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A PARTITION OF FINITE T0 TOPOLOGIES 

SHAWPAWN KUMAR DAS 

The aim of this paper is to s tudy a decomposition of finite T 0 spaces into 
topological entities called chains and cells. These objects behave like complete 
units under homeomorphisms and they appear to be useful in investigating 
certain aspects of finite spaces. As an elementary illustration of how these 
entit ies can be used, the concept of an A 2 space is introduced (in the next 
paragraph) and it is demonstrated t ha t the order of the automorphism group 
of an A2 space is expressible as 2\ for some t ^ 0. 

All the spaces in this paper are assumed to have the T 0 separation proper ty 
and are defined on a finite point set N. L e t ^ ~ be a topology on N and A a 
subset of N. Then A*(S~ ), or more simply ^4* when there is no risk of con
fusion, will denote the minimal open set of 3T t h a t contains A. T h a t is, 
A* (£T ) = n Î 0\A C 0 e ^~ }. For any set A, \A | will denote the cardinali ty 
of A. T h e single element set {a}, a 6 N, will be writ ten simply as a. T h e union 
of a with a set A is writ ten a + A and the relative difference of two sets A and 
B as A — B. If 0 £ i^~, then an open set Q is a (*) cover of 0 if 0 C Q and 
\Q — 0\ — 1. An open set 0 G 3f~ is an Ap set (of $~ ) provided there exist p, 
and only p, (*) covers of 0. A topology J?7" on N is an Ap space if 

(1) there exists an Av set of^~, and 
(2) N 5* 0 G IT implies tha t , for some q S p, 0 is an Aq set of^~. 

1. 

L E M M A 1. Let3T be a topology on N. 

(a) If a G N, then a* — a is an open set of 3T. 
(b)<^~ has isolated points. In other words, there exists at least one open set of^~ 

which contains a single element of N. 
(c) If N j* 0 £ $~, then there exists at least one open Q 6 &~ such that 0 C Q 

and \Q - 0\ = 1. 

T h e proofs are omit ted as the results follow directly from the T 0 proper ty . 
Lemma 1 is basic to the development of this paper. 

T h e concept of a chain will now be introduced. Let $~ be a topology on 
N. Let 

C = [ai, . . . ,au . . . , am] 

be a sequence of m distinct elements, m ^ 1, of N. C is called a chain oî^ of 
length m provided: 
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(1) if «i* — CL\ = j3* for some ]8 6 iV, then there exists a 7 £ N such that 
Y ^ a i and 7* — 7 = /3*; 

(2) if j(3* — /3 = aw* for some /3 Ç iV, then there exists a 7 Ç iV such that 
7 ^ |8 and 7* — 7 = am*, and if m > 1 and 1 ^ i < m, then 

(3) aj+i* — ai+1 = at*; 
(4) j8* — /3 = « j * for some /3 £ N implies (3 = ai+\. 
The length of the chain C will be denoted by L(C). The supporting open set 

of the chain C, written as * C ( ^ " ), or more simply as *C when there is no risk 
of confusion, is defined to be the open set a±* — a± oi3T. The notation {C : i\ 
will be used to indicate the subset {«i, . . . , at) consisting of the first i terms of 
the sequence C. Also {C : 0} = 0. Then «i* = *C + ax and condition (3) 
becomes a* = *C \J {C : i). C will be used to denote both the sequence 
[ai, . . . , am] and the unordered set {«i, . . . , am). The meaning of C will always 
be clear from the context in which it will be used. 

Example. Let ^ be a topology, on the set {a| 1 S a S 11}, defined by 
1* = 1, 2* = {1, 2}, 3* = {1, 2, 3}, 5* = 5, 4* = {4, 5}, 6* = 6, 7* = 
{1, 2, 3, 7}, 8* = {1, 2, 3, 8}, 11* = {1, 2, 3, 8, 11}, 10* = {1, 4, 5, 10} and 
9* = {1, 4, 5, 9, 10}. The chains of Y are: Y1 = [1, 2, 3], V2 = [5, 4], V3 = 
[6], Wi = [7], W2 = [8, 11] and X = [10, 9]. The supporting open sets are: 
*VX = *V2 = *V3 = 0, *Wi = *W2 = {1, 2, 3} and *X = {1, 4, 5}. 

