 68% of the return variation across our test portfolios and
is not rejected at conventional significance levels. Furthermore, we find that the
explanatory power of coskewness decomposition is predominantly attributed to
covariation risk, which carries a positive and statistically significant risk pre-
mium. To gauge the robustness of our findings, we estimate our model using

3To illustrate the baseline intuition behind our coskewness risk decomposition, consider the de-
composition of market returns (rt ) by Campbell and Vuolteenaho (2004): rt=Nc,t−Nd,t , where Nc,t

denotes news to cash flows, and Nd,t denotes news to discount rates. This implies that the square of
the unexpected market return can be decomposed into cash-flow variation, discount-rate variation, and
covariation terms: r 2

t =N 2
c,t+N 2

d,t−2Nc,t Nd,t . Consequently, the coskewness risk (i.e., the covariance
of asset returns with the square of market returns) decomposes into three components associated with
these terms. Our model suggests that long-term investors with Epstein–Zin (1991) preferences assign
different prices of risk to these three components of coskewness risk.

4Dittmar (2002) finds that nonlinear pricing kernels (restricted by preferences) are able to signifi-
cantly improve upon linear pricing kernels in explaining the cross section of returns. Consistent with
this view, we find that the second-order approximation of the Epstein–Zin (1991) pricing kernel per-
forms well, whereas its linear approximation induces significant approximation errors, especially in
bad states.

5Asset pricing models are often evaluated based on their ability to explain the size and value ef-
fects (e.g., Hodrick and Zhang (2001), Campbell and Vuolteenaho (2004), and Hahn and Lee (2006)).
Jegadeesh and Titman (1993) is the seminal reference for the momentum effect. Novy-Marx (2013)
and Fama and French (2015) examine the performance of asset pricing models using profitability- and
investment-sorted portfolios.
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the approach of implied cost of equity for a panel of individual stocks (Lee, Ng,
and Swaminathan (2009), Chen, Chen, and Wei (2011)) and obtain qualitatively
similar results.

Collectively, our results suggest that investors demand a higher risk premium
for holding stocks with greater exposure to covariation risk, that is, stocks that
have low returns when investors simultaneously receive bad news about both
future cash flows and future discount rates. An intuitive way to summarize the
mechanism that gives rise to the covariation risk premium is to say that covari-
ation risk reflects the risk of bad news about cash flows to be accompanied by
bad news about the discount rate. After such a “double-whammy” shock to cash
flows and discount rates, covariance between the future-cash-flow and discount-
rate news also decreases. In such times, unfavorable news about decreasing future
cash flows is less likely to be offset by favorable news about future investment
opportunities and vice versa. Instead, investors are likely to apply higher discount
rates to future cash flows due to an increase in macroeconomic uncertainty and an
associated higher precautionary savings motive against future declines in wealth.
Consequently, stocks with greater exposure to such double-whammy events will
have higher expected returns to compensate for such risk.

We contribute to the asset pricing literature by developing an asset pric-
ing model that incorporates both intertemporal investor considerations and the
nonlinearity of the pricing kernel. Our model generalizes the market return de-
composition framework of Campbell and Vuolteenaho (2004), showing that in-
tertemporal considerations imply the decomposition of squared market returns
(coskewness risk) into its cash-flow variation, discount-rate variation, and covari-
ation risk components. We also contribute to the stream of research examining the
role of coskewness risk in shaping the expected return–risk relation (Harvey and
Siddique (2000), Dittmar (2002), and Barone-Adesi et al. (2004)). We demon-
strate, both theoretically and empirically, that coskewness risk decomposition is
important in understanding asset pricing when the assumption of conditional log-
normality is violated. Our model suggests that not only the magnitude of exposure
to coskewness risk but also the source of coskewness risk should be considered.
Specifically, our findings show that the contribution of coskewness risk to explain-
ing cross-sectional variation in expected stock returns is predominantly driven by
the covariation risk component, in that stocks with greater exposure to covariation
risk have higher expected returns.

The remainder of the article is organized as follows: Sections II and III
present our analytical framework. Section IV describes the estimation of news
components implied by our model. Empirical results are presented and discussed
in Section V. Section VI concludes.

II. Theoretical Framework
We begin by outlining several results from prior research that are helpful for

the derivation of our model. Our starting point is a no-arbitrage condition that
implies the standard Euler equation:

(1) Et

[
Mt+1 Ri ,t+1

]
= 1,
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where Mt+1 denotes the stochastic discount factor (SDF), and Ri ,t+1 denotes the
return on any traded asset in the economy (Harrison and Kreps (1979)). The
expression for the SDF depends on the preferences of the representative agent
and the intertemporal budget constraint. Following prior research (Campbell and
Vuolteenaho (2004), Bansal et al. (2014), and Campbell et al. (2018)), we con-
sider a representative agent with the Epstein–Zin (1989) recursive preferences.
This assumption has the desirable property that the notion of risk aversion is sep-
arated from that of the intertemporal elasticity of substitution (IES) (Campbell
(2003)). Epstein and Zin (1991) show that these preferences coupled with the in-
tertemporal budget constraint imply the following SDF (Mt+1) for a representative
agent:

(2) Mt+1 =

{
δ

(
Ct+1

Ct

)−1/ψ
}θ

R−(1−θ)t+1 ,

where Rt+1 is the return on the aggregate wealth Wt , with Wt defined as the
market value of the consumption stream {Ct} (including current consumption)
owned by the representative agent. In equation (2), θ equals (1−γ )/(1−1/ψ),
where γ is the risk aversion coefficient, ψ is the IES, and δ is the discount
factor.

A. An SDF with Second-Order Shocks
Our approach is to derive an expression for the SDF in terms of the two news

components of the unexpected market returns, that is, cash-flow news (Nc,t+1) and
discount-rate news (Nd,t+1). To do so, we first derive an approximation for the
pricing kernel outlined in equation (2) using a second-order Taylor expansion.
For analytical tractability, we first express the right-hand side of equation (2) in
terms of natural logs and then approximate the equation using a second-order Tay-
lor expansion around the conditional expectations of rt+1 and 1ct+1, where low-
ercase letters denote natural logs. This approach yields an approximation of the
SDF around ρ=exp(E[m t+1]). For notational convenience, we define unexpected
market return as ωr ,t+1=rt+1−Etrt+1. Similarly, we define unexpected consump-
tion growth as ωc,t+1=1ct+1−Et1ct+1. The second-order Taylor expansion of
equation (2) produces equation (3a). For convenience, we rearrange the expres-
sion in equation (3a) to obtain equation (3b):

Mt+1− Et Mt+1
∼= Et Mt+1

{
−
θ

ψ
ωc,t+1− (1− θ)ωr ,t+1(3a)

+
1
2

[(
θ

ψ
ωc,t+1+ (1− θ)ωr ,t+1

)2

− hm,t

]}
,

ωm,t+1 =
1

Et Mt+1
(Mt+1− Et Mt+1)(3b)

= R f ,t (Mt+1− Et Mt+1)

= −
θ

ψ
ωc,t+1− (1− θ)ωr ,t+1+

1
2
ωv,t+1,
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where

ωv,t+1 =

[{
θ

ψ
ωc,t+1+ (1− θ)ωr ,t+1

}2

− hm,t

]
,

hm,t = Et

[{
θ

ψ
ωc,t+1+ (1− θ)ωr ,t+1

}2
]

= vart

[
θ

ψ
ωc,t+1+ (1− θ)ωr ,t+1

]
.

Equation (3b) shows that the percentage deviation in the SDF from its expected
value depends on the following items: i) shocks to log consumption growth
(ωc,t+1), ii) shocks to log market return (ωr ,t+1), and iii) a second-order approx-
imation of shocks to the square of log SDF (ωv,t+1).6

B. News Components of the Pricing Kernel
Our next step is to express shocks to the pricing kernel ωm,t+1 in equation (3b)

without direct reference to consumption (Campbell (1993)). To do so, we first ob-
tain approximate expressions for the expected log consumption growth Et1ct+1

by imposing the restriction that equation (1) holds for any asset i , including the
market portfolio (aggregate wealth portfolio). That is, in equation (1), we sub-
stitute Ri ,t+1 with the market portfolio return and Mt+1 with the SDF given in
equation (2). This provides a Euler equation expressed in terms of aggregate con-
sumption growth and market returns. Next, we derive a second-order Taylor ex-
pansion to this Euler equation around the conditional means of rt+1 and 1ct+1

to obtain an expression for expected consumption growth (Campbell, Chan, and
Viceira (2003)):

(4) Et1ct+1 = ψ logδ+ψEtrt+1+
1
2
θ

ψ
vart [1ct+1−ψrt+1] .

Equation (4) relates expected consumption growth to expected returns on
wealth and a precautionary savings term (the variance of future consumption
growth relative to portfolio returns, hp,t=vart [1ct+1−ψrt+1]). The sensitivity of
expected consumption growth to changes in expected returns is measured by the
IES coefficient (ψ). The precautionary savings term hp,t measures the influence of
economic uncertainty on the expected consumption growth. Equation (4) shows
that when θ <0 (θ >0), an increase in h p,t decreases (increases) expected con-
sumption growth. Applying equation (4) to a log-linearization of the intertemporal
budget constraint yields the following expression for unexpected log consumption

6As discussed previously, in developing our model we rely on a second-order Taylor expansion
of a pricing kernel. This approach could raise questions regarding i) the accuracy of such an approxi-
mation and ii) the incremental value of such an approximation compared with the standard log-linear
approximation approach used in prior studies. To examine these two issues, we conduct a small-scale
test in which we examine the approximation errors implied by the second-order expansion of a pricing
kernel versus those implied by the first-order expansion. The results (discussed in Appendix A) sug-
gest that second-order expansion provides a reasonably accurate approximation of a pricing kernel.
The results also suggest that second-order expansion provides a significant improvement in terms of
the magnitude of approximation errors compared with the first-order expansion.
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growth in terms of the news components:

ωc,t+1 = 1ct+1−Et1 [ct+1](5)

= (Et+1−Et)

∞∑
j=0

ρ jrt+1+ j − (Et+1−Et)

∞∑
j=1

ρ j1ct+1+ j

= Nc,t+1−ψNd,t+1+
1
2
ψ

θ
Np,t+1,

where

Nc,t+1 = (Et+1−Et)

∞∑
s=0

ρs1c j ,t+1+s ,

Nd,t+1 = (Et+1−Et)

∞∑
s=1

ρsr j ,t+1+s ,

Np,t+1 = (Et+1−Et)

∞∑
j=1

ρ j vart

[
θ

ψ
1ct+1− θrt+1

]
.

In equation (5), Nc,t+1 denotes cash-flow news, and Nd,t+1 denotes discount-
rate news (Campbell and Vuolteenaho (2004)). The last term, Np,t+1, denotes
precautionary-savings news, which captures revisions in expectations of long-run
economic uncertainty that will influence the level of long-term investors’ precau-
tionary savings.

To obtain an analytically tractable expression for precautionary savings
news, we solve for the precautionary-savings term h p,t as a function of
the cash-flow and discount-rate news components. Using equation (4) and
the return decomposition relation (ωr ,t+1=Nc,t+1−Nd,t+1), we obtain h p,t=

vart [(1−γ )Nc,t+1+1/2Np,t+1]. Substituting this expression in the definition for
precautionary-savings news, we obtain

(6) Np,t+1 = (Et+1−Et)

∞∑
j=1

ρ j

[(
(1− γ )Nc,t+1+ j +

1
2

Np,t+1+ j

)2
]
.

