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Abstract

The purpose of this paper is to study the existence of periodic solutions and the topological structure of the
solution set of first-order differential equations involving the distributional Henstock–Kurzweil integral.
The distributional Henstock–Kurzweil integral is a general integral, which includes the Lebesgue and
Henstock–Kurzweil integrals. The main results extend some previously known results in the literature.
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1. Introduction

In this paper, we consider the periodic boundary value problem (PBVP) for the first-
order differential equation

Dx = f (t, x), x(0) = x(T ), (1.1)

where Dx stands for the distributional derivative of x ∈C([0, T ]), 0 < T <∞, and f is
a distribution (generalised function).

Distributions and their derivatives are defined at the beginning of Section 2. The
notion of a distributional derivative is very general, including, for example, ordinary
derivatives and approximate derivatives. The first-order PBVP for ordinary differential
equations

dx
dt

= f (t, x), x(0) = x(T ), (1.2)

with ordinary derivative dx/dt and f : [0, T ] × Rn→ Rn has been studied extensively
in recent years; see, for example, [4, 5, 10, 11, 16]. However, as far as we know, few
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papers have applied distributional derivatives to study PBVP. In this paper, by using
distributional derivatives, we study the PBVP (1.1) and obtain some interesting results.

This paper is organised as follows. In Section 2 we introduce a general integral
called the distributional Henstock–Kurzweil integral or DHK-integral. We say that a
distribution f is DHK-integrable on [a, b] ⊂ R if there is a unique continuous function
F on [a, b] with F(a) = 0 whose distributional derivative is f . From the definition of
the DHK-integral, we know that the DHK-integral includes the Riemann, Lebesgue,
Henstock–Kurzweil (HK) and wide Denjoy integrals (for details, see [2, 6, 7, 14, 15]).
The space of integrable distributions is a Banach space and has many good properties;
see [8, 9].

In Section 3, with the DHK-integral and the distributional derivative, we generalise
the PBVP (1.2) to (1.1) and apply the well-known Schauder fixed point theorem
to study the existence of multiple solutions of (1.1). More precisely, by using the
Vidossich theorem, we show that the solution set is an Rδ, that is, it is homeomorphic
to the intersection of a decreasing sequence of compact absolute retracts. Results in
this paper are generalisations of corresponding results in the references.

2. The distributional Henstock–Kurzweil integral

In this section, we present the definition and some basic properties of the
distributional Henstock–Kurzweil integral.

Define the space

C∞c = {φ : R→ R | φ ∈C∞ and φ has compact support in R},

where the support of a function φ is the closure of the set on which φ does not
vanish, denoted by supp(φ). A sequence {φn} ⊂C∞c converges to φ ∈C∞c if there is
a compact set K such that all φn have supports in K and, for every m ∈ N, the sequence
of derivatives φ(m)

n converges to φ(m) uniformly on K. Denote C∞c endowed with this
convergence property byD. Also, φ is called a test function if φ ∈ D. Distributions are
defined to be continuous linear functionals onD. The space of distributions is denoted
by D′, which is the dual space of D. That is, if f ∈ D′ then f :D→ R, and we write
〈 f , φ〉 ∈ R, for φ ∈ D.

For all f ∈ D′, we define the distributional derivative D f of f to be a distribution
satisfying 〈D f , φ〉 = −〈 f , φ′〉, where φ is a test function. With this definition, all
distributions have derivatives of all orders and each derivative is a distribution.

Let (a, b) be an open interval in R. We define

D((a, b)) = {φ : (a, b)→ R | φ ∈C∞c and φ has compact support in (a, b)}.

The dual space ofD((a, b)) is denoted byD′((a, b)).
Define C([a, b]) to be the space of continuous functions on [a, b], and

BC = {F ∈C([a, b]) | F(a) = 0}.

Note that BC is a Banach space with the uniform norm ‖F‖∞ = max[a,b] |F|.
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We are now able to introduce the definition of the DHK-integral.

D 2.1. A distribution f is distributionally Henstock–Kurzweil integrable (or
DHK-integrable) on [a, b] if f is the distributional derivative of a continuous function
F ∈ BC .