LEMMA 2. Let 3f be a topology on N. If a G N, then a is contained in some 
chain of^~. 

Proof. Let a be specified. A "programme" which generates a chain containing 
a is described below. The variable (integer) symbols used in this programme 
are: b, j , m, p and the indexed variable k(j) with the index j running over the 
2n + 1 integer values in the range —n S j S n. For the sake of concreteness, 
it is assumed that TV is the set of the first n integers, so that a is itself an integer. 
At the end of the programme, the chain, of length m, resides in the k(j)'s, with 
a = fe(0). 

START 1. Set the variable p equal to a, j equal to 0, m equal to 1. 
2. Assign the value p to k(j). 
3. If there exists a /3 such that p* — p = fi* then go to 4, otherwise go to 7. 
4. If there exists a 7 ^ p such that 7* — 7 = /3* then go to 7, otherwise go 

to 5. 
5. Increase m by 1, decrease 7 by 1 and assign the value fi to p. 
6. Go to 2. 
7. Set the variable p equal to a and j equal to 0. 
8. If there exists a 0 such that /3* — /3 = £* then go to 9, otherwise go to 13. 
9. If there exists a 7 7e /3 such that 7* — 7 = p* then go to 13, otherwise 

go to 10. 
10. Increase m by 1, increase j by 1 and set the variable p equal to /3. 
11. Assign p to k(j). 
12. Go to 8. 
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END 13. a = k(0) in the chain C of length m, where C = [k(l — m),... ,k(0)] 
if the current value of j ^ 0 and C = [k(j — m + 1), . . . , &(0), . . . , k(j)] if 
the current value of j is positive. 

It is a routine matter to verify that the sequence C in statement 13 is in 
fact a chain of &~. 

LEMMA 3. Let C = [aly . . . , am] be a chain of some topology ̂  on N. Then 
*C does not contain any element of C. 

Proof, ai ? *C by the definition of *C. If m > 1, then 1 < j ^ m implies 
that «i G a* by condition (3) in the definition of a chain. Now if a3 G *C, then 
ctj G *C + «i = ai* which contradicts the T0 property of 3f. 

LEMMA 4. Let C = [«i, . . . , ap] and D = [ft, . . . , ft] be two chains of some 
topology ̂ ~ on N. Then C = D if and only if on = ft. 

Proof. If en = ft, then *G = on* - on = ft* - ft = *D. Let min (£, q) = 
p. First, it is shown that en = ft, for all i ^ p. This is obvious if p = 1. Now 
suppose that p > 1 and assume, as the hypothesis of induction, that at = ft if 
i ^ j for some j < p. The fact that D is a chain implies that ft+i* — ft+i = ft* 
and since ctj = ft, therefore ft+i* — ft+i = a*. Since C is a chain, therefore 
Condition 4 in the definition of a chain implies that ft+i = aj+i and so at = ft 
for all i ^ p. Now iî p = q, then the proof is complete. However, if p < g, 
then obviously ft+i g C and ft+i* — ft+i = ft* = ap*. Since p < q and D is 
a chain, therefore Condition 4 in the chain definition asserts that there does not 
exist a 7 G iV such that 7* — 7 = ft* = av* and 7 ^ ft+i. However, because 
C is a chain, this result contradicts Condition 2 in the chain definition. This 
completes the proof. 

LEMMA 5. Let C and D be two distinct chains of a topology 3T. If *C contains 
elements of D, then *D does not contain any element of C. 

Proof. Let C = [«i, . . . , c^, . . .] and D = [ft, . . . , ft, . . .]. By Lemma 4, 
C ^ D implies that ct\ T6- ft. Suppose that ft G *C. Since ft G ft*, therefore 
ft G *C + ai = «i*. Similarly, it can be shown that a3 G *D implies that 
«i G ft*. Therefore if Lemma 5 is not true, thenj^" is not T0. 

LEMMA 6. Let C and D be two chains of a topology 3T'. Then C ^ D implies 
that C and D are disjoint. 

