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TENSOR PRODUCTS OF /'-VALUED MEASURES
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Duchon (1967, 1969) and Duchon and Kluvanek (1967) considered the
problems of the existence of countably additive tensor products for vector
measures. Duchon and Kluvanek (1967) showed that a countably additive
product with respect to the inductive tensor topology always exists while
Kluvanek (1970) presented an example which showed that this was not the case
for the projective tensor topology. Kluvanek considered yet another tensor
product topology which is stronger than the inductive topology but weaker than
the projective tensor topology and showed that a countably additive product for
two vector measures always exists for this particular tensor topology, see
Kluvanek (1973). He has conjectured that this topology is the strongest tensor
topology (given by a cross norm) which always admits products for any two
arbitrary vector measures. In this note we use an example of Kluvanek (1974) to
show that this conjecture is indeed true when one of the factors in the tensor
product is I2 and the other factor is metrizable. The construction used also
clarifies a conjecture made by Swartz (to appear) concerning products of Hilbert
space valued measures.

We first describe the tensor product topology used by Kluvanek (1973); this
topology is obtained from the dissertation of Jacobs (see Kluvanek (1973)). Let
X, Y and Z be locally convex Hausdorff spaces with the topology of X
(respectively Y, Z) generated by the family of seminorms 9 (respectively Si, 9?).
(For convenience we assume that all vector spaces are real.) For p G 9 and
q G St define a cross norm r = p (g},q on X(g) Y by

(1) r(u) = inf supp (Sa.q(y,)*)>

where the supremum is computed over all real af with | a | ̂  1 and the infimum is
computed over all representations u = 2JC, (g) yf, x, G X, yt G Y. X (g) Y equipped
with the locally convex topology / generated by the family of semi-norms
{p®,q: pe.&,q£2.} is denoted by X(g), Y; if X and Y are both normed
spaces, then X ®( Y is obviously a normed space and we always assume it is
normed by || ||(g), || ||.
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We now give a description of the dual of X (g), Y when Y is a normed space.
A continuous linear operator B: X —* Y' is absolutely summing if there

exist a continuous semi-norm p on X and a constant C p g 0 such that

(2) t IIBx, || S C, sup f 2 |<*', x,)|: x' £ I/0}
i - l (.1 — 1 J

for every finite sequence xt in X, where U° is the polar in X' of U =
{x: p(x)^ 1} and || || is the dual norm in Y'. (Such mappings are referred to by
Floret and Wloka (1968) as absolutely summing, but this terminology differs
from that of Pietsch (1965) §2; when X is metrizable the absolutely summing
operators of Pietsch (1965) and Floret and Wloka (1968) coincide. Let 0>(X, Y')
denote the space of all absolutely summing operators from X into Y'; if X is
normed, 0*(X, Y') is also normed by taking p above to be the norm of X and
defining the norm (called the absolutely summing norm) of B, TT(B), to be the
infimum of all constants Cp satisfying (2) see Pietsch ((1965), 2.2.3) and Floret
and Wloka ((1968), Anhang 3.6).

DEFINITION 1. Let Y be a normed space and let ft be a continuous bilinear
form on X x Y (thus, b is an element of the dual of the projective tensor product
X(g>wY, Treves ((1967) 43.4). Then b is said to be absolutely summing if the
associated linear map B: X—* Y' {(Bx, y) = b{x, y), x €E X, y e Y) is an abso-
lutely summing operator from X into Y'. The space of all such bilinear forms is
denoted by S(X, Y); if X is also normed, we equip 5 (̂X, Y) with the absolutely
summing norm, IT, from 0>(X, Y'). (Note any absolutely summing operator
B: X—» y induces an absolutely summing bilinear form on X x Y , i.e.,

Since the projective tensor topology is stronger than the topology /, see
Kluvanek (1970), the dual of X(g), Y is a subspace of B(X, Y), the continuous
bilinear forms on X x Y, and since / is stronger than the inductive topology,
Kluvanek (1970), the dual of X (g), Y contains the integral forms on X x Y. We
now describe the dual of X(g), Y as a subspace of B(X, Y).

THEOREM 2. Let (Y, || ||) be a normed space. A bilinear form b on X x Y is
continuous on X (g)iY iff b is absolutely summing. If X is normed, the dual of
X (g)i y with the dual norm is isometrically isomorphic to y{X, Y) equipped with
the absolutely summing norm.