Equation (6) suggests that precautionary savings news depends on the following
three items: i) news about the long-run variance of cash-flow news, ii) news about
the long-run variance of precautionary-savings news, and iii) news about the long-
run covariance between the two. Intuitively, economic uncertainty (volatility) in-
fluences not only precautionary savings but also the uncertainty of how uncertain
the future is going to be (i.e., the volatility of volatility). To simplify the expres-
sion for precautionary-savings news, we specify a volatility process for cash-flow
news and discount-rate news in the next section.

Next, we express innovations to our pricing kernel by plugging the expres-
sion for ωc,t+1 from equation (5) into equation (3b), which leads to the following
equation:

(7) ωm,t+1 = −γ Nc,t+1+ Nd,t+1+
1
2

Np,t+1+
1
2
ωv,t+1.
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The pricing kernel in equation (7) generalizes the pricing kernels derived by
Bansal et al. (2014) and Campbell et al. (2018), in that the shocks to the squared
log SDF (ωv,t+1) are also priced in our framework. The difference arises because
these studies assume conditional log-normality and therefore ignore second-order
SDF shocks, which are potentially important in the data. For example, Harvey
and Siddique (2000) show that differences in the covariance with the square of
the market returns help explain cross-sectional variation in risk premia. Equa-
tion (7) allows for these second-order effects in the ICAPM return decomposition
framework.

III. Nonlinear ICAPM with Coskewness Risk Decomposition
Recall that our modeling approach is to derive an expression for the pricing

kernel in terms of the two components of the unexpected market return: cash-flow
news and discount-rate news. However, the pricing kernel in equation (7) depends
not only on these two components but also on the precautionary-savings news
(Np,t+1) and shocks to the square of log SDF (ωv,t+1). In this section, we derive
expressions for Np,t+1 and ωv,t+1 in terms of Nc,t+1 and Nd,t+1.

Equations (3) and (6) show that both ωv,t+1 and Np,t+1 are functions of the
IES. In what follows, we derive expressions for these two terms in terms of Nc,t+1

and Nd,t+1 under two separate scenarios. In the first scenario, we assume the IES
to be close to 1, as in Campbell and Vuolteenaho (2004). In the second scenario,
we consider a more general model where we allow IES to be significantly greater
than 1. The distinction between these two scenarios helps us examine the role of
coskewness risk decomposition in the two asset pricing environments. When the
IES is close to 1, volatility risk has no substantial effect on investor marginal util-
ity and hedging demands (Campbell and Vuolteenaho (2004)). In contrast, when
risk aversion and the IES are not equal and are both greater than 1, agents have a
stronger precautionary savings motive. That is, long-term investors demand larger
risk premia for holding assets exposed to the risk of a long-run rise in economic
uncertainty (volatility risk). Accordingly, our first scenario focuses on modeling
the effect of coskewness risk decomposition, absent any effect of second-moment
news on future volatility. The second scenario extends our model to incorporate
volatility risk and its effect on the precautionary-savings motive.

A. Nonlinear ICAPM with Coskewness Risk Decomposition: IES Close
to 1

1. Pricing Kernel

In this section, we consider the scenario when the IES of a representative
investor is close to 1, as in Campbell and Vuolteenaho (2004). As noted earlier,
under this assumption, the precautionary savings term Np,t+1 becomes negligible.
Hence, the remaining task is to derive an expression for ωv,t+1 in terms of Nc,t+1

and Nd,t+1.
To derive an expression for ωv,t+1 in terms of Nc,t+1 and Nd,t+1, we eliminate

the third- and higher-order terms of Nc,t+1 and Nd,t+1 from the expression of the
SDF. Note that the third- and higher-order terms of Np,t+1 do not contribute to
the second-order approximation of ωv,t+1=[{(θ/ψ)ωc,t+1+ (1−θ )ωr ,t+1}

2
−hm,t ].
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This result further implies that the expression for ωv,t+1 in terms of first- and
second-order terms of Nc,t+1 and Nd ,t+1, after eliminating higher-order terms, is
given by

ωv,t+1 ≈ (Et+1−Et)
(
−γ Nc,t+1+ Nd,t+1

)2
(8)

= γ 2 Ncc,t+1+ Ndd,t+1− 2γ Ncd ,t+1,

where Ncc,t+1, Ndd,t+1, and Ncd,t+1 are news about the second-order terms of Nc,t+1

and Nd,t+1, given by N 2
c,t+1−hcc,t , N 2

d,t+1−hdd,t , and Nc,t+1 Nd,t+1−hcd ,t , respec-
tively, where h denotes the conditional variance or covariance of the correspond-
ing news terms.

We plug this expression into equation (7) to obtain the following expression
for our SDF:

(9) ωm,t+1 = −γ Nc,t+1+ Nd,t+1+
γ 2

2
Ncc,t+1+

1
2

Ndd,t+1− γ Ncd ,t+1.

Substituting equation (9) into equation (1) yields an approximate pricing expres-
sion for the expected excess return on any traded asset:

Et Ri ,t+1− R f ,t = −R f ,t covt

[
Mt+1, Ri ,t+1

]
(10)

≈ γ covt

[
ri ,t+1, Nc,t+1

]
+ covt

[
ri ,t+1,−Nd,t+1

]
+ λcccovt

[
ri ,t+1, Ncc,t+1

]
+ λddcovt

[
ri ,t+1, Ndd,t+1

]
+ λcdcovt

[
ri ,t+1, Ncd,t+1

]
,

where λcc=−γ 2/2,λdd=−
1/2, and λcd=γ . Equation (10) suggests that investors

will pay a premium to hold assets that positively covary with cash-flow-variation
shocks (Ncc,t+1) and discount-rate-variation shocks (Ndd,t+1) but will demand a pre-
mium to hold assets that positively covary with double-whammy shocks (Ncd ,t+1).
In what follows, we refer to this model as the coskewness risk decomposition
ICAPM (ICAPM-CRD).

2. Relation to Other Asset Pricing Models

Among other asset pricing models, this model is most closely related to the
capital asset pricing model (CAPM) with the coskewness of Kraus and Litzen-
berger (1976) and its conditional version developed by Harvey and Siddique
(2000). In these models, the coskewness of a risky asset (i.e., the covariance of
asset returns with the square of market returns) is priced, and the expected return
on a risky asset is negatively related with the covariance of an asset return with
the square of market return. Harvey and Siddique (2000) note that such a pricing
kernel can be derived in an infinite-horizon economy with logarithmic investor
preferences.

The key difference between our model with coskewness risk decomposition
(ICAPM-CRD) and that of Kraus and Litzenberger (1976) and Harvey and Sid-
dique (2000) is that we consider a long-term investor with Epstein–Zin (1989)
preferences, which nest logarithmic preferences as a special case. Therefore, our
model can be viewed as a generalization of the models of Kraus and Litzenberger
(1976) and Harvey and Siddique (2000). In the special case, when γ =1, our
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conditional pricing kernel is expressed only in terms of the unexpected market
portfolio’s returns [ωm,t+1=−ωr ,t+1+0.5[ω2

r ,t+1−Etω
2
r ,t+1]] and is thus analogous

to a conditional version of the pricing kernel of Harvey and Siddique (2000).

B. Nonlinear ICAPM with Coskewness Risk Decomposition: IES Greater
than 1

1. Pricing Kernel

In this section, we consider the scenario where the IES is substantially greater
than 1. In this case, the precautionary savings term and thus volatility risk influ-
ence our pricing kernel. The dynamics of this precautionary savings term, in turn,
depend on the dynamics of the conditional covariance matrix of Nc,t+1 and Nd,t+1.
We assume that their conditional covariance matrix, Ht , follows a multivariate
generalized autoregressive conditional heteroscedasticity (MGARCH) process. In
Appendix B, we show that these assumptions allow us to express our pricing ker-
nel as follows:

(11) ωm,t+1 = −γ Nc,t+1+ Nd,t+1− λcc Ncc,t+1− λdd Ndd,t+1− λcd Ncd ,t+1.

The expressions for λcc, λdd , and λcd are, respectively, as follows:

λcc = −
γ 2
+ (γ − 1)2χa2

cc

2
,(12a)

λdd = −
1+ (γ − 1)2χa2

dc

2
,(12b)

λcd = γ − (γ − 1)2χadcacc,(12c)

where axy denotes an element of A, the autoregressive conditional heteroscedas-
ticity (ARCH) persistence matrix defined in equation (B-1); and χ is a scale pa-
rameter that captures the link between news about long-run aggregate volatility
and the variance of the next period’s cash-flow news (hcc,t+1).

From the expressions in equations (12a) and (12b), we note that
λcc,λdd<0. In addition, equation (12c) implies that λcd>0 when adcacc<0 or
γ > (γ −1)2χadcacc. The condition adcacc<0 implies that a double-whammy
shock increases future cash-flow volatility (Nc,t Nd,t <0⇒↑hcc,t+1). Consistent
with our conjecture of a positive covariation risk premium (λcd>0), we find that
adcacc<0 for our estimated MGARCH parameters (discussed in further detail in
Section IV). Substituting equation (11) into equation (1) yields an approximate
pricing expression for the expected excess return on any traded asset similar to
equation (10), but with different risk premia coefficients. We label this model
ICAPM-CRD-MGARCH.

2. Relation to Other Asset Pricing Models

Our second model (ICAPM-CRD-MGARCH) generalizes the first one
(ICAPM-CRD) to allow for volatility risks. The volatility-news mechanism am-
plifies the magnitude of the risk-premium parameters for the same second-order
shocks because investors are averse to increases in long-term volatility. In the
special case of constant volatility, when the ARCH parameters are 0, we obtain
the model described in the previous section.
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Our second model is also related to Bansal and Yaron (2004), Bansal et al.
(2014), and Campbell et al. (2018), who model the implications of volatility news
within the ICAPM framework. A fundamental difference between these models
and our model is that in our model, shocks to the second-order terms of cash-flow
and discount-rate news are also priced. This difference arises for two reasons:
First, the aforementioned studies assume conditional log-normality and therefore
suppress shocks to the square of the SDF. Second, these studies do not decompose
volatility risk into its variation and covariation components. Our model allows for
variation in market returns to be driven by three distinct sources: variations in
cash-flow news and discount-rate news and the covariation between the two.

IV. Estimation of the News Components

A. Estimation of Cash-Flow News and Discount-Rate News
We estimate cash-flow news and discount-rate news following Campbell and

Vuolteenaho (2004). Specifically, we assume that the dynamics of the relevant
state variables are captured by a first-order vector autoregression (VAR) process:

(13) xt+1 = x̄+0 (xt − x̄)+ut+1,

where xt is an n×1 vector of state variables with the log market excess returns
as the first element, x̄ is an n×1 vector of constants, 0 is an n×n matrix of
VAR coefficients, and ut+1 is an n×1 vector of shocks to the state variables with
conditional mean 0. The cash-flow news (Nc,t+1) and discount-rate news (Nd,t+1)
components of the unexpected market return are expressed as Nd,t+1=e′1λut+1

and Nc,t+1= (e′1+e′1λ)ut+1, where the matrix λ=ρ0(I−ρ0)−1 maps instanta-
neous state-variable shocks to the news components of unexpected excess returns,
and e1 is a vector with 1 as the first element and 0s as the remaining elements.7

Following Campbell and Vuolteenaho (2004), we estimate equation (13) us-
ing a 4×1 vector of state variables that has the excess market return as the first
element and three other variables that help to predict excess market returns: the
term spread, the small value spread, and the natural log of the cyclically adjusted
price–earnings ratio (see Campbell and Vuolteenaho (2004) for details). Follow-
ing Campbell and Vuolteenaho (2004), we set the discount coefficient ρ equal to
0.95 in annual terms.