Proof. Let C = [au . . . , a j and D = [ft, . . . , ft]. By Lemma 4, C ^ D 
implies that ai 9^ ft. If £ = g = 1, then Lemma 6 is trivially true. Now 
suppose that at least one of the chains contains more than one element. If 
C and D are not disjoint, then there exist either (1) an i ^ 2 and a j ^ 2 
such that a* = ft and {C : i - 1} H {D : j - 1} = 0, or (2) a j ^ 2 such that 
«i = ft and «i # {D : j — 1}, or (3) an 2 ^ 2 such that a* = ft and ft $ 
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{C : i — 1}. Assume that the conditions of case (1) are satisfied. It is easily 
demonstrated that this assumption implies that 

{D : j - 1} C *C and {C : i - 1} £ *D 

so that *C C\ D ?£ 0 and *D C\ C ^ 0 thus contradicting Lemma 5. Now sup
pose that there exists a j with the properties indicated for case (2). Then 
*C = «i* — ai = jftj* — f$j = Pj-i*. This last result implies that C cannot be 
a chain because condition (1) in the chain definition is violated. For, since 
j — 1 < q and q is the length of D, Condition 4 asserts that there does not exist 
a 7 7e Pj, that is, a 7 ^ a\ such that 7* — 7 = /3j_i* = *C. Case (3) may be 
treated similarly. Therefore if C 9^ D, then C C\ D = 0 . 

THEOREM 1. Let^~ be a topology on N. Then the collection of chains of 3T con
stitutes a partition of N. 

Proof. This is an immediate consequence of Lemma 2 and Lemma 6. 

The next Lemma declares, without proofs, some elementary properties of 
chains. These will be used in the subsequent discussions, often without any 
explicit reference being made to the result in question. 

LEMMA 7. LetJ^ be a topology on N. 
(1) If C is a chain of 3T and 

(a) i ^ L(C), then * C U j C : i) is open. 
(b) 0 is an open set of <T, and 0 H C 5* 0, then *C C 0. 
(c) 0 is an open set of £T, then C C\ 0 = {C : i) where i = |C H 0\ è 0. 

(2) If 0 6 ^ awd {Ci, . . . , C^ . . . , Cp} is /&e collection of chains of 3T that 
have non-void intersections with 0, then 

0= U {Ct:tt} 
i=i 

where tt = \0 H C,| ^ 0. 

LEMMA 8. 7/$~ and °tt are topologies on N, then ir is a homeomorphism of £T 
onto °ti if and only if a, P G N and w(a) = p implies that Tr(a*(^)) = &*(<%). 

This elementary result is basic to the study of homeomorphisms between 
topological spaces. 

THEOREM 2. Let 3T and °lt be homeomorphic topologies on N and let ir be a 
homeomorphism of 3T onto °U'. Suppose that C = [aly . . . , aif . . . , au] is a chain 
of 3T and D = [/3i, . . . , pjt . . . , P J is a chain of °tt. Then 

(1) 7r(«i) G D implies that 7r(ai) = P\\ 
(2) 7r(ai) = Pi implies that u = v and 71-(a*) = Pu 1 ^ i S u; 
(3) 7r(C) C\ D ^ 0 implies that u = v and 7r(c^) = pu 1 ^ i ^ w. 

Proof. (1) The result is trivial if y = 1. Now suppose that v > 1 and that 
7r(ai) = 0;-, where 1 < j ^ v. By Condition (1) in the definition of a chain, 
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either (a) there exists a y ^ a\ such t ha t 7 * ( ^ ~ ) — y = ai*(<?T ) — <xi or 
(b) « i * ( ^ r ) - a i ^ 7 * ( ^ ) for any 7 G iV. If (a) is the case, then let 
7r(y) = ix. Then it is obvious t h a t 

M*(̂ ) - M = $?m - pi = / w w 
so tha t , as a consequence of condition (4) in the chain definition, /x = /3j. This 
cannot be true, since ai ^ y implies t ha t JU = 71-(7) 9e ir{ai) = Pj. If (b) is 
the case, then &?{°U) — /3j 9* v*(°tt) for any \x Ç N. This contradicts the fact 
t h a t $*(%) — 13 j = j8<7-_i*(^). Therefore 7 cannot be greater than one and so 
7r(ai) = 0i. 