PROOF. Let bGB(X, Y) and let B: X-> Y' be the associated linear
operator.

Suppose b is absolutely summing and let u = 2r=ix, 0y,:6X0 Y. Then
there exist p G <3> and C p g 0 satisfying (2).

Then
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\ b ( u ) \ ^ t \\B(\\y,\\x,)\\^ C p ^ u p \ i \(x',\ \yi\ \x,)\: x' e U0}

= Cpsup{|£ai | |y i | |<x\x(>|:x'et/°, |a ( |£l}

Thus | b(u)\ S Cpp 0 , || ||(M) and b is continuous on X®i Y; moreover, if X is
normed, | |6| |Srr(B).

Suppose b is continuous on X (g), V. Then there exist p E. 8P and a constant
fc such that \b(u)\^kp®,\\ ||(u) for u eX(g) V. Set l/ = {x: p (x )^ l} , let
{x,: l g i S n } C X and let e >0. Pick yt G Y such that | |yi | |=l and

Xi, yf) + e/n > || Bxt ||. If u = 2r=i x, (g) yf, then

| Bx, | | - e ^

= fc sup U°,\a, | ^ l} = fe sup

so that Sr.JlBXiH^ksupiSr.iKx'.Xi)!: x ' £ t/0}. Hence B is absolutely sum-
ming and if X is normed, TT(B)S||/> ||.

It follows from Theorem 2 that when X = Y = /2 the e, / and TT-topologies
are all distinct; for the dual of the 7r-topology is the space of all bounded linear
maps on I2, the dual of the /-topology is the space of absolutely summing (or
Hilbert-Schmidt) operators, and the dual of the e-topology is the space of
integral (nuclear) operators.

We now consider the product of vector measures. Let M, N be <r-algebras
of subsets of the sets S, T. Let v: X x Y—* Z be a separately continuous bilinear
map. If /n: M—*X and v: N-*Y are countably additive set functions (vector
measures), their product A = fi x v with respect to v is defined on measurable
rectangles A x B, A 6 i , BGJf, by \(A x B) = v(ix(A), v(B)). If si is the
algebra generated by the measurable rectangles, then A has an obvious finitely
additive extension (still denoted by /u. x v = A) from si to Z, Swartz (to appear)
and Duchon and Kluvanek (1967). If 1 is the cr -algebra generated by si, we say
that fi admits a v -product with respect to v (and conversely) if A is countably
additive on si and has a (necessarily unique) countably additive extension from
2 to Z ; if every X-valued measure (on an arbitrary tr-algebra M) admits
products with respect to v, we say that X admits v -products with respect to v.

Let X denote the Borel sets of the unit interval [0,1]. From Kluvanek's
example (1974) it follows that there exists a vector measure v: M^*l2 such that
the range of v contains the unit ball of I2 (if m is the measure of Kluvanek
(1974), the measure m - m contains a ball centered at the origin so multiplica-
tion by a suitable constant will give v). The measure v is fixed throughout the
remainder of the paper.
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THEOREM 3. Let B: X—» I2 be linear, continuous and let v be the associated
bilinear form on X x I2 given by v(x,y) = (y,Bx), where (,) denotes the inner
product on I2. If /x: M-* X is a vector measure which admits v-products with
respect to v, then for any disjoint sequence {E,}QM S||B/x(E,)||<oo.

PROOF. Pick zm = v(Hm), Hm G X, in the range of v such that || zm || = 1 and
(zm, Bxm) = || Bxm ||, where xm = n(Em). Then Em x Hm G si, the algebra gener-
ated by the measurable rectangles, and {Em x Hm) is disjoint so fi x v being
countably additive on 2, the a -algebra generated by the measurable rectangles,
implies

COROLLARY 4. Let B and v be as in Theorem 3. If X admits v-products with
respect to v, then B is absolutely summing (or v G 5 (̂X, I2)).

PROOF. If 1,xm is an unconditionally convergent series in X, then this series
induces a vector measure /x on the power set ^(N) of the positive integers N via
(i(E) = '2neEXn. Taking Em ={m) in Theorem 3 gives 2||Bxm||<<» or B is
absolutely summing.