The space of DHK-integrable distributions is defined by

DHK = { f ∈ D′((a, b)) | f = DF for some F ∈ BC}.

With this definition, if f ∈ DHK then, for all φ ∈ D((a, b)),

〈 f , φ〉 = 〈DF, φ〉 = −〈F, φ′〉 = −
∫ b

a
Fφ′. (2.1)

The DHK-integral of f on [a, b] is given by (DHK)
∫ b

a
f = F(b), where F is called

the primitive of f and ‘(DHK)
∫

’ denotes the DHK-integral. As usual, if a function

F ∈C([a, b]) and (DHK)
∫ b

a
f = F(b) − F(a), then the function F is a primitive of f .

Notice that if f ∈ DHK then f has many primitives in C([a, b]), all differing by a
constant, but f has exactly one primitive in BC .

R 2.2. Integrals defined in the same way have also been proposed in other
papers. For example, Ang et al. [1] defined an integral in the plane and called it the
G-integral, and Talvila [15] defined the AC-integral on the extended real line. In fact,
these two integrals are equivalent to the DHK-integral for one-dimensional intervals.

The following result is known as the fundamental theorem of calculus.

L 2.3 [15, Theorem 4].

(a) Let f ∈ DHK , and define F(t) = (DHK)
∫ t

a
f . Then F ∈ BC and DF = f .

(b) Let F ∈C([a, b]). Then (DHK)
∫ t

a
DF = F(t) − F(a) for all t ∈ [a, b].

E 2.4. We know that the primitive function F of the HK-integrable function f
is ACG∗ (generalised absolutely continuous; see [6, 14]). In [6, Example 6.6], Lee
pointed out that if F is a continuous function and pointwise differentiable nearly
everywhere on [a, b], that is, everywhere except perhaps for a countable number of
points in [a, b], then F is ACG∗. Furthermore, if F is a continuous function which
is differentiable nowhere on [a, b], then F is not ACG∗. Therefore, if F ∈C([a, b])
but is differentiable nowhere on [a, b], then DF exists and is DHK-integrable but not
HK-integrable. Conversely, if F is ACG∗ then it also belongs to C([a, b]). Therefore,
F′ is not only HK-integrable but also DHK-integrable. Here, F′ denotes the ordinary
derivative of F.

This example shows that the DHK-integral includes the HK-integral, and hence the
Lebesgue and Riemann integrals.
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We now give some other results about the distributional derivative and the DHK-
integral.

Let F,G be two functions, and denote by F ◦G the composition of F and G.

D 2.5 [15, Definition 10, Derivative of composition of continuous functions].
Let F,G ∈C([a, b]). Then (DF ◦G)DG := D(F ◦G), that is, for all φ ∈ D((a, b)),

〈(DF ◦G)DG, φ〉 = 〈D(F ◦G), φ〉 = −〈F ◦G, φ′〉 = −
∫ b

a
(F ◦G)(t)φ′(t) dt.

L 2.6 [15, Theorem 11]. Suppose that f ∈ DHK and DF = f , where F ∈
C([α, β]), −∞ < α < β < +∞. Let α < a < b < β. If G ∈C([a, b]) then∫ G(b)

G(a)
f =

∫ b

a
( f ◦G)DG = (F ◦G)(b) − (F ◦G)(a).

If G ∈C((a, b)) and limt→a+ G(t) = α and limt→b− G(t) = β then∫ β

α

f =

∫ b

a
( f ◦G)DG = F(β) − F(α).

L 2.7. Let f , g be the distributional derivatives of F,G, respectively, where
F,G ∈C([a, b]). Then

D(FG) = fG + Fg. (2.2)

P. It follows from the definition of distributional derivative and (2.1) that

〈D(FG), φ〉 = −〈FG, φ′〉 = −
∫ b

a
F(Gφ′)

= −

∫ b

a
F(D(Gφ) − gφ) = −

∫ b

a
FD(Gφ) +

∫ b

a
Fgφ

=

∫ b

a
fGφ +

∫ b

a
Fgφ =

∫ b

a
(Fg + fG)φ

= 〈Fg + fG, φ〉.