The coefficients of the VAR and the summary statistics for the cash-flow
news and discount-rate news for our sample period are reported in Panels A and
B of Table 1, respectively. The mean of Nc is −0.06%, and the mean of Nd is
−0.05%. The standard deviation of the cash-flow news is 2.32%, much smaller
than the standard deviation of the discount-rate news of 4.36%, consistent with
the results of Campbell and Vuolteenaho (2004).

7Engle and Kroner (1995) note that such a system can be consistently estimated without imposing
the GARCH error structure (which we assume for our ICAPM-CRD-MGARCH model) because the
error term vector ut+1 is uncorrelated with xt . Although more efficient estimates can be obtained by
accounting for the error structure in the first-stage vector autoregression (VAR), we prefer a parsimo-
nious estimation so that the incremental effects of the second-order terms in comparison to existing
models can be understood.
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TABLE 1
Descriptive Statistics of Market Returns, Cash-Flow News, and Discount-Rate News

Panel A of Table 1 shows the ordinary least squares (OLS) parameter estimates for a first-order vector autoregression
(VAR) model including a constant, the log excess market return (r eMKT), the term yield spread (TY), the price-to-earnings
ratio (PE), and the small-stock value spread (VS). Each set of four rows corresponds to a different dependent variable.
The first four columns report the coefficients of the four explanatory variables, and the remaining columns show R 2 and
F -statistics. Following Campbell and Vuolteenaho (2004), we set the discount coefficient ρ equal to 0.95 in annual terms
and estimate the parameters of the VAR system using the sample period from Jan. 1929 to Dec. 2010. In Panel B, we
report selected descriptive statistics for unexpectedmarket returns and the estimates of the cash-flow news and discount-
rate news for both the full sample period (i.e., Jan. 1929–Dec. 2010) and the modern sample period (i.e., July 1963–
Dec. 2010). The cash-flow news (Nc ) and discount-rate news (−Nd ) are estimated following Campbell and Vuolteenaho
(2004). The conditional covariance matrix of the cash-flow news (Nc ) and discount-rate news (Nd ) is assumed to follow
a multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) process. The estimated coefficients
of this process are presented in Panel C. The monthly means and standard deviations are reported in percentage points.
Panel C reports the MGARCH parameters of the volatility process of Nc and Nd : The matrix A contains the autoregressive
conditional heteroscedasticity (ARCH) coefficients, the matrix G contains the generalized autoregressive conditional
heteroscedasticity (GARCH) coefficients, and thematrixC contains the intercept parameters. The first element represents
the cash flows, and the second represents the discount rates.

Panel A. VAR Parameter Estimates (1929–2010)

r eMKT,t−1 TYt−1 PEt−1 VSt−1 R 2 F

r eMKT 0.109 0.004 −0.016 −0.011 0.03 6.7
TY −0.011 0.938 −0.003 0.053 0.89 1.9E+03
PE 0.518 0.001 0.992 −0.003 0.99 2.5E+04
VS −0.013 −0.001 −0.001 0.991 0.98 1.4E+04

Panel B. Summary Statistics

1929–2010 1963–2010

Mean Std. Dev. 25% Median 75% Mean Std. Dev. 25% Median 75%

Nc 0.00 2.65 −1.17 0.18 1.40 −0.06 2.32 −1.13 0.11 1.22
Nd 0.00 4.75 −2.57 0.33 2.74 0.05 4.36 −2.42 0.18 2.69
N 2
c ×10

2 0.07 0.20 0.00 0.02 0.06 0.05 0.1 0.00 0.01 0.06
N 2
d ×10

2 0.23 0.54 0.02 0.07 0.20 0.18 0.37 0.02 0.07 0.19
Nc ×−Nd ×102 0.00 0.22 −0.03 0.00 0.03 −0.02 0.2 −0.03 −0.00 0.02

Panel C. Conditional Volatility Parameter Estimates

C×104 A G

Nc 0.00 3.46 −0.16 −0.64 −0.93 −0.03
Nd 3.46 13.36 0.19 0.17 0.70 −0.37

B. Estimation of the Second-Moment News Terms
The ICAPM-CRD makes no assumptions regarding the dynamics of the con-

ditional expectations of N 2
c,t+1, N 2

d,t+1, and Nc,t+1×Nd,t+1. Hence, to keep the es-
timation strategy parsimonious, for the ICAPM-CRD, we estimate news to the
second-order terms by simply subtracting their unconditional mean. In contrast,
for the ICAPM-CRD-MGARCH, we estimate news to these terms by subtract-
ing their conditional means. For that purpose, we first fit the MGARCH model
outlined in equation (B-1) to the time series of Nc,t+1 and Nd,t+1 and then use the
estimates of the MGARCH model to calculate the conditional variances and co-
variance series of the cash-flow news and discount-rate news. Next, we estimate
the shocks to the quadratics by subtracting the corresponding elements of the con-
ditional covariance matrix predicted by the MGARCH model from the quadratics
of the cash-flow news and discount-rate news.

In Panel C of Table 1, we report the estimated MGARCH coefficients. Recall
that the sign of the covariation risk premium in the ICAPM-CRD-MGARCH is
positive when adcacc<0. Consistent with our conjecture of a positive covariation
risk premium, we estimate that adcacc<0. This reflects an investor’s intertemporal
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preference for states when the discount-rate news has a high positive covariance
with the cash-flow news so that shocks to cash flows and discount rates are likely
to offset each other. Consistent with this notion, investors will require a higher risk
premium for assets that yield low returns in states when the covariance between
the cash-flow and discount-rate news is low, as reflected by λcd>0.

C. Time Series of the News Components
Figure 1 plots the time series of the cash-flow news and the discount-rate

news. Figure 2 plots the conditional variances and covariance of the cash-flow
news and discount-rate news obtained from a fitted MGARCH model and the
shocks to the second-order terms of the cash-flow news and discount-rate news.
Major shocks to the cash-flow news and discount-rate news generally seem to
coincide with National Bureau of Economic Research (NBER) recessions. Fur-
ther, the NBER recessions in our sample seem to coincide with increases in
discount-rate variation. The cash-flow variation also increases during recessions,
but the magnitude of the increase is lower compared with that of the discount-rate
variation.

The conditional covariance between the cash-flow news and discount-rate
news experiences a substantial decline in two of the recessions in our sample:

FIGURE 1
News Components of Market Returns

Figure 1 plots the time series of the cash-flow news (Graph A) and the negative of the discount-rate news (Graph B).
The sample period is from July 1963 to Dec. 2010. The shaded areas represent National Bureau of Economic Research
(NBER) recessions.
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FIGURE 2
Variances, Covariances, and Their News Components

Graphs A and B of Figure 2 show the time series of the multivariate generalized autoregressive conditional heteroscedas-
ticity (MGARCH) conditional variances and the covariance of cash-flow news and discount-rate news. Graphs C and D
plot the shocks to these series. The sample period is from July 1963 to Dec. 2010. The shaded areas represent National
Bureau of Economic Research (NBER) recessions.
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FIGURE 3
Extreme Macroeconomic Environment in Covariation Recessions

Figure 3 illustrates the extreme macroeconomic environment during the two recessions in which covariation was most
negative. The shaded areas represent National Bureau of Economic Research (NBER) recessions, and the outlined
shaded areas represent the two covariation recessions. The graphs plot annual market returns, real consumption growth,
industrial production growth, and changes in the unemployment rate. The sample period is from July 1963 to Dec. 2010.
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the 1973–1975 recession and the recent financial crisis of 2008–2009. We char-
acterize these two recessions as “covariation recessions,” that is, recessions in
which the covariance between the cash-flow news and discount-rate news is no-
tably negative. Figure 3 provides evidence that suggests these two recessions were
two of the most challenging macroeconomic environments in our sample. The re-
sults depicted in this figure show that these two covariation recessions encompass
not only the years with the largest losses in equity markets but also those with
the largest declines in real consumption expenditure, the steepest drops in in-
dustrial production, and the steepest increases in unemployment rates.8 Notably,
these results cannot be attributed to the mechanical relation between these indica-
tors and our covariation estimates because none of these indicators is used in our
estimation procedure.

Figure 3 provides some useful insights in regard to the nature of the covari-
ation risk that investors wish to hedge against in our model. From the perspective
of our model, the increase in discount rates during these recessions was not simply
the result of better future investment opportunities that would lead to an increase
in future cash flows (due to the positive covariance between these two compo-
nents). Instead, increased precautionary savings against future declines in wealth

8The data used in this analysis were obtained from the Federal Reserve Economic Data (FRED)
database.
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in these times amplifies the bad news to future cash flows, leading to larger drops
in consumption. Although, similar to other asset pricing studies (e.g., Campbell
and Vuolteenaho (2004), Bansal et al. (2014)), we do not model the production
side of the economy, these results offer some support that such large drops in con-
sumption are likely to lead to a steep reduction in production and employment by
firms, thereby resulting in further declines in future cash flows and in investments
in new projects.9

V. Empirical Results

A. Calibration of Model-Implied Risk Premia
We commence our analysis with a simple calibration exercise (untabulated

for brevity). Specifically, we evaluate the magnitudes of the risk premia at-
tributable to various sources of risk in our model for different values of the repre-
sentative investor’s risk aversion (γ =1,5,10). For the ICAPM-CRD-MGARCH,
we set the persistence parameter χ to 62.5.10 The relative contribution of various
sources of risk will be driven by these parameter values, the model-implied risk
premium coefficients as per equations (10) and (11), and the exposure of the port-
folio under consideration to these risks.

We find that the market portfolio is exposed to both variation and covari-
ation risks. However, the magnitude of their impact on the risk premium of the
aggregate market is smaller compared with the first-moment news terms. We also
examine the relative importance of calibrated risk premia in explaining the size
and value premia. We find that our model attributes the largest share of the value
premium (highest minus lowest decile book-to-market portfolio) to cash-flow risk.
We also find that our model attributes the largest share of the size premium (low-
est minus highest decile market-capitalization portfolio) to covariation risk. The
latter finding provides preliminary evidence that covariation risk is an important
determinant of risk premia in the cross section of stocks. Further, this analy-
sis also highlights the difference between our two models: ICAPM-CRD and
ICAPM-CRD-MGARCH. Although the risk exposures of equity portfolios are
identical in both models, the (untabulated) model-implied risk premia are sub-
stantially larger for the ICAPM-CRD-MGARCH, highlighting the importance
of accounting for the volatility risk within the framework of coskewness risk
decomposition.