(2) T h e result is trivial if u = v = 1. Now suppose t h a t 1 < v S u. Suppose 
further it has already been demonstrated t ha t TT(OLJ) = f$j if J S i, for some 
i < v. Let 7r(ai+1) = y. Then since ai+i* (^~ ) — ai+i = a?(3T ), it follows 
t h a t 7 * ( ^ ) — 7 = &*(*%) so tha t , by Condition 4 in the definition of a chain, 
7T(Û^+I) = fit+i- Therefore 71-(a*) = 0* for all i ^ v. Now assume tha t v < u. 
In t h a t case av+i*(<!7~ ) — a^+i = av*(<^~) and if -K(av+i) = 7, then 7 * ( ^ ) — 
7 = Pv*(&)- Condition (2) of the chain definition now asserts the existence of 
a ô 9* y such t ha t y*(<%) - y = ô*(<%) - 5. If ir-l(ô) = X, then 

A * ( ^ - ) _ x = ^ + 1 * ( ^ ~ ) - a , + 1 = a , * ( ^ ) , 

so t h a t X = a p + i . Since <5 ^ 7 implies t ha t X = 7r_1(<>) ^ 7r_1(7) = av+1, this 
is a contradiction and so v = u. Thus the required result has been proved under 
the assumption t h a t 1 < v ^ u. T h e other possible cases, t ha t is 1 = v ^ u, 
1 < u S v and 1 = u S v can be treated similarly. 

(3) This is an immediate consequence of (1) and (2). 

T h u s the chains of a topology behave like complete units under homeomor-
phisms. 

2 . Given a topology &~ on N, a relation = (<̂ ~~) on the set of chains of £T 
may be defined by requiring tha t if C and D are chains of^", then C ~ {^~ )D 
if and only if *C = *D. Clearly, = (3T ) is an equivalence relation and the set 
of chains of $~ is part i t ioned into pairwise disjoint equivalence classes by 

T h e concept of a cell will now be introduced. A collection *$ = {Ci, . . . , Gr\ 
of r dist inct chains of a topology ^ is a r-chain cell, or more simply a cell, oi3T 
provided *$ is an equivalence class of the equivalence relation ~ {^~ ). T h e 
supporting open set of ^ , denoted by *^?(J?7"~ ), or more simply by * ^ when 
there is no risk of confusion, is the (uniquely defined) support ing open set of 
any chain Ct £ fé7. 

Example. T h e cells of the previous example s p a c e d are: {Vi, V2, V3} which 
is a three chain cell, {Wi, W2} which is a two chain cell, and the single chain 
cell {X}. T h e support ing open sets of these cells are, respectively, 0, {1, 2, 3) , 
and {1, 4, 5}. 
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Lf ^ is a cell, then the symbol ty? will be used to denote both the collection of 
its constituent chains: {Ci, . . . , C r j , as well as the subset Ci \J . . . VJ C r . 
The meaning of *$ will be clear from the context in which it will be used. 

LEMMA 9. Let3T be a topology on N. 
(1) The collection of cells of 3^ constitute a partition of N. 
(2) Let *$ and 23 be two distinct cells of 3f~. Then 

( a ) *<g> J* * ^ . 

(b) If*^ contains elements of 23, then *23 does not contain any element of 
V. 

(c) If a £ & and a* C\@ 9*0 then (3 £ 23 implies 0* C\ <% = 0. 
(3) For any cell <% of 3T : 

(a) * ^ H ^ = 0 and *& KJ <é is an open set of J'. 
( b ) * ^ = ^ * - <*f. 

(c) 7 / O G ^ a « i O n ^ = i 4 ^ 0 , then *tf C A* Q 0. 

These results follow almost directly from the demonstrated properties of 
chains. The proofs are therefore omitted. 

LEMMA 10. For any topology 3?~, there exists a cell&', called the first cell of 3T, 
with the property that *^ = 0. This first cell is uniquely defined in the sense that 
if <% is a cell of$~ and *<i = 0, then <% = ^ . 

Proof. An immediate consequence of Lemma l-(b) and Lemma 2 is that 
there exists a chain C of £T with *C = 0. ̂  is the cell having C as one of its 
constituent chains. The uniqueness of &~ is obvious. 

Like chains, the cells of a topology also behave like complete units under 
homeomorphisms. 

THEOREM 3. Let 3f and % be topologies on N. Then 3T and tfl are homeomor-
phic if and only if there exists a single valued map T of N onto itself which satisfies 
either (and thus both) of the following conditions: 

(l)IfC = [ai, . . . ,ttj, . . . , am] is a chain of^~, then there exists one, and only 
one, chain D of % such that (a) 7r(*C(^"~ )) = * D ( ^ ) , (b) L(C) = L(D) and 
(c) ifD = [ft,. . . , pu . . . , ftj, then iriai) = pu 1 S i S m. 