Consequently, the result holds. �

If g : [a, b]→ R, its variation is Vg = sup
∑

n |g(tn) − g(sn)|, where the supremum is
taken over every sequence {(tn, sn)} of disjoint intervals in [a, b]. If Vg <∞ then g
is called a function with bounded variation. Denote the set of functions with bounded
variation byBV. As it is known that the dual space of DHK isBV (see details in [15]),
we have the next result.

L 2.8 [15, Definition 6, Integration by parts]. Let f ∈ DHK and g ∈ BV. Define
f g = DH, where H(t) = F(t)g(t) −

∫ t

a
Fdg. Then f g ∈ DHK and∫ b

a
f g = F(b)g(b) −

∫ b

a
F dg.
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For f ∈ DHK and F ∈ BC with DF = f , we define the Alexiewicz norm by

‖ f ‖ = ‖F‖∞ = max
[a,b]
|F|.

The following result has been proved.

L 2.9 [15, Theorem 2]. With the Alexiewicz norm, DHK is a Banach space.

It is known that there is a pointwise ordering in C([a, b]) (so it is with BC), that is,
u ≤ v in C([a, b]) if and only if u(t) ≤ v(t) for every t ∈ [a, b]. We now impose a partial
ordering on DHK : for f , g ∈ DHK , we say that f � g (or g � f ) if and only if f − g is a
positive measure (see [12, Definition 1.18] for the definition of positive measure) on
[a, b]. By this definition, if f , g ∈ DHK then

(DHK)
∫ b

a
f ≥ (DHK)

∫ b

a
g whenever f � g. (2.3)

According to the definition of this ordering, we also have the following result.

L 2.10 [1, Corollary 1]. If f1, f2, f3 ∈ D′((a, b)), f1 � f2 � f3, and if f1 and f3 are
DHK-integrable, then f2 is also DHK-integrable.

We say that a sequence { fn} ⊂ DHK converges strongly to f ∈ DHK if ‖ fn − f ‖ → 0
as n→∞. The following two convergence theorems hold.

L 2.11 [1, Corollary 4, Monotone convergence theorem for the DHK-integral].
Let { fn}∞n=0 be a sequence in DHK such that f0 � f1 � · · · � fn � · · · , and that

(DHK)
∫ b

a
fn→ A as n→∞. Then fn→ f in DHK and (DHK)

∫ b

a
f = A.

L 2.12 [1, Corollary 5, Dominated convergence theorem for the DHK-integral].
Let { fn}∞n=0 be a sequence in DHK such that fn→ f in D′. Suppose that there
exist f−, f+ ∈ DHK satisfying f− � fn � f+, for all n ∈ N. Then f ∈ DHK and
limn→∞(DHK)

∫ b

a
fn = (DHK)

∫ b

a
f .

3. Periodic boundary value problems

In this section, we shall study the first-order PBVP

Dx = f (t, x), x(0) = x(T ), (1.1)

where Dx denotes the distributional derivative of x ∈C([0, T ]) and f is a distribution.
Throughout this section, we denote by DHK (respectively HK, L) the space of DHK-
(respectively, HK-, Lebesgue) integrable functions and by ‘(∗)

∫
’ the ∗-integral.

We now impose some assumptions on the distribution f .

(D1) f (·, x(·)) is DHK-integrable for every fixed x ∈C([0, T ]).
(D2) f (t, ·) is continuous for all t ∈ [0, T ].
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(D3) There exist y, z ∈C([0, T ]), with y(0) ≤ y(T ) and z(0) ≥ z(T ), such that

Dy � f (·, x) � Dz for all x ∈ [y, z],

where Dy and Dz are the distributional derivatives of y and z respectively, and
the ordering interval [y, z] = {x ∈C([0, T ]) | y(t) ≤ x(t) ≤ z(t) for all t ∈ [0, T ]}.

Before coming to the main results in this paper, we give a result following from
Lemma 2.3—that is, the PBVP (1.1) can be converted to an integral equation.

L 3.1. Let the distribution f satisfy (D1)–(D3). A function x : [0, T ]→ R is a
solution of the PBVP (1.1) on [0, T ] if and only if x satisfies the integral equation

x(t) = e−P(t)(DHK)
∫ t

0
eP(s)( f (s, x(s)) + p(s)x(s)) ds

+
e−P(t)

eP(T ) − 1
(DHK)

∫ T

0
eP(s)( f (s, x(s)) + p(s)x(s)) ds

(3.1)

for any p(t) ∈ HK, p(t) ≥ 0 on [0, T ] with P(t) = (HK)
∫ t

0
p(s) ds nonzero at t = T.