9As discussed earlier, our model suggests that declines in the covariance between the cash-flow
and discount-rate news are associated with higher macroeconomic uncertainty. In this context, the
particularly challenging macroeconomic environments observed in covariation recessions could also
be driven by the impact of macroeconomic uncertainty on firms’ investment decisions (Foote, Hurst,
and Leahy (2000), Bloom (2014)). These studies suggest that high macroeconomic uncertainty in-
creases the value of the option to wait, thereby making firms more cautious about actions such as
investment and hiring.

10This parameter is estimated from the long-run impact of a 1-period revision in the variance for
a univariate GARCH process for market volatility (χ=1/(1− (a+b))), where a and b denote ARCH
and GARCH parameters, respectively. We obtain the values for these parameters from a GARCH (1, 1)
model fitted to the time series of market returns.
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B. Estimating Risk Premia Using Portfolios of Stocks
In this section, we estimate and test our model using a cross section of port-

folio returns. Our baseline set of test portfolios includes 25 portfolios sorted by
firm size and firm book-to-market ratio and 25 portfolios sorted by firm size and
past stock performance (momentum). Size/book-to-market–sorted portfolios have
been used as test assets in previous studies (e.g., Hodrick and Zhang (2001),
Campbell and Vuolteenaho (2004), and Hahn and Lee (2006)). We also include
size/momentum-sorted portfolios because the momentum factor poses a particu-
lar challenge for asset pricing models (Jegadeesh and Titman (2005), Lewellen,
Nagel, and Shanken (2010)). Of particular relevance to our setting, prior research
suggests that some of the size, book-to-market ratio, and momentum effects in
stock returns can be attributed to the coskewness risk (Harvey and Siddique
(2000), Barone-Adesi et al. (2004)). Because our model focuses on the decompo-
sition of coskewness risk, using portfolios sorted by these attributes as test assets
allows us to assess incremental improvements in model performance that stem
from the coskewness decomposition. For each of these portfolios, we estimate its
monthly excess return as the difference between the gross monthly return and the
yield on the 1-month Treasury bill. All data were obtained from Kenneth French’s
data library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library
.html) and the Center for Research in Security Prices (CRSP). The sample period
is from July 1963 to Dec. 2010.11

1. Risk Exposures of Test Portfolios

In this section, we examine the risk exposures (betas) of our baseline
test portfolios. Following Campbell and Vuolteenaho (2004), we define the
cash-flow beta (βc) as cov(ri , Nc)/var(rm) and the discount-rate beta (βd) as
cov(ri ,−Nd)/var(rm). Here, ri is the return on the test portfolio i , and rm is the
unexpected return on the market portfolio, so βc and βd sum up to the CAPM
beta. Similarly, we define the cash-flow-variation beta (βcc) and the discount-rate-
variation beta (βdd) as cov(ri , Ncc)/var(rm) and cov(ri , Ndd)/var(rm), respectively,
and the covariation beta (βcd) as cov(ri , Ncd)/var(rm), so βcc,βdd , and βcd represent
the components of the coskewness beta. Hence, for a given test portfolio and a
given news term, beta can be expressed as the product of the following two items:
i) the univariate regression slope of the test portfolio returns on the time series of
the news term and ii) the ratio of the variance of the news term to the variance
of unexpected market returns. Consistent with this, we estimate the cash-flow
(discount-rate) beta as the slope from the univariate regression of test portfolio
returns on the time series of the cash-flow (discount-rate) news term times the

11The observed patterns in test portfolio returns in our sample (untabulated here for brevity) are
consistent with prior research (e.g., Jegadeesh and Titman (1993), Hodrick and Zhang (2001), Hahn
and Lee (2006), and Fama and French (2015)). Specifically, small-cap stocks have higher average
returns compared with large-cap stocks, and stocks with a high book-to-market ratio (value stocks)
have higher average returns compared with stocks with a low book-to-market ratio (growth stocks). In
addition, stocks with good past performance have higher average returns compared with stocks with
poor past performance, and the effect is more pronounced for small-cap stocks.
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ratio of cash-flow news (discount-rate news) variance to unexpected market re-
turn variance (Campbell and Vuolteenaho (2004), Campbell et al. (2018)).

Although a similar estimation approach can be applied to the second-moment
news terms, the betas for the second-moment news terms estimated using this
method are expected to have low precision. This is because a substantial portion
of the time-series fluctuations in the test portfolio returns is driven by the fluc-
tuations in market returns, reflecting the impact of the first-moment news terms.
Consequently, the univariate regression slopes of the second-moment news terms
will have large standard errors. Hence, to facilitate statistical inferences about beta
estimates for the second-moment news terms, we adopt the following 2-step ap-
proach: In the first step, we orthogonalize the market returns with respect to the
second-moment news term for which we want to estimate the portfolio beta. In
the second step, we regress test portfolio returns on that particular second-moment
news term and the orthogonalized market returns and use the slope of the second-
moment news term as the estimate of beta.12

The results are presented in Table 2, where Panel A reports the estimates
of the betas for the size/book-to-market–sorted portfolios, and Panel B reports
the estimates of the betas for the size/momentum-sorted portfolios. The estimates
of Panel A are organized in a square matrix with small-cap (large-cap) stocks on
the top (bottom) and high-book-to-market (low-book-to-market) stocks on the left
(right). In Panel B, the estimates for the small-cap (large-cap) stocks are reported
on the top (bottom), and the estimates for the stocks with poor (good) past per-
formance are reported on the left (right). For each quintile (size, book-to-market
ratio, past performance), we report the differences between the estimated betas
for the extreme portfolios. The corresponding standard errors adjusted for het-
eroscedasticity and serial correlation are reported in parentheses.

First consider the estimates of betas for the size/book-to-market–sorted port-
folios. The observed patterns in the estimates of the cash-flow betas and discount-
rate betas are largely consistent with those reported by Campbell and Vuolteenaho
(2004). Specifically, the cash-flow betas are significantly larger for value stocks
compared with growth stocks. In addition, the discount-rate betas are significantly
larger for small-cap stocks compared with large-cap stocks. The estimates of the
cash-flow-variation betas are negative and significant, and so are the estimates
of the discount-rate-variation betas, suggesting that, on average, stocks exhibit
significant exposure to both cash-flow-variation and discount-rate-variation risks.
The estimates of the covariation risk betas are positive and statistically signifi-
cant, suggesting that equity portfolios exhibit significant exposure to covariation

12This modification of the univariate regression approach serves two purposes: i) It preserves the
theoretical interpretation of the estimates of the second-moment news term betas as the components
of the coskewness risk decomposition and ii) it allows more accurate statistical inferences about the
estimates of the second-moment news term betas because the portion of the variance of test portfolio
returns driven by the fluctuations in market returns is “washed out.” For completeness, we reestimate
second-order term betas using a standard univariate regression method. Consistent with our expecta-
tions, this approach results in larger standard errors of individual portfolio betas but has no material
impact on our results for the differences in betas across the extreme portfolios, which is the main focus
of this analysis.
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risk. Further, the covariation risk betas are significantly larger for small-cap stocks
compared with large-cap stocks.

Now consider the estimates of betas for the size/momentum-sorted portfo-
lios. The cash-flow betas appear to be slightly lower for stocks with high past
returns compared with stocks with poor past performance. The difference, how-
ever, is not significant for most of the categories. The discount-rate betas display a
distinct U-shape, being the largest for stocks with either poor or high past perfor-
mance. This observation suggests that portfolios comprised of stocks with poor
or high past performance (i.e., stocks that experienced large absolute returns in

TABLE 2
Risk Exposures of Test Portfolios

In Table 2, we report the betas of the portfolios sorted based on market capitalization (size) and book-to-market ratio
for the sample period from July 1963 to Dec. 2010. The betas are estimated as cov(ri ,N(.))/var(rm ), where N(.) repre-
sents the cash-flow news (Nc ) for βc , the discount-rate news (−N d ) for βd , the cash-flow-variation news (Ncc ) for βcc , the
discount-rate-variation news (Ndd ) for βdd , and the covariation news (Ncc ) for βcd . The values for the latter three betas
were multiplied by 100 for ease of exposition. The variable ri is the excess return on the portfolio, and rm is the unex-
pected excess market return. Standard errors (in parentheses) are adjusted for heteroscedasticity and serial correlation.
The ‘‘Diff.’’ columns report the differences between the estimates of the extreme portfolio betas and the corresponding
standard errors (in parentheses). Bold denotes differences that are significant at a 2-sided 5% level or stronger. In Panel
A, we report the betas of the 25 size and book-to-market portfolios. Here, ‘‘Growth’’ (‘‘Value’’) denotes stocks with the
lowest (largest) book-to-market ratio, and ‘‘Small’’ (‘‘Large’’) denotes stocks with the lowest (largest) market capitaliza-
tion. In Panel B, we report the betas of the 25 size and past-performance (momentum) portfolios. Here, ‘‘Small’’ (‘‘Large’’)
denotes stocks with the lowest (largest) market capitalization, and ‘‘Losers’’ (‘‘Winners’’) denotes stocks with the lowest
(highest) returns from month t −12 to month t −2.

Panel A. Size/Book-to-Market–Sorted Portfolios

Growth 2 3 4 Value Diff.

βc
Small 0.12 (0.06) 0.14 (0.05) 0.16 (0.04) 0.17 (0.04) 0.20 (0.04) 0.08 (0.03)
2 0.13 (0.05) 0.16 (0.04) 0.17 (0.03) 0.19 (0.03) 0.22 (0.04) 0.09 (0.03)
3 0.13 (0.05) 0.18 (0.03) 0.19 (0.03) 0.20 (0.03) 0.22 (0.03) 0.09 (0.03)
4 0.14 (0.04) 0.19 (0.03) 0.20 (0.03) 0.21 (0.03) 0.24 (0.03) 0.10 (0.03)
Large 0.14 (0.03) 0.18 (0.03) 0.18 (0.03) 0.21 (0.03) 0.21 (0.03) 0.07 (0.02)

Diff. 0.02 (0.04) 0.04 (0.04) 0.02 (0.03) 0.04 (0.04) 0.01 (0.03)

βd
Small 1.25 (0.06) 1.03 (0.06) 0.88 (0.05) 0.80 (0.05) 0.82 (0.06) –0.43 (0.06)
2 1.22 (0.05) 0.96 (0.05) 0.84 (0.05) 0.78 (0.05) 0.84 (0.06) –0.38 (0.05)
3 1.16 (0.04) 0.89 (0.05) 0.77 (0.05) 0.71 (0.05) 0.76 (0.06) –0.39 (0.06)
4 1.05 (0.04) 0.86 (0.05) 0.79 (0.06) 0.72 (0.05) 0.76 (0.06) –0.29 (0.06)
Large 0.83 (0.04) 0.74 (0.05) 0.68 (0.05) 0.60 (0.05) 0.64 (0.06) –0.19 (0.06)

Diff. –0.42 (0.07) –0.29 (0.07) –0.20 (0.06) –0.20 (0.06) –0.18 (0.06)