(2) Let *$ be a r chain cell and suppose that ^ has pi chains of length mu 

1 ^ i ^ u, so that pi + . . . + pu = r- Then there exists one, and only one, r 
chain cell 23 of °tt such that (a) 7 r ( * ^ ( ^ )) = *23(°tt), (b) 23 has pt chains of 
length mu 1 ^ i ^ u and (c) if G = [ai, . . . , au . . . , aw] £ ^, then there is a 
chain of equal length D = [/3i, . . . , pu . . . , fiw] £ 23 such that iriat) = $u 

1 ^ i ^ w. 

COROLLARY. Suppose that 3^ and tft are homeomorphic spaces. Then 
(1) 3?~ and °tt possess an equal number of chains and if$~ has exactly p chains 

of length m, then % also has exactly p chains of length m. 
(2)J7~ and °tt possess an equal number of cells. In fact, if$~ has exactly q cells 

each of which contains precisely p chains of length m, then % also has exactly q 
cells each of which contains precisely p chains of length m. 
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(3) If IT is any homeomorphism of3T onto °U', J^~is the first cell of$~ and & is 
the first cell of °U', then TT{^ ) = &. 

The proofs of the results in Theorem 3 are straightforward and are easily 
obtained by using Lemma 8 and Theorem 2. 

This completes the preliminary survey of the properties of chains and cells. 
The machinery that has been developed here will be used, in two forthcoming 
papers (1) to study the structure of finite T5 spaces (that is, spaces in which 
every pair of separated sets can be separated by disjoint open sets) and (2) to 
set up a computer Algorithm for the enumeration of finite, labelled topologies. 

The rest of this paper describes an elementary application of the chain 
concept by studying the automorphisms of an A 2 space. For this purpose a 
partition of the collection of chains of a topology, other than that into cells, 
is needed. 

# 
3. The set of chains of a topology J?7' can be partitioned uniquely into the 

subcollections EX{3T ), . . . , Ei(J
r ), . . . , Em(3T ), this partition being de

fined as follows. A chain C G Ei(«^~ ) if and only if *C = 0, and the Et(^~ ), 
for i > 1, are determined recursively by requiring that a chain C £ Et{^~ ) 
if and only if *C £ Di-i(J?~ ), and terminating the process at that value m 
of i for which Dm = N. m is the chain level of the topo logy^ . Here, and for 
the rest of this paper, D0 = 0 and Dt = Di(^

r ), for i ^ 1, denotes the set 

( U £ i ( ^ r ) ) W . . . U ( U £ i ( ^ r ) ) . 

It is obvious that Di(^~ ) is an open set of 3T. A chain C is defined to be a 
chain of level i if C £ Et(^ ). Clearly, if C is an i-level chain, then *C does not 
intersect any i-level chain but has a non-void intersection with at least one 
chain of level j , for all j < i. 

Before proceeding to study the properties of Ap spaces, some observations 
regarding their existence are in order. If $~ is an Av space on N and |7V| = n, 
then clearly p S n. It is obvious that p = n only when 3T is the discrete 
topology. In fact, there exist Av spaces for all p, in the range 1 ^ p ^ n, on N. 
To see this, let N be the set of the first n integers. The simplest space is the A i 
space, defined by the collection of open sets: {0, {1}, {1, 2}, . . . , {1, 2, . . . , n) ) . 
In other words, any A\ space consists of a single chain. To demonstrate the 
existence of the other Ap topologies in between the two extremes of A± and An 

spaces, consider the spaced" whose open sets are: 0, all non-void subsets of 
the first p integers and all subsets of the form: {1, 2, . . . , £>} \J {p + 1, . . . , i] 
for all i in the range p + 1 ^ i S n. Then 0 is an Av set, if 0 C {1, • . . , p\ 
then 0 is an Aa set where q = p — |0 | , and if N ^ 0 3 {1, . . . , p) then 0, 
if open, is an A i set. The re fo re^ is an Ap space. Some of the properties of Ap 

spaces that are described below can be demonstrated more simply without the 
use of the chain concept. However, the procedure that is used has the advan
tage of clearly displaying the inherent chain structure of finite spaces. 
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LEMMA 11. lf$~ is a Av space, then an Ei{^~ ) can contain at most p chains. 