P. Let p(t) ∈ HK, p(t) ≥ 0 on [0, T ] satisfy P(T ) = (HK)
∫ T

0
p(s) ds , 0. Assume

first that x : [0, T ]→ R is a solution of PBVP (1.1). Then x ∈C([0, T ]). Hence,
by Lemma 2.3, the distributional derivative Dx of x exists and is DHK-integrable.
Applying (1.1), we obtain

eP(t)(Dx + p(t)x) = eP(t)( f (t, x) + p(t)x). (3.2)

By Lemma 2.7 and integrating (3.2),

x(t) = e−P(t)x(0) + e−P(t)(DHK)
∫ t

0
eP(s)( f (s, x(s)) + p(s)x(s)) ds

and

x(0) = x(T ) =
1

eP(T ) − 1
(DHK)

∫ T

0
eP(s)( f (s, x(s)) + p(s)x(s)) ds.

Thus x is a solution of the integral equation (3.1).
Conversely, assume that x satisfies (3.1), or equivalently, the integral equation

eP(t)x(t) = (DHK)
∫ t

0
eP(s)( f (s, x(s)) + p(s)x(s)) ds

+
1

eP(T ) − 1
(DHK)

∫ T

0
eP(s)( f (s, x(s)) + p(s)x(s)) ds.

(3.3)

Differentiation of (3.3) gives

eP(t)(Dx + p(t)x) = eP(t)( f (t, x) + p(t)x) for all t ∈ [0, T ].

Hence, x satisfies the differential equation (1.1) on [0, T ]. Moreover, inserting t = 0
and t = T in (3.1) yields x(0) = x(T ). Thus x is a solution of the PBVP (1.1). �
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We now give the well-known Schauder fixed point theorem, which is used to prove
the existence of solutions of the PBVP (1.1).

L 3.2 ([13, Theorem 6.15], Schauder theorem). Let M be a convex, closed subset
of a normed vector space X. Let A be a continuous map of M into a compact subset
K of M. Then A has a fixed point.

We are now ready to give our main results.

T 3.3. If the distribution f in the PBVP (1.1) satisfies assumptions (D1)–(D3),
then there exists at least one solution of the PBVP (1.1).

P. Let
g(t, x) = f (t, x) + p(t)x, t ∈ [0, T ], x ∈ [y, z], (3.4)

where p(t) ∈ HK, p(t) ≥ 0 on [0, T ] and P(T ) = (HK)
∫ T

0
p(s) ds , 0. It follows from

(D1)–(D3) that g(·, x(·)) ∈ DHK for all x ∈ [y, z], g(t, ·) is continuous for all t ∈ [0, T ]
and

Dy + py � g(·, x) � Dz + pz, for each x ∈ [y, z]. (3.5)

Define a mapping A on [y, z] by

A x(t) = e−P(t)(DHK)
∫ t

0
eP(s)g(s, x(s)) ds

+
e−P(t)

eP(T ) − 1
(DHK)

∫ T

0
eP(s)g(s, x(s)) ds, t ∈ [0, T ].

(3.6)

It follows from (3.6) that, for each x ∈ [y, z],

D(A x) = g(·, x) − pA x on [0, T ],

A x(0) = A x(T ).
(3.7)

Let w = A y − y. Then, by (D1), (3.4) and (3.7),

Dw + pw � 0, w(0) ≥ w(T ), (3.8)

It follows from (3.8) that

eP(t)w(t) ≥ w(0), t ∈ [0, T ]. (3.9)

Let t = T in (3.9), and note that w(0) ≥ w(T ). Then

eP(T )w(0) ≥ eP(T )w(T ) ≥ w(0),

which implies that
w(0) ≥ 0. (3.10)

In view of (3.9) and (3.10) we then have w = A y − y ≥ 0, that is, y ≤A y. We
can similarly verify that A z ≤ z. Hence (3.6) defines a mapping A : [y, z]→ [y, z].
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Since y, z are continuous functions on [0, T ], they are also bounded on [0, T ]. Thus,
A ([y, z]) is uniformly bounded on [0, T ] for all x ∈ [y, z].