βcc
Small −0.69 (0.19) −0.59 (0.16) −0.59 (0.12) −0.55 (0.14) −0.66 (0.15) 0.03 (0.22)
2 −0.68 (0.10) −0.62 (0.08) −0.59 (0.09) −0.62 (0.09) −0.70 (0.12) −0.02 (0.16)
3 −0.64 (0.08) −0.64 (0.07) −0.55 (0.06) −0.56 (0.08) −0.58 (0.11) 0.06 (0.15)
4 −0.48 (0.06) −0.59 (0.05) −0.59 (0.10) −0.53 (0.09) −0.75 (0.11) −0.27 (0.15)
Large −0.36 (0.04) −0.50 (0.08) −0.54 (0.07) −0.54 (0.10) −0.65 (0.09) –0.29 (0.11)

Diff. 0.33 (0.18) 0.09 (0.22) 0.05 (0.17) 0.01 (0.19) 0.01 (0.17)

βdd
Small −2.71 (0.60) −2.26 (0.55) −2.09 (0.37) −1.87 (0.42) −2.64 (0.31) 0.07 (0.52)
2 −2.55 (0.31) −2.52 (0.25) −2.41 (0.24) −2.34 (0.22) −2.42 (0.27) 0.13 (0.33)
3 −2.35 (0.27) −2.40 (0.23) −2.38 (0.22) −2.21 (0.19) −2.41 (0.27) −0.06 (0.39)
4 −2.07 (0.19) −2.45 (0.16) −2.56 (0.30) −2.05 (0.26) −2.45 (0.31) −0.38 (0.44)
Large −1.59 (0.14) −1.94 (0.28) −1.88 (0.27) −1.68 (0.35) −2.29 (0.32) –0.70 (0.35)

Diff. 1.12 (0.64) 0.32 (0.76) 0.21 (0.56) 0.19 (0.70) 0.35 (0.51)

βcd
Small 1.00 (0.32) 1.01 (0.24) 0.89 (0.14) 0.89 (0.13) 0.72 (0.09) −0.28 (0.33)
2 0.82 (0.17) 0.74 (0.10) 0.61 (0.08) 0.53 (0.08) 0.68 (0.10) −0.14 (0.19)
3 0.69 (0.14) 0.56 (0.11) 0.43 (0.09) 0.33 (0.11) 0.53 (0.12) −0.16 (0.23)
4 0.55 (0.09) 0.49 (0.07) 0.37 (0.15) 0.27 (0.12) 0.24 (0.16) −0.31 (0.22)
Large 0.35 (0.05) 0.29 (0.14) 0.21 (0.14) 0.11 (0.14) 0.09 (0.17) −0.26 (0.21)

Diff. –0.65 (0.32) –0.72 (0.36) –0.68 (0.26) –0.78 (0.25) –0.63 (0.19)

(continued on next page)
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TABLE 2 (continued)
Risk Exposures of Test Portfolios

Panel B. Size/Momentum–Sorted Portfolios

Losers 2 3 4 Winners Diff.

βc
Small 0.21 (0.05) 0.18 (0.04) 0.17 (0.03) 0.17 (0.03) 0.16 (0.04) −0.05 (0.03)
2 0.21 (0.05) 0.18 (0.04) 0.18 (0.04) 0.18 (0.04) 0.16 (0.05) −0.05 (0.04)
3 0.22 (0.05) 0.19 (0.03) 0.18 (0.03) 0.18 (0.03) 0.16 (0.04) −0.06 (0.04)
4 0.23 (0.05) 0.22 (0.03) 0.19 (0.03) 0.19 (0.03) 0.17 (0.04) −0.06 (0.04)
Large 0.25 (0.04) 0.18 (0.03) 0.17 (0.03) 0.17 (0.02) 0.15 (0.03) –0.09 (0.04)

Diff. 0.04 (0.03) 0.00 (0.03) 0.00 (0.02) 0.00 (0.02) −0.01 (0.03)

βd
Small 1.08 (0.07) 0.83 (0.06) 0.77 (0.06) 0.79 (0.05) 1.00 (0.07) −0.08 (0.08)
2 1.18 (0.07) 0.88 (0.06) 0.80 (0.05) 0.83 (0.05) 1.09 (0.06) −0.08 (0.09)
3 1.08 (0.07) 0.85 (0.05) 0.79 (0.05) 0.79 (0.05) 1.03 (0.06) −0.05 (0.09)
4 1.04 (0.08) 0.84 (0.06) 0.77 (0.05) 0.78 (0.05) 0.96 (0.05) −0.08 (0.10)
Large 0.94 (0.07) 0.73 (0.06) 0.71 (0.04) 0.70 (0.05) 0.86 (0.05) −0.08 (0.10)

Diff. –0.13 (0.05) −0.09 (0.05) −0.06 (0.04) –0.09 (0.04) –0.14 (0.05)

βcc
Small −0.92 (0.13) −0.73 (0.12) −0.69 (0.11) −0.64 (0.12) −0.62 (0.14) 0.30 (0.16)
2 −0.91 (0.11) −0.72 (0.09) −0.65 (0.07) −0.63 (0.09) −0.46 (0.17) 0.45 (0.21)
3 −0.89 (0.12) −0.65 (0.06) −0.60 (0.07) −0.64 (0.09) −0.52 (0.11) 0.37 (0.20)
4 −0.84 (0.18) −0.69 (0.11) −0.59 (0.09) −0.56 (0.07) −0.50 (0.08) 0.34 (0.24)
Large −0.70 (0.16) −0.53 (0.11) −0.49 (0.04) −0.38 (0.06) −0.41 (0.06) 0.29 (0.21)

Diff. 0.22 (0.14) 0.20 (0.15) 0.20 (0.11) 0.26 (0.12) 0.21 (0.15)

βdd
Small −3.19 (0.29) −2.71 (0.23) −2.57 (0.26) −2.54 (0.34) −2.55 (0.47) 0.64 (0.55)
2 −3.05 (0.29) −2.62 (0.21) −2.42 (0.22) −2.38 (0.30) −2.26 (0.59) 0.79 (0.69)
3 −2.39 (0.38) −2.47 (0.23) −2.39 (0.18) −2.42 (0.28) −2.28 (0.37) 0.12 (0.68)
4 −2.41 (0.55) −2.47 (0.31) −2.32 (0.23) −2.34 (0.19) −2.29 (0.30) 0.12 (0.76)
Large −2.29 (0.56) −1.86 (0.39) −1.77 (0.18) −1.62 (0.17) −1.69 (0.21) 0.60 (0.73)

Diff. 0.89 (0.51) 0.85 (0.48) 0.79 (0.32) 0.92 (0.37) 0.86 (0.39)

βcd
Small 0.54 (0.12) 0.56 (0.10) 0.59 (0.11) 0.71 (0.10) 0.99 (0.13) 0.45 (0.17)
2 0.48 (0.13) 0.50 (0.08) 0.54 (0.10) 0.67 (0.09) 1.05 (0.25) 0.57 (0.23)
3 0.25 (0.16) 0.34 (0.09) 0.48 (0.09) 0.56 (0.13) 0.85 (0.11) 0.59 (0.20)
4 0.09 (0.23) 0.23 (0.15) 0.35 (0.14) 0.35 (0.11) 0.72 (0.08) 0.63 (0.26)
Large 0.07 (0.22) 0.02 (0.11) 0.35 (0.05) 0.33 (0.08) 0.51 (0.07) 0.44 (0.27)

Diff. –0.47 (0.18) –0.54 (0.13) –0.23 (0.10) –0.38 (0.11) –0.48 (0.11)

the past) are potentially picking stocks with high sensitivity to changes in the dis-
count rate. Importantly, the estimates of the covariation risk betas are positive and
monotonically increasing when moving from stocks with poor past performance
to stocks with high past performance, and the difference is also statistically sig-
nificant. These results suggest that portfolios comprising of stocks with high past
performance have greater exposure to covariation risk relative to the market. In
addition, similar to the results reported in Panel A of Table 2, we find the es-
timates of covariation risk betas to be significantly larger for small-cap stocks
relative to large-cap stocks.

2. Estimation of the Risk Premia

Having estimated the risk exposures (betas) for the test portfolios, our
next step is to estimate the model risk premia. As discussed earlier, our base-
line set of test portfolios includes 25 portfolios sorted by firm size and firm
book-to-market ratio and 25 portfolios sorted by firm size and past stock per-
formance (momentum). We further expand our set of test portfolios to include
32 three-way size/investment/profitability-sorted portfolios (Novy-Marx (2013),
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Fama and French (2015)).13 Hence, in total, we use 82 test portfolios. Following
prior research (Campbell and Vuolteenaho (2004), Campbell et al. (2018)), we
estimate the risk premia using the following cross-sectional regression:

(14) R̄e
i = g0+

K∑
k=1

gk β̂i ,k + εi ,

where R̄
e

i is the average excess portfolio return over the 1-month Treasury bill rate,
β̂i ,k is the estimated risk exposure with respect to the kth risk factor, and gk is the
kth factor risk premium. To incorporate estimation uncertainty in estimated betas,
we produce standard errors with a bootstrap from 5,000 simulated realizations,
following Campbell and Vuolteenaho (2004).

As discussed in Section III, we consider two versions of the model: i)
the ICAPM-CRD, developed under the assumption of an IES close to 1, and
ii) the ICAPM-CRD-MGARCH, developed under the assumption of the IES be-
ing greater than 1. We compare the performance of these two models to the per-
formance of the following models: i) the CAPM (Sharpe (1964), Lintner (1965)),
ii) the 2-beta ICAPM (Campbell and Vuolteenaho (2004)), iii) the CAPM with
coskewness (Kraus and Litzenberger (1976), Harvey and Siddique (2000)), iv) the
4-factor Fama–French–Carhart model (Fama and French (1993), Carhart (1997)),
and v) the 5-factor Fama–French model (Fama and French (2015)).

We use the following two statistics to evaluate model performance: i) the
cross-sectional adjusted R2 and ii) the cross-sectional pricing error (ϑ). To as-
sess the significance of the adjusted R2 statistic, we follow Lewellen et al. (2010)
and simulate the distribution of the adjusted R2 constructed using randomly se-
lected artificial factors correlated with the empirical factors underlying our test
portfolios. Specifically, we randomly draw 6×1 vectors of weights, wi , from the
standard normal distribution, each defining a factor Pi=wi F+vi , where F is
[MKT, SMB, HML, MOM, CMA, RMW] (i.e., empirical factors that reflect the
characteristics based on which our test portfolios were constructed), and vi is an
arbitrary random variable independent of test portfolio returns. The covariance be-
tween the test portfolio j returns (R j ) and Pi is then gi=cov(R j , F)wi. We repeat
this 5,000 times, generating up to five artificial factors at a time (depending on the
number of factors in the model tested) and storing the cross-sectional adjusted-R2

values when the test portfolios’ average returns are regressed on gi . We report the
p-value as a proportion of the simulated adjusted-R2 statistics that lie above the
reported value of the model-adjusted R2. The p-value of the adjusted-R2 statistic
has an intuitive interpretation: It informs the researcher about the probability that
the reported R2 was obtained by “chance” due to proposed model factors being
correlated with the empirical factors underlying the test portfolios.

13Prior research (Novy-Marx (2013), Fama and French (2015)) documents that firms with high
operating profitability (low levels of investment) have higher average equity returns compared with
firms with low operating profitability firms (high levels of investment). We find similar patterns for the
portfolios sorted by these attributes in our sample.
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We estimate the cross-sectional pricing error ϑ as

(15) ϑ =

(
N∑

i=1

(R̄e
i −

K∑
k=1

gk β̂i ,k)2

)0.5

.

