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EQUIDISTANT LOCI AND