Let t1, t2 ∈ [0, T ]. Then, by (3.6), for each x ∈ [y, z],

A x(t1) −A x(t2) = e−P(t1)(DHK)
∫ t1

t2

eP(s)g(s, x(s)) ds

+ (eP(t2)−P(t1) − 1)A x(t2).

(3.11)

Since p(t) ∈ HK, p(t) ≥ 0, P(t) = (HK)
∫ t

0
p(s) ds is continuous and so is uniformly

continuous on [0, T ]. Then, for all ε > 0, there exists δ > 0 such that

|eP(t2)−P(t1) − 1| ≤ ε whenever t1, t2 ∈ [0, T ] and |t2 − t1| ≤ δ.

It is easy to see that eP(t) ∈C([0, T ]) ∩ BV (and the same is true for e−P(t)) on [0, T ].
Hence, there exists M > 0 such that

1
M
< eP(t) < M, t ∈ [0, T ].

The result eP(t) ∈ BV on [0, T ] implies by Lemma 2.7 that eP(t)g(t, x(t)) is DHK-
integrable on [0, T ], because g(·, x) is DHK-integrable for all x ∈ [y, z]. This result
and the monotonicity of g(t, ·) for all t ∈ [0, T ] imply that

(DHK)
∫ t1

t2

eP(s)g(s, y(s)) ds ≤ (DHK)
∫ t1

t2

eP(s)g(s, x(s)) ds

≤ (DHK)
∫ t1

t2

eP(s)g(s, z(s)) ds.

On the other hand, the properties of A imply that

y(t2) ≤A x(t2) ≤ z(t2).

Since y, z ∈C([0, T ]), there exists N > 0 such that

|A x(t1) −A x(t2)| ≤ M
∣∣∣∣∣(DHK)

∫ t1

t2

eP(s)g(s, x(s)) ds
∣∣∣∣∣ + Nε

≤ M
(∣∣∣∣∣(DHK)

∫ t1

t2

eP(s)g(s, y(s)) ds
∣∣∣∣∣

+

∣∣∣∣∣(DHK)
∫ t1

t2

eP(s)g(s, z(s)) ds
∣∣∣∣∣) + Nε.

(3.12)

Since eP(t)g(t, y(t)) and eP(t)g(t, z(t)) are DHK-integrable on [0, T ], the primitives of
eP(t)g(t, y(t)) and eP(t)g(t, z(t)) are continuous and so are uniformly continuous on
[0, T ]. Hence, by inequality (3.12), A ([y, z]) is equiuniformly continuous on [0, T ]
for all x ∈ [y, z]. In view of the Ascoli–Arzelà theorem, A ([y, z]) is relatively compact.
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According to Lemma 3.2, we now only need to prove that A is continuous.
Let x ∈ [y, z], {xm}m∈N be a sequence in [y, z] and xm→ x as m→∞. According to

condition (D2),
f (·, xm)→ f (·, x) as m→∞.

Thus, by (3.4),
eP(·)g(·, xm)→ eP(·)g(·, x) as m→∞.

Hence, by Lemma 2.12 and (3.5),

lim
m→∞

∫ t

0
eP(s)g(s, xm(s)) ds =

∫ t

0
eP(s)g(s, x(s)) ds, t ∈ [0, T ].

Therefore, limm→∞ A xm(·) = A x(·), which implies that A is continuous. Thus, A is
a compact mapping. The result implies that A satisfies the hypotheses of Lemma 3.2,
whence A has a fixed point, which is also the solution of PBVP (1.1). �

We now consider the topological characterisation of the solution set of PBVP (1.1).
First, we present the well-known Vidossich theorem.

Let Cu(K, Y) be the space of all continuous mappings x : K→ Y , where K is a
compact convex subset of a normed space and Y is a metric space equipped with the
topology of uniform convergence. Denote by B(t0, ε) the closed ball with centre t0 and
radius ε. Denote by x|A the restriction of the map x to A.