To evaluate the statistical significance of this pricing error, we use a bootstrap
method (Campbell and Vuolteenaho (2004)). Specifically, for each model, we ad-
just the test portfolio returns to be consistent with the model (i.e., we generate the
test portfolio return series under the null that the model fully explains the average
portfolio returns). Next, we simulate the distribution of the pricing error under the
null using a bootstrap and report the p-value for the pricing error as a proportion of
pricing errors from the bootstrap that exceed the realized pricing error of a given
model. Again, the p-value of the pricing error has an intuitive interpretation: It
informs the researcher about the probability that the reported model pricing error
is solely due to sampling issues and not due to model misspecification.

We also report the risk-aversion parameter (γ ) implied by the estimated risk
premia for the 2-beta ICAPM of Campbell and Vuolteenaho (2004) and the two
versions of the proposed nonlinear ICAPM. For the 2-beta ICAPM, the implied
risk-aversion parameter is estimated as the ratio of the cash-flow news premium
to the variance of market returns (Campbell and Vuolteenaho (2004)). To obtain
the implied risk aversion for each of the two versions of the nonlinear ICAPM,
we search for the set of possible parameter values that minimizes the weighted
absolute distance between the estimated risk premia and their theoretical values,
shown in equations (10) and (11), respectively. The weights are estimated as the
inverse of the standard errors of the risk premia estimates, which allows us to take
into account the precision of the risk premia estimates from our model.

We report the estimation results in Panel A of Table 3. The first tested model
is the CAPM of Sharpe (1964) and Lintner (1965). We observe that the CAPM
fails to explain the cross section of returns in our sample. The estimated price
of market risk is not significant. The adjusted R2 of the model is 0.04 (p-value
= 0.54), and the model pricing error is 0.108 (p-value < 0.01). Overall, these
findings are consistent with the results reported in prior research (e.g., Campbell
and Vuolteenaho (2004), Hahn and Lee (2006)).

Next, we examine the performance of the 2-beta ICAPM of Campbell and
Vuolteenaho (2004). The poor performance of the 2-beta ICAPM is evident: the
estimated risk premia for both the cash-flow and discount-rate betas are not sig-
nificant, and the implied risk-aversion coefficient is negative due to the nega-
tive sign of the cash-flow-beta risk premium. The adjusted R2 of the model is
0.03 (p-value = 0.85), and the model pricing error is 0.119 (p-value < 0.01),
suggesting that the model is rejected in our sample.14

14Campbell and Vuolteenaho (2004) show that the 2-beta ICAPM performs well in explaining the
size and value effects. Consistent with their findings, the (untabulated) results show that when we limit
our set of test assets to size/book-to-market portfolios, the performance of the 2-beta ICAPM improves
substantially. One potential explanation of the poor performance of the 2-beta model in our setting is
its inability to explain the momentum effect. This conjecture is supported by the results reported in
Table 2, which show that past winners and past losers have similar cash-flow and discount-rate betas.
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The next model under investigation is the CAPM with coskewness (Kraus
and Litzenberger (1976), Harvey and Siddique (2000)). The risk premium for the
coskewness beta is negative and significant, consistent with the notion that in-
vestors are willing to accept a lower rate of return on assets that hedge against
coskewness risk. The adjusted R2 of the model is 0.46 (p-value = 0.08). These
results are in line with prior research (Harvey and Siddique (2000), Barone-
Adesi et al. (2004)), which shows that some of the size-, book-to-market–, and
momentum-related effects can be explained by coskewness risk. However, the

TABLE 3
Asset Pricing Tests Using Portfolios Sorted on Size/Book to Market,

Size/Momentum, and Size/Profitability/Investment

In Table 3, we report the estimated regression coefficients and the associated standard errors from the Fama–MacBeth
(1973) 2-step regression approach for the sample period from July 1963 to Dec. 2010. The dependent variable, R̄

e

i , is
the average monthly excess return over the 1-month T-bill on test asset i . The test assets are 25 Fama–French size/book-
to-market–sorted portfolios, 25 Fama–French size/momentum-sorted portfolios, and 32 Fama–French 3-way sorted port-
folios, by size, investments, and profitability. Each column reports the estimated risk premia and standard errors (in
parentheses) for the corresponding asset pricing model. The standard errors are adjusted for the first-step estimation
uncertainty using a bootstrap approach (Campbell and Vuolteenaho (2004)). The p-values of the adjusted R 2 statistics
were calculated using a simulation approach (Lewellen et al. (2010)). The p-values of the models’ pricing errors were
calculated using a bootstrap approach (Campbell and Vuolteenaho (2004)). *, **, and *** indicate significance at the
10%, 5%, and 1% levels, respectively.

Panel A. Model Comparison

Nonlinear
CAPM ICAPM Nonlinear Fama– 5-Factor

2-Beta with (CRD- ICAPM French– Fama–
Model CAPM ICAPM Coskewness MGARCH) (CRD) Carhart French

α 0.012*** 0.013** 0.012** 0.003 0.004 0.006** 0.008
(0.004) (0.006) (0.005) (0.005) (0.005) (0.003) (0.005)

βMKT −0.005 −0.018*** −0.001 −0.004
(0.004) (0.006) (0.003) (0.005)

β2MKT −0.004**
(0.002)

βc −0.011 0.049** 0.051**
(0.029) (0.021) (0.022)

βd −0.005 −0.013 −0.013
(0.004) (0.007) (0.007)

βcc 0.010 0.007
(0.008) (0.008)

βdd −0.002 −0.002
(0.002) (0.002)

βcd 0.012** 0.013***
(0.005) (0.005)

βSMB 0.002* 0.003***
(0.001) (0.001)

βHML 0.005*** 0.001
(0.001) (0.002)

βMOM 0.008***
(0.002)

βCMA 0.005***
(0.001)

βRMW 0.004***
(0.001)

Adjusted R 2 0.04 0.03 0.46 0.68 0.69 0.71 0.62
p-value (adjusted R 2) 0.54 0.85 0.08 0.02 0.02 0.01 0.09
Pricing error (ϑ) 0.108 0.119 0.097 0.033 0.035 0.052 0.076
p-value (ϑ) 0.000 0.000 0.016 0.562 0.533 0.009 0.008
Implied γ N/A −5.30 N/A 9.76 24.58 N/A N/A

(continued on next page)
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TABLE 3 (continued)
Asset Pricing Tests Using Portfolios Sorted on Size/Book to Market,

Size/Momentum, and Size/Profitability/Investment

Panel B. Sensitivity Tests of Nonlinear ICAPM Using Alternate Specifications

Nonlinear ICAPM (CRD-MGARCH)

Reduced-Form Models Direct Estimation of Nc and Nd

With With
Cash- Discount-

With Flow- Rate- Without VAR VAR
Covariation Variation Variation VAR Error Error

Model Risk risk risk Error News Covariation

α 0.006 0.013* 0.014** 0.004 0.004 0.002
(0.005) (0.007) (0.006) (0.006) (0.006) (0.005)

βc 0.036* −0.010 −0.036 0.050 0.047 0.061*
(0.021) (0.039) (0.029) (0.038) (0.040) (0.034)

βd −0.015** −0.005 −0.011 −0.031*** −0.031*** −0.022**
(0.006) (0.007) (0.007) (0.009) (0.009) (0.010)

βcd 0.013*** 0.021*** 0.020*** 0.019**
(0.004) (0.006) (0.006) (0.008)

βcc 0.000
(0.011)

βdd −0.004
(0.003)

βe −0.000 0.000
[0.001] (0.001)

βec 0.016
(0.013)

βed 0.021**
(0.009)

Adjusted R 2 0.65 0.02 0.15 0.63 0.63 0.71
p-value (adjusted R 2) 0.01 0.96 0.78 0.02 0.04 N/A
Pricing error (ϑ) 0.060 0.119 0.125 0.053 0.054 0.029
p-value (ϑ) 0.243 0.000 0.002 0.317 0.289 0.627

model pricing error is statistically significant (p-value < 0.02), suggesting that
the model is rejected in our sample.

Next, we examine the performance of the ICAPM-CRD-MGARCH. The es-
timated risk premium for the cash-flow beta is positive and statistically significant,
and so is the estimated risk premium for covariation risk. The estimates of the
cash-flow-variation and discount-rate-variation risk premia are both statistically
insignificant, as are the risk premia for the discount-rate beta.15 The adjusted R2

of the model is 0.68 (p-value = 0.02), and the model is not rejected based on its

15Empirically, a necessary condition for an asset pricing factor to explain the cross section of ex-
pected returns (and, thus, to carry a positive and significant risk premium) is that the betas of test port-
folios with respect to that particular factor should exhibit cross-sectional variation in a manner that is
consistent with the spreads in the test portfolio average returns (e.g., Cochrane (2011)). In this context,
a statistically significant covariation-risk premium is consistent with the patterns in covariation-risk
betas reported in Table 2: Covariation-risk betas are significantly larger for small-cap stocks versus
large-cap stocks, and they are significantly larger for past-winner stocks versus past-loser stocks. In
contrast, as Table 2 shows, we find no such evidence for either cash-flow-variation or discount-rate-
variation betas. This observation is consistent with the insignificant cash-flow-variation and discount-
rate-variation risk premia reported in Table 3. Even though discount-rate betas are significantly larger
for small-cap stocks versus large-cap stocks, our findings suggest that the size effect is captured by
covariation-risk betas. The insignificant risk premium of the discount-rate betas is also consistent with
the results reported in prior research (e.g., Campbell and Vuolteenaho (2004)).
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pricing error (ϑ=0.033, p-value = 0.56). The results for the ICAPM-CRD are
qualitatively similar, indicating that the second-stage MGARCH estimation does
not substantially influence the ability of these models to describe the cross sec-
tion of portfolio returns. The only notable difference between the ICAPM-CRD
and ICAPM-CRD-MGARCH is in their implied risk-aversion parameter, which
is 24.58 for the former and 9.76 for the latter. As discussed in Section V.A, this is
because the second-moment shocks are not persistent in the ICAPM-CRD but are
persistent in the ICAPM-CRD-MGARCH, which enables the latter model to fit
the data with a smaller risk-aversion parameter. Economically, this result suggests
that the contemporaneous effects of double-whammy shocks and their long-term
effects on future macroeconomic uncertainty are both important in explaining the
returns on equity portfolios in our sample.

So far, we have compared the proposed nonlinear ICAPM to other theoreti-
cally motivated models. As a supplemental analysis, we compare the performance
of the nonlinear ICAPM with two empirical models: the 4-factor Fama–French–
Carhart model (Fama and French (1993), Carhart (1997)) and the 5-factor Fama–
French (2015) model. The adjusted R2 of the 4-factor model is 0.71 (p-value =
0.01), and the model pricing error is 0.052 (p-value < 0.01). The adjusted R2 of
the 5-factor model is 0.62 (p-value = 0.09), and the model pricing error is 0.076
(p-value < 0.01). Given these results, we consider the performance of the non-
linear ICAPM model to be at least comparable to the performance of these two
empirical asset pricing models.