We now apply this corollary to the tensor product of vector measures. If
v: XxY-*X&eY ([17]) §43) or v: Xx y-»X(g>, Y is the natural tensor
product map, then X admits v -products with respect to any Y-valued vector
measure, Duchon and Kluvanek (1967) and Kluvanek (1973), but if v: Xx.
Y—•Xfg)^ Y, this is no longer the case, see Kluvanek (1970) and Bagby and
Swartz. Kluvanek conjectured that the topology / is the strongest tensor
topology on X <S> Y which admits products in the sense above; we show that this
is the case when X is metrizable and Y = I2. Let T be a tensor topology on
X'<3) I2 which is stronger than the inductive topology (e-topology) and weaker
than the projective topology (7r-topology) and let X 0 T I2 denote the completion
of the tensor product with respect to T.

THEOREM 5. Let X be metrizable and suppose T is such that X admits
v-products with respect to v, where v is the natural tensor map from X x I2 into
X (g)T I

2. Then I is stronger than r.

PROOF. By Corollary 4 the dual of X (g)T I
2 is a subspace of Sf(X, I2). That is,

the injection /: X (g), I2 —* X ®T I2 is weakly continuous. But X ®/12 is obviously
metrizable so / is actually continuous with respect to the topologies / and r
Treves ((1967), Lemma 37.6), i.e. / is stronger than T.

Theorem 3 also contains several other implications for products of Hilbert
space valued measures which we now give.

REMARK 6. Let v be the inner product on I2. If /A : M —* I2 is a vector
measure which admits v -products with respect to v, then it follows from
Theorem 3 (with B the identity operator on I2) and [11] Theorem 2.2 that fi
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must have bounded variation. (Recall a vector measure of bounded variation
admits products with respect to any bilinear map and any measure, Duchon
(1967) or Swartz (to appear). This fact may help to explain the examples
presented in Dudley and Pakula (1972) and Rao (1972).

REMARK 7. Let B: /2—»• I2 be continuous, linear and let b be the associated
bilinear form on I2 induced by B. According to Swartz (to appear) (Conjecture
12) it was conjectured that I2 admits b-products iff B is nuclear. The results of
Swartz (to appear), Theorem 6, and Corollary 4 show that this conjecture is false
and that I2 admits b -products iff B is absolutely summing (Theorem 8 below).
Actually, we can also obtain from Corollary 4 some results pertaining to the
ideas discussed in Swartz (to appear). Recall a vector measure /x: M —> I2 is
dominated with respect to b iff Em j <£, Em £ i , implies /Z(Em) —»0, where /I
denotes the b-semi-variation of n,

xi)|: | | jc i | |gl, {A,} is a partition of A}

Swartz (to appear). We then have

THEOREM 8. The following are equivalent:
(i) I2 admits b-products
(ii) I2 admits b-products with respect to v
(iii) B is absolutely summing (or equivalently Hilbert-Schmidt)
(iv) every vector measure /x: M.—* I2 is dominated with respect to b.

PROOF. That (i) implies (ii) is clear, (ii) implies (iii) by Corollary 4, and (iv)
implies (i) by Swartz (to appear), Theorem 6. Thus we only need to check (iii)
implies (iv). If A £ M, {A,•,: 1 S j g n} is a partition of A and || x, || S 1, 1 S i g n,
then

i.»ll

§ TT(B) sup {var (x > ) (A): || x' || g 1},

where TT(B) is the absolutely summing norm of B and var(x'/Li) is the variation
of the scalar measure x '/A : A —»(x', ft (A)). From (3) and Dunford and Schwartz
((1958), IV.10.5), it follows that n is dominated with respect to b.

Theorem 9 indicates that Theorem 6 of Swartz (to appear) may be the best
general result available for products of vector measures.

In concluding it may also be of interest to note that the general criteria for
the existence of countably additive products of vector measures given by
Theorem 6 of Swartz (to appear) yields the result of Kluvanek (1973). For let
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fi:'M—*X be a vector measure and p®iq = r a continuous semi-norm on
X 0 , y. If E €E M and \LV is the semi-variation of /x with respect to q, r and the
tensor product map (equation (1) of Swartz (to appear))

/!„,,(£) = sup{r(2fi.(Et)®yl): {E,} partition of E, q(y,)£ 1}

£ sup {p(2a,?(y, )/*(£<)): {£,} partition of

where /Ip is the scalar semi-variation of n with respect to p Dunford and
Schwartz ((1958),IV.10.3). But there is a positive measure A( = AP) such that
/Ip (E) —* 0 if A (E) —* 0 so that /A is dominated (with respect to /; Def. 2 of Swartz
(to appear)). Hence, Theorem 6 of Swartz (to appear) gives the theorem of
Kluvanek (1970).
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