L 3.4 ([17, Corollary 1.2], Vidossich theorem). Let K be a compact convex
subset of a normed space, Y a closed convex subset of a Banach space Y0, F a compact
mapping Cu(K, Y)→Cu(K, Y). Suppose that there exist t0 ∈ K and y0 ∈ Y such that the
following two conditions hold.

(i) F(x)(t0) = y0 (x ∈C(K, Y)).
(ii) For every ε > 0,

x|Kε
= y|Kε

⇒ F(x)|Kε
= F(y)|Kε

(x, y ∈C(K, Y)),

where Kε = B(t0, ε) ∩ K.

Then the set of fixed points of F is an Rδ.

Recall that if a set is an Rδ, it is homeomorphic to the intersection of a decreasing
sequence of compact absolute retracts. Furthermore, Vidossich [17] pointed out that
Rδ is a nonempty, compact and connected set.

We are now in a position to give the second main result.

T 3.5. Under the above assumptions (D1)–(D3), the solution set S 1 of
PBVP (1.1) on [0, T ] is an Rδ.

P. In Theorem 3.3, we have proved that the mapping A : [y, z]→ [y, z] is
compact. According to the proof of Theorem 3.3, it is also easy to see that conditions
(i) and (ii) of Lemma 3.4 hold. Thus, by Lemma 3.4, the solution set S 1 is an Rδ. The
proof is therefore complete. �
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C 3.6. Assume that q(x) is continuous with respect to x, where x ∈C([0, T ]),
and µ(t) is DHK-integrable on [0, T ]. Then the PBVP

Dx + q(x) = µ(t), x(0) = x(T ), (3.13)

has at least one solution. Moreover, the solution set is an Rδ.

P. Let
f (t, x) = µ(t) − q(x)

and
q+ = ‖q(x)‖∞.

Then, by the assumptions, it is easy to see that the distribution f satisfies (D1), (D2)
and

µ − q+ � f (·, x) � µ + q+, for all x ∈C([0, T ]). (3.14)

Let

y(t) = e−P(t)(DHK)
∫ t

0
eP(s)(µ(s) − q+ + p(s)x(s)) ds

+
e−P(t)

eP(T ) − 1
(DHK)

∫ T

0
eP(s)(µ(s) − q+ + p(s)x(s)) ds

(3.15)

and

z(t) = e−P(t)(DHK)
∫ t

0
eP(s)(µ(s) + q+ + p(s)x(s)) ds

+
e−P(t)

eP(T ) − 1
(DHK)

∫ T

0
eP(s)(µ(s) + q+ + p(s)x(s)) ds,

(3.16)

where p(t) ∈ HK, p(t) ≥ 0 on [0, T ], with P(t) = (HK)
∫ t

0
p(s) ds nonzero at t = T .

Thus, by Lemma 3.1 and Theorem 3.3, PBVP (1.1) has at least one solution, and
by Theorem 3.5, the solution set is an Rδ. The proof is therefore complete. �

R 3.7. According to Corollary 3.6, Theorem 3.3 generalises [11, Theorem 7]
and Theorem 3.5 extends [10, Theorem 5.1], because the DHK-integral includes the
Lebesgue integral and the distributional derivative contains the ordinary derivative.

We now give an example to illustrate the above results.

E 3.8. Consider the PBVP given by

Dx + arctan x = DS , x(0) = x(2), (3.17)

where x ∈C([0, 2]) and DS is the distributional derivative of

S (t) =

∞∑
n=1

sin 7nπt
2n

. (3.18)

Then the PBVP (3.17) has at least one solution. Moreover, the solution set is an Rδ.
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P. The PBVP (3.17) can be regarded as a PBVP of the form (3.13), where

µ = DS , q(x) = arctan x, t ∈ [0, 2], x ∈C([0, 2]).

It is easy to see that µ(t) and q(x) satisfy the hypotheses of Corollary 3.6. Hence, the
result holds. �

It is well known that the Weierstrass function S (t) in (3.18) is continuous
but differentiable nowhere on R (for details, see [3]). Then, by Example 2.4,
the distributional derivative DS is neither HK-integrable nor Lebesgue integrable.
Hence, [11, Theorem 7] and [10, Theorem 5.1] are not applicable in this case.
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