Lewellen et al. (2010) show that a model with high R2 can still be mis-
specified if the estimate of the model intercept lies outside the range of plausi-
ble values predicted by economic theory. Our regressions use average monthly
excess returns over the Treasury bill yield, so the intercepts reflect the average
monthly risk premium of a zero-beta asset relative to the Treasury bill yield. If
a zero-beta asset is assumed to be the Treasury bill, then significant intercept of
the model reflects the “average” degree of model misspecification. For both the
ICAPM-CRD and ICAPM-CRD-MGARCH, the estimated intercepts are not sig-
nificant (largest estimate = 0.004, p-value = 0.42). In contrast, for most of the
other models under consideration, the estimates of the intercepts are positive and
significant (smallest estimate = 0.006, p-value = 0.05). Annualized, these esti-
mates range from 7.2% (Fama–French–Carhart model) to 15.6% (2-beta ICAPM)
above the Treasury bill yield. These magnitudes are too large to be reasonably
attributed to factors such as the convenience yield provided to investors by Trea-
sury bills or differences in borrowing versus lending rates (Lewellen et al. (2010),
Krishnamurthy and Vissing-Jorgensen (2012)). Collectively, these findings pro-
vide further support for the proposed nonlinear ICAPM.

To summarize, the results reported in Panel A of Table 3 suggest that the pro-
posed nonlinear ICAPM performs well in explaining the cross-sectional variation
in the average returns of portfolios sorted by size, book-to-market ratio, past per-
formance (momentum), investment, and profitability characteristics. The ability
of the proposed nonlinear ICAPM to explain the momentum effect in our sam-
ple is particularly interesting because the momentum poses a particular challenge
for asset pricing models (Lewellen et al. (2010)). Our findings provide a poten-
tial risk-based explanation for the momentum effect and are consistent with the
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results reported in Table 3, which show that past winners have greater exposure to
covariation risk (i.e., have higher covariation betas) compared with past losers.

3. Sensitivity Tests

To gauge the robustness of our results, we conduct several sensitivity tests.
In the first test, we consider the possibility that the insignificant results for the
cash-flow-variation and discount-rate-variation risk premia are potentially driven
by multicollinearity between the betas in our model. To examine this issue, we es-
timate three reduced versions of the nonlinear ICAPM where each of the three
reduced versions of the nonlinear ICAPM has three factors: cash-flow news,
discount-rate news, and one of the three second-moment news terms. The results
are reported in Panel B of Table 3, showing that covariation risk retains its positive
and statistically significant risk premium (p-value < 0.01).16 The estimated risk
premium for cash-flow-variation risk remains insignificant (p-value = 0.92), and
so does the estimated risk premium for the discount-rate-variation risk (p-value
= 0.18). Turning to the models’ explanatory power, the adjusted R2 of the model
where only covariation risk is retained is 0.65 (p-value = 0.01), and the model is
not rejected based on its pricing error. In contrast, the adjusted R2 of the model
where only the cash-flow-variation risk is retained is 0.02 (p-value = 0.96), and
the adjusted R2 of the model where only the discount-rate-variation risk is re-
tained is 0.15 (p-value = 0.78); the pricing errors of both models are statistically
significant. Overall, these results emphasize the importance of covariation risk in
the cross section of expected stock returns.

In the second test, we examine the sensitivity of our results to an alterna-
tive approach of estimating cash-flows news. As discussed earlier, we follow the
Campbell and Vuolteenaho (2004) method of backing out cash-flow news from
the unexpected market returns and discount-rate news. Their approach has two im-
portant advantages: i) It does not require assumptions regarding the short-run dy-
namics of aggregate dividends, and ii) It captures cash-flow news in the way that is
perceived by the market (as reflected in the unexpected market returns). However,
Chen and Zhao (2009) raise concerns about using the Campbell and Vuolteenaho
(2004) approach because an indirect estimate of Nc,t+1=ωr ,t+1+Nd ,t+1 may inherit
the misspecification error of Nd,t+1.

To address this concern, we estimate cash-flow news directly, following Chen
and Zhao ((2009), eq. 24). We add monthly real dividend growth rates as the last
column to the VAR in equation (13). Using this VAR, which now includes 5 time
series, we estimate a 5×5 companion matrix 0. We estimate the cash-flow news
component as N ∗c,t+1=e′cλcut+1, where the matrix λc= (I−ρ0)−1 maps instan-
taneous state-variable shocks to the news components of unexpected dividend

16In this specification, the estimate of the risk premium of the discount-rate news is negative.
A potential interpretation of this negative sign is that the correlation between volatility news and
discount-rate news is large. Consequently, when the variation-risk betas are omitted from the regres-
sion, discount-rate news becomes a stronger proxy for volatility news, showing up as a negative risk
premium in the asset pricing tests. This interpretation is consistent with the evidence given by Bansal
et al. (2014), who find that the estimated correlation between volatility news and discount-rate news
is high. Bansal et al. interpret this finding as being consistent with the intuition of the Bansal and
Yaron (2004) model, in which a significant component of discount-rate news is driven by shocks to
consumption volatility.
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growth, and ec is a vector with 1 as the last element and 0s as the remaining ele-
ments. The discount-rate-news component of the unexpected market return is es-
timated as Nd,t+1=e′dλdut+1, where the matrix λd=ρ0(I−ρ0)−1 maps instanta-
neous state-variable shocks to the news components of unexpected excess returns,
and ed is a vector with 1 as the first element and 0s as the remaining elements. The
return decomposition error term is backed out as et+1=ωr ,t+1−N ∗c,t+1+Nd,t+1=

Nc,t+1−N ∗c,t+1, measuring the difference between the indirect and direct estimates
of news to cash flows.17,18

Having constructed the estimates of N ∗c,t+1, Nd ,t+1, and et+1, we evaluate the
robustness of our findings to VAR misspecification error using a set of nested
models. Our first model includes cash-flow news, discount-rate news, and covari-
ation risk betas. In our second model, we add the beta of the return decomposition
error term. In our third model, we further include the betas of the cross-products
of the error term with cash-flow news and discount-rate news. The results are re-
ported in Panel B of Table 3. We find that the estimate of covariation risk premium
remains positive and significant across all three model specifications (largest
p-value = 0.018). The 3-factor model that includes cash-flow news, discount-
rate news, and covariation risk betas has an adjusted R2 of 0.63 (p-value = 0.02)
and is not rejected based on its pricing error (ϑ=0.053, p-value = 0.317). These
findings suggest that our main conclusions regarding the importance of covaria-
tion risk are robust to potential VAR misspecifications. Adding the error-term beta
has no material impact on model performance, and the estimate of the error-term
risk premium is not significant. Interestingly enough, we find that adding cross-
products of the error term with cash-flow news and discount-rate news leads to
some (although moderate) improvement in model R2, suggesting that these cross-
product terms capture a potentially meaningful missing component. On the one
hand, this could reflect errors in the return decomposition (e.g., due to deviations
from rationality). On the other hand, this could also be due to estimation error in
our direct measure of cash-flow news (N ∗c,t+1). We note that either scenario does
not affect our main conclusion that the covariation between cash-flow news and
discount-rate news is an important determinant of the cross section of returns.

In the third test, we consider the possibility that our findings could be driven
by the “weak-factor” effect. Bryzgalova (2015) notes that if one of the factors
in the model has weak covariance with stock returns, such a factor could gener-
ate spuriously high significance levels of its own risk-premium estimates while
crowding out the impact of the true sources of risk. In our context, if the co-
variation risk factor possesses weak-factor properties, this could potentially re-
sult in a significant covariation risk premium and insignificant cash-flow-variation
and discount-rate-variation risk premia. To examine this issue, we reestimate our

17We thank Robert Dittmar (the referee) for suggesting this test.
18The unconditional correlation between cash-flow news and discount-rate news estimated using

this approach is negative (−0.33). This contrasts with the small positive correlation (0.01) obtained
using the Campbell and Vuolteenaho (2004) estimation approach. We note, however, that this change
in sign does not impact our conclusions because our model does not have a prediction for the sign of
this unconditional correlation. In fact, a negative correlation between cash-flow news and discount-rate
news suggests that the double-whammy shock is more likely to be prevalent, even in relatively better
times. We thank the referee for pointing this out.
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model using a penalized Fama–MacBeth (Pen-FM) regression approach (Bryz-
galova (2015)). This approach modifies a standard Fama–MacBeth regression by
introducing a penalty term that is inversely proportional to factor strength. Esti-
mating our model using the Pen-FM approach (results available from the authors)
has no material impact on our findings. Thus, we conclude that our results are
unlikely to be driven by the weak-factor effect.

C. Estimation of Risk Premia Using the Implied Cost of Equity
In the previous section, we estimated risk premia using the cross section

of realized portfolio returns. Although widely adopted in the prior literature, this
method also has several limitations. First, a test of the asset pricing theory requires
a measure of ex ante (i.e., expected) rates of return. However, the noise in realized
returns makes it a poor proxy for expected returns; thus, using realized returns in
asset pricing tests could obscure important economic relations (Elton (1999), Lee
et al. (2009)). Second, using portfolios sorted based on previously documented
pricing anomalies (e.g., size, book-to-market ratio, or momentum) could lead to a
data-snooping bias (Lewellen (1999), Lewellen et al. (2010)). Hence, in this sec-
tion, we supplement our analysis by estimating our model for a panel of individual
stocks using the approach of the implied cost of equity.

In terms of research design, we estimate the expected rate of return on equity
as a discount rate that is implied by market prices and analysts’ earnings fore-
casts, using four models introduced by Claus and Thomas (2001), Ohlson and
Juettner-Nauroth (2005), Gebhardt, Lee, and Swaminathan (2001), and Easton
(2004), respectively.19 Because there is little consensus in the literature on which
model performs best, we perform an additional test using the median estimate
from the four models (Hail and Leuz (2009)). For each model, we compute the
implied risk premium, IRPi ,t , as the difference between the corresponding implied
expected return for firm i and year t and the 10-year U.S. Treasury bond yield.

We use the following regression to estimate the risk premia:

IRPi ,t = g0+ g1β̂c,i ,t + g2β̂d,i ,t + g3β̂cc,i ,t + g4β̂dd,i ,t + g5β̂cd ,i ,t(16)

+

J∑
j=1

δ j CONTROL j ,i ,t + INDi + εi ,t .

For each firm–year observation, we compute the estimates of the cash-flow beta,
the discount-rate beta, and the betas of the three coskewness risk components us-
ing the previous 60 months of stock returns (with at least 24 monthly returns).
Following prior research, we include size, book-to-market ratio, leverage, past
stock performance, the volatility of operating cash flows, the number of analysts
following the firm, share turnover, and growth in the 1- and 2-year analyst earn-
ings forecasts as control variables (Gebhardt et al. (2001), Chen et al. (2011)).

19An alternative to using analysts’ earnings forecasts as a proxy for expected earnings (the ap-
proach commonly used in previous studies) is to rely on earnings forecasts from cross-sectional re-
gression analysis (Hou, van Dijk, and Zhang (2012)). However, Li and Mohanram (2014) show that
the forecasts from the model of Hou et al. (2012) perform worse than those of a naïve random-walk
model. Further, they show that the measures of implied cost of capital estimated using Hou et al.’s
approach show anomalous correlations with known risk factors. Given Li and Mohanram’s findings,
we use analysts’ forecasts in estimating the measures of implied cost of equity.

https://doi.org/10.1017/S0022109018000637  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109018000637


Kalev, Saxena, and Zolotoy 363

The data used to compute all the variables are from the Institutional Brokers’ Esti-
mate System (IBES), Compustat, and CRSP databases. Following Gebhardt et al.
(2001), we estimate equation (16) cross-sectionally by year with industry fixed
effects (IND) and report the time-series mean for each slope estimate. The stan-
dard errors (in parentheses) are adjusted for serial correlation following Newey
and West (1987). To mitigate the potential impact of outliers, we truncate IRP at
the 1st and 99th percentiles. Because IBES starts its coverage in 1986, the sample
period for this analysis is 1986–2010.