Proof. Suppose that Et(S~ ) is the collection of chains Ci, . . . , Cq where 
q > p. Let be, respectively, the first elements of these chains. Let 
Qa = Di-i + xa, 1 ^ a S q. Then Dz_i and the Qa are all open sets. Moreover 
Qa, 1 ^ OL ^ q, is a (*) cover of Di-i. Therefore D^i is an AT set of ^" , for 
some r ^ q. Since q > p, t he re fo re^ is not an Ap space. This contradicts the 
hypothesis of the Lemma. 

LEMMA 12. Let T : N —> TV be an automorphism of a topology ̂  and let A be a 
chain of^~. Then both the chains A and B = 7r(A) have the same level. 

Proof. An inductive proof is presented. If A G Ei{^ ), then *A = 0 and so 
*B = 7r(*A) = 0 which implies that B Ç E1(J

r). Now assume, as the 
hypothesis of induction, that the Lemma is true for all chains with level less 
than or equal to i and suppose that A Ç Ei+i(<^~ ). Then, as a consequence of 
the induction hypothesis, TT(DJ) = Dj for all j ^ i. Therefore, since * A Ç D j 
and *A g Dt-lt it follows that *B = TT(*A) C Dt and *B g £>,_i. Therefore 
B e £ m ( j T ) . 

THEOREM 4. Let 3^ be an Av space and TT : N -^ N an automorphism of $~. 
Then the length of any cycle of IT, in the disjoint cycle representation of permuta
tions, cannot exceed p. 

Proof. Suppose that (xi, . . . , xq) is a cycle of ir of length q > p. Then it is 
a direct consequence of Theorem 2 that there exist chains Ci, . . . , Cq such that 
xi G Ci, . . . , xq e Cq, TT(C,) = C,+i for 1 ^ t: ^ q - 1 and T(CQ) = d. 

Lemma 12 now asserts that the chains Ci, . . . , Cq have the same level. This 
contradicts Lemma 11, and thus the proof is complete. 

For the rest of this paper, the discussion will be confined to A 2 spaces. The 
next result is a trivial corollary to Lemma 11. 

LEMMA 13. In an A 2 space, there can exist at most two chains with the same level. 

LEMMA 14. Let^T be an A2 space and let A, B, and C be chains of$~. Suppose 
that A and B are chains of level i and C is of level i + 1. Then *C contains at least 
one of the chains A or B. 

Proof. Without loss of generality, it can be assumed that *C Pi A ^ 0. If 
A is a single element chain, then the Lemma is trivially true. Now suppose that 
A = [alf . . . , au] and that *C contains the first j elements of A for some j < u. 
Then it is sufficient to prove that the assumption B $£ *C implies the existence 
of an Ap set for some p ^ 3. Let B = [61, . . . , bv] and C = [d, . . .]. Two 
situations are now possible. In the first case *C Pi B = 0. In this case, let 
0 = *C U Dt-lf Qi = 0 + aj+1, Q2 = 0 + fa and Qz = 0 + Cl. In the 
second case *C contains the first k elements of B, for some k < v. In this case 
let 0 = *C, (?i = 0 + aj+1, Q2 = 0 + bk+1 and Qz = 0 + a. Then it can be 
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easily shown that, in either case, 0, Qi, Q2 and Qz are all open, 0 C Qi and 
\Qi — 0\ = 1, 1 ^ i S 3. Therefore 0 is an Av set for some p ^ 3. 

LEMMA 15. Let^T be an A 2 space and let A, B and C &e chains of^~. If A is an 
i-level chain, and B, C are of level i + 1 /feew A is contained by at least one of *B 
or*C. 

Proof. Let A = [ai, . . .], B = [bi, . . .], C = [d, . . .] and suppose that the 
Lemma is not true. Then two situations are possible. First, neither *B nor *C 
contains any element of A. In this case, let 0 = *B U *C U £>*-i, (?i = 0 + ai, 
Qi = 0 + b1 and (?3 = 0 + C\. In the second case *B U *C contains the first 
j elements of A, j being less than the length of A. This means that one of *B or 
*C contains the first j elements of A. Then let 0 = * B U *C, Qi = 0 + aj+i, 
Qi = 0 + bi and Qz = 0 + Ci. Thus, in either case, 0, Qu Q2 and Qz are open 
sets. Moreover Ci, Qi and Qz are (*) covers of 0. Therefore 3?~ is not an A2 

space, which contradicts the hypothesis of the Lemma. 