The results are reported in Table 4. The coefficient for the covariation risk
beta is positive and significant for four out of five model specifications. The
only exception is the Claus–Thomas (2001) model, where the coefficient for
the covariation risk premium is positive but insignificant.20 The estimates of the
cash-flow-variation and discount-rate-variation risk premia are insignificant in all
model specifications. Collectively, the results reported in this section are consis-
tent with the results of portfolio-level tests and thus confirm the robustness of our
findings.

TABLE 4
Asset Pricing Tests Using the Implied Cost of Equity

In Table 4, we report the estimated risk premia using the approach of the implied cost of equity for the sample of U.S.
firms over the period 1986–2010. The dependent variable IRPi ,t is the implied risk premium, computed as the difference
between the implied cost of equity for firm i in year t and the yield on a 10-year U.S. Treasury bond. We compute the
implied cost of equity using five specifications: that of Claus and Thomas (CT) (2001), that of Ohlson and Juettner-Nauroth
(OJ) (2005), the modified PEG model of Easton (MPEG) (2004), that of Gebhardt et al. (GLS) (2001), and the median of
estimates obtained from the four models. The models are estimated cross-sectionally by year with control variables and
industry fixed effects based on 2-digit Standard Industrial Classification codes included in all the regressions. The control
variables are firm size, the firm book-to-market ratio, leverage, price momentum, the volatility of operating cash flows, the
number of analysts following the firm, share turnover, and growth in the 1- and 2-year analyst earnings forecasts. Fama–
MacBeth standard errors adjusted for serial correlation following Newey and West (1987) are reported in parentheses. *,
**, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Median GLS OJ MPEG CT

Model 1 2 3 4 5

βc 0.016** 0.008*** 0.017*** 0.016*** 0.009**
(0.006) (0.003) (0.006) (0.006) (0.004)

βd 0.005*** 0.0003 0.006*** 0.006*** 0.008***
(0.001) (0.001) (0.001) (0.001) (0.002)

βcc 0.026 −0.024 0.044 0.018 −0.240
(0.068) (0.022) (0.080) (0.075) (0.170)

βdd −0.041 −0.002 −0.051 −0.045 −0.009
(0.039) (0.015) (0.036) (0.039) (0.056)

βcd 0.186*** 0.095*** 0.187*** 0.201*** 0.079
(0.053) (0.026) (0.059) (0.062) (0.111)

Implied market premium 0.046 0.010 0.063 0.055 0.024

Controls Yes Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes Yes

Average adjusted R 2 0.184 0.414 0.219 0.215 0.096

20Notably, the overall explanatory power of the Claus–Thomas (2001) model is low relative to that
of other models.
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VI. Conclusion
We develop an intertemporal asset pricing model in which coskewness risk

decomposes into three components: cash-flow variation, discount-rate variation,
and the covariation between cash-flow news and discount-rate news. In our model,
long-term investors are willing to pay a premium to hedge an increase in variation
and to hedge a decrease in covariation, and the risk premium for any asset is
determined by asset exposure to cash-flow news, discount-rate news, and the three
components of coskewness risk.

We evaluate the performance of our model using a cross section of portfolio
returns sorted by size, book-to-market ratio, past stock performance (momentum),
investment, and profitability. Our model accounts for 68% of the return variation
across equity portfolios for the modern U.S. sample period, and it is not rejected at
conventional significance levels. We find that stocks with good past performance,
on average, have greater exposure to covariation risk compared with stocks with
poor past performance. Further, we find that small-cap stocks, on average, have
greater exposure to covariation risk compared with large-cap stocks. Our results
suggest that during times of decreasing covariation (which increases the marginal
utility of investors in our model), small stocks tend to underperform large stocks,
and past winners tend to underperform past losers. Overall, the empirical evidence
we present highlights the importance of decomposing coskewness risk into the
variation and covariation risk components. In particular, our results suggest that
differential exposures to covariation risk help explain a sizable amount of cross-
sectional variation in the expected stock returns.

Appendix A. Evaluating a Second-Order Approximation of the
Epstein–Zin Pricing Kernel

The nonlinear Epstein–Zin (1991) pricing kernel is often implemented using a linear
approximation. In Appendix A, we evaluate the improvement using our proposed second-
order approximation. To do so, we compare the empirical cumulative distribution function
(ECDF) of the Epstein–Zin (1991) pricing kernel to the ECDFs of its first- and second-
order approximations.

Our first step is to construct the ECDF of the “true” Epstein–Zin (1991) pricing ker-
nel, to which we compare its first- and second-order approximations. To do so, we first
estimate the time series of the pricing kernel realizations (equation (2)) using market re-
turns and consumption growth data and an assumed set of preference parameters for γ (the
risk-aversion coefficient) and ψ (the IES parameter). Next, we estimate the ECDF of the
pricing kernel realizations and its confidence intervals using Kaplan and Meier’s (1958)
nonparametric procedure.

Our second step is to estimate the ECDFs of the first- and second-order approxima-
tions of the Epstein–Zin (1991) pricing kernel. Asset betas are often estimated with respect
to the market return and consumption growth after deriving a functional form for log SDF.
Clearly, log SDF is linear in these two variables. However, our goal is to evaluate the loss
in accuracy resulting from replacing the SDF (not log SDF) with a linear combination of
market returns and consumption growth in standard asset pricing tests. For this purpose,
we calculate a linear (first-order) approximation of the pricing kernel as the predicted value
of an ordinary least squares (OLS) regression of the pricing-kernel realizations on the mar-
ket return and consumption growth realization. Similarly, we calculate the second-order
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(quadratic) approximation of the pricing kernel as the predicted value of an OLS regres-
sion of the pricing-kernel realizations on the market return, consumption growth, and their
three second-order terms.

The results are reported in Figure A1, which shows the ECDF of the pricing ker-
nel, its confidence interval, and the ECDFs of the first- and second-order approximations
of the pricing kernel. The results show that the ECDF of the linear approximation devi-
ates significantly from that of the true underlying pricing kernel. Further, these deviations
are particularly pronounced in the tails of the distribution. In contrast, the second-order
approximation of the pricing kernel tends to stay within the confidence boundaries, sug-
gesting that a second-order expansion of the Epstein–Zin (1991) pricing kernel provides a
reasonably accurate approximation.

FIGURE A1
Epstein–Zin Pricing Kernel Approximations

Figure A1 shows the empirical cumulative distribution of the Epstein–Zin (1991) pricing kernel and the pricing kernel’s first-
order (linear) and second-order (quadratic) approximations. The Epstein–Zin pricing-kernel realizations are calculated
using a risk-aversion coefficient of 2, an intertemporal elasticity of substitution (IES) of 1.5, and data on market returns
and consumption growth from July 1963 to Dec. 2010. LCB represents the lower confidence bound, and UCB represents
the upper confidence bound.
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Appendix B. Derivation of SDF for the ICAPM-CRD-MGARCH
Model

The assumed MGARCH process for cash-flow news and discount-rate news is as
follows:

(B-1) Ht+s = C′C+A′Nt+sN′ t+sA+G′Ht+s−1G,
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where Ht is the 2×2 conditional covariance matrix of Nc,t+1 and Nd,t+1; Nt denotes a 2×1
vector of the news terms; and C, A, and G are 2×2 matrices of constants. This assumption
is sufficiently general because it encompasses a variety of positive definite representations
of the covariance matrix (Engle and Kroner (1995)). We further assume that the process
is covariance stationary. The expression for the conditional volatility of cash-flow news
implied by the MGARCH process defined in equation (B-1) is

hcc,t = c11+ a2
cc N 2

c,t + 2accadc Nc,t Nd ,t + a2
dc N 2

d ,t(B-2)

+ g2
cchcc,t−1+ 2gccgdchcd ,t−1+ g2

dchdd,t−1,

where axy denotes an element of A, the ARCH persistence matrix, and gxy denotes an
element of G, the GARCH persistence matrix. With this MGARCH process assumption in
hand, we solve for a second-order approximation of Np,t+1:21

Np,t+1 ≈ (Et+1−Et)

∞∑
j=1

ρ j (1− γ )2 N 2
c,t+1+ j(B-3)

≈ (Et+1−Et)

∞∑
j=1

ρ j (1− γ )2 hcc,t+1+ j

≈ (1− γ )2
χ
{
a2

cc Ncc,t+1+ a2
dc Ndd,t+1+ 2adcacc Ncd,t+1

}
,

where Ncc,t+1, Ndd,t+1, and Ncd,t+1 are news about the second-order terms of Nc,t+1 and Nd,t+1,
given by N 2

c,t+1−hcc,t , N 2
d,t+1−hdd ,t , and Nc,t+1 Nd,t+1−hcd ,t , respectively, and χ is a scale pa-

rameter that captures the link between news about long-run aggregate volatility and the
variance of the next period’s cash-flow news (hcc,t+1). The MGARCH parameters map the
impact of these 1-period realizations on the long-run aggregate volatility forecasts.

To derive an expression for ωv,t+1 in terms of Nc,t+1 and Nd,t+1, we follow the develop-
ment in the previous section and eliminate third- and higher-order terms of Nc,t+1 and Nd,t+1

from its expression. Note that according to equation (B-3), Np,t+1 is a second-order function
of Nc,t+1 and Nd,t+1. Therefore, the third- and higher-order terms of Np,t+1 do not contribute
to the second-order approximation of ωv,t+1=[{(θ/ψ)ωc,t+1+ (1−θ )ωr ,t+1}

2
−hm,t ]. This re-

sult further implies that the expression for ωv,t+1 in terms of first- and second-order terms
of Nc,t+1 and Nd,t+1 (after eliminating higher-order terms) is given by

ωv,t+1 ≈ (Et+1−Et)
(
−γ Nc,t+1+ Nd,t+1

)2
(B-4)

= γ 2 Ncc,t+1+ Ndd,t+1− 2γ Ncd ,t+1.

Having expressed precautionary-savings news (Np,t+1) and the shocks to the square of
log SDF (ωv,t+1) in terms of the cash-flow news and discount-rate news, we plug the result-
ing expressions from equations (B-3) and (B-4) into equation (7) to obtain the expression
for our SDF in equation (11).

21Note that the expression for Np,t+1 in equation (6) depends on the expectation of the square of
future cash-flow news and the square of future precautionary-savings news. Therefore, its square will
be of order 2 or more in cash-flow news. Therefore, the second-order approximation of equation (6)
only depends on news about the long-run variance of cash-flow news. The other two components (long-
run variance of precautionary-savings news and long-run covariance between precautionary-savings
news and cash-flow news) are of order 3 or more. This implies that under our assumptions, the other
two components related to future precautionary-savings news are of order 3 or more. Consequently,
for analytical tractability, we ignore these terms.
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