LEMMA 16. If A and B are chains, both of the same level i, of an A 2 spaced, then 
(1) *A = *B implies that *A = *B = £>*_i(^~ ). 
(2) * A U * B = Dt-X(&~). 

Proof. (1) Suppose A = \ah . . .], B = [bu . . .], *A = *B = 0 and that the 
open set 0 is a proper subset of -D*_i. Since Di-\ G $~, Lemma l-(c) ensures 
the existence of a Qx G ^~ such that Qx C Z ^ , O C f t and |Çi — 0| = 1. 
Let Ç'2 = 0 + ai and Ç3 = 0 + &i. Then the open sets Ci, (?2 and Qz are (*) 
covers of 0, so that 0 is an Av set for some p ^ 3. This contradicts the assumed 
4̂ 2 nature oi3T. 

(2) Let 0 = *A \J *B in the proof of (1). 

For any A2 spaced7"", every Ei(£T ) satisfies one of the following conditions: 
( + 1) Ei(^~ ) contains two chains A, B and 

( + l a ) *A 5* Dt-^f ) 7* *B, or 
( + lb) one, and only one, of the chains A, B has Di-i(<^~ ) as its sup
porting open set, or 
( + lc )*A = *B = Dt-xif). 

( + 2) Ei(^~ ) contains only one chain A and 
( + 2 a ) * A ^ Z > , _ i ( ^ ) , o r 
( + 2 b ) * A = P , _ 1 ( ^ " ) . 

Let Ĵ ~ be an A 2 space in which E1(^
r' ) contains two chains. Then JT~ is a 

type 1 space provided either the chain level of 3T is 1, or every Et(^~ ), for 
i > 1, satisfies condition ( + l a ) . ^ " is a type 2 space provided the chain level 
of &~ is at least 2 and every Ei{^ ), for i > 1, satisfies one of the conditions 
( + la) , ( + lb) or (+2a) and there exists at least one i, i > 1, for which 
Ei(3f ) does not satisfy ( + la) . 

LEMMA 17. Let^ be a type 1 A2 space. Then there can exist at most one non-
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identity automorphism of $~'. In the event that it exists, this automorphism is 

defined by the requirement that it interchanges the two chains of every Ei{^~ ) . 

Proof. T h e proof is by induction over the chain level. If £T is a type 1 A2 

space with chain level 1, then it contains only two chains and the result in 
question is a trivial consequence of Theorem 2. Now assume, as the hypothesis 
of induction, t h a t the L e m m a is t rue for all topologies with chain level m. Now 
let J?7" be a type 1 topology with chain level m + 1, -K an automorphism of 3/~ 
and wm the restriction of -K to the points of Dm(âr ). Clearly, the topology in
duced by J?7" on Dm(^~ ) is a type 1 topology. Therefore, by the induction 
hypothesis, irm is either the ident i ty mapping or it interchanges the two chains 
of every Et(^~ ) for i ^ m. Hence, supposing A and B to be the two m + 1 
level chains of^7", it will be sufficient to show t h a t if (l)7rm is the ident i ty map
ping, then 7r(A) = A and 7r(B) = B and if (2)7rm is not the ident i ty mapping, 
then 7r(A) = B, and 7r(B) = A. L e m m a 16-(1) and the definition of a type 1 
space ensure t h a t *A ^ *B. Now in case (1) since *A, *B Ç Dm, therefore 

T(*A) = *rro(*A) = *A ^ *B = 7rm(*B) = TT(*B) 

and so, as a consequence of Theorem 3 - ( l ) , 7r(A) = A and 7r(B) = B. Now 
suppose t h a t C and F are the two m level chains of 3f. Hence it can be as
sumed, as a consequence of Lemmas 14, 15, 16-(2), and wi thout loss of gener
ality, t h a t C Ç * A , F ^ A , F Ç *B, and C g *B. Then in case (2), as a 
consequence of the induction hypothesis, TT(C) = 7rm(C) = F , 7r(F) = C and 
so C = TT(F) £ ir(*A). Therefore TT(*A) ^ *A, and similarly TT(*B) ^ *B 
and so 7r(A) = B and TT(B) = A. This completes the proof. 

L E M M A 18. Let3T be a type 2 space. Then the identity map is the only auto
morphism of 3T. 

Proof. T h e proof is by induction over the chain level. However, to avoid 
needless repetit ion, the demonstra t ion is omit ted for the case when the chain 
level is 2, as this becomes evident from the general inductive proof. Therefore 
assume, as the hypothesis of induction, t h a t the L e m m a is t rue for all type 2 
spaces with chain level w, for some m ^ 2. Now suppose t h a t J?7" is a type 2 
space with chain level m + l , ^ " m is the topology induced b y ^ 7 " on Dm(3T ), 
7T is an automorphism oi3T and irm the restriction of ir to the points of Dm{^7~ ) . 
First , it will be shown t h a t 7rm is an ident i ty mapping. For, suppose the con
t ra ry . T h e n the induction hypothesis implies thatJ?7"™ is no t a type 2 space. 
T h e definitions of type 1 and type 2 spaces now ensure the $~m is a type 1 
space with two m level chains and either (a) there exists only one m + 1 level 
chain A ofc^~ and *A ^ Dm{^" ) or (b) there exist two m + 1 level chains A, 
B of^" and *A ^ Dm(3T ), *B = Dm(£T ). Now, following an exactly similar 
reasoning as the one used in the proof of case (2) in L e m m a 18, it becomes 
evident t h a t 7r(*A) ^ *A. However, this leads to a contradict ion. For, in case 
(a) since A is the only m + 1 level chain, therefore TT(A) = A so t h a t 7r(*A) = 
*A, and in case (b) since it is clearly impossible t h a t 7r(*A) = Dm{^7~ ), there-
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fore 7r(A) = A which again implies that 7r(*A) = *A. Hence the demonstra
tion now proceeds with the assumption that irm is an identity mapping, ir
respective of whether 3Tm is type 1 or 2. Therefore, if $~ has only one m + 1 
level chain A, then clearly 7r(A) = A and so T is the identity mapping. In case 

$~ has two m + 1 level chains A and B, then following a reasoning similar to 
the one used in the proof of case (1) in Lemma 18, it becomes evident that 
TT(A) = A, 7r(B) = B and so again T is the identity mapping. 

THEOREM 5. Let^ bean A 2 topology. Then the number of automorphisms of$~ 
can be expressed as 2 ', for some t ^ 0. 

Proof. Let a be the number of automorphisms oi^~. In caseJ^~ consists of a 
single chain, clearly a = 1. In case J?7"" consists of two chains A and B, of un
equal length, then the only automorphism is the identity mapping so that 
a = 1. In case A and B have the same length, then the automorphisms are the 
identity and the interchange of A and B so that a = 2. Now suppose that the 
chain level of $~ is m, for some m ^ 2. Consider the partition Nlf . . . , Nr, 
. . . , Ns of N constructed as follows. If no Et(^ ), for i > 1, satisfies ( + l c ) or 
(+2b) then let Ni = N. Otherwise let j i = 1, js+i = m + 1 and suppose that 

j u . . . , j r , . . . , j s are the values of i, in ascending order of magnitude, for 
which Ei(^

r' ) satisfies either ( + lc) or ( + 2b). Then, for r = 1 to s, let 

Nr = U QJEt(#~)), j r =g * ûjr+1 ~ I-
i 

Then it follows directly from the definitions that the topology 3Tr induced on 
Nr by 3T is either type 1, type 2 or is a single chain space. Moreover Ni contains the 
isolated points ofj7" and if 0 G Nr, r > 1, then (JVi W . . . U iVr_i) Ç 0* ( ^ ). 
Therefore, as a consequence of Lemmas 17 and 18, / of these subspaces, for 
some / ^ 0, will have exactly 2 automorphisms and the rest will have a single 
automorphism. The result now becomes evident on observing that the restric
tion of an automorphism of Ĵ ~ to Nr is an automorphism of J ^ r and, conversely, 
if -KT is an automorphism of 3Tr for 1 rg r ^ s, then in . . . irr . . . irs is an auto
morphism of^7". 

A detailed study of A2 and A% spaces, including the solution to the enumera
tion problem, will appear elsewhere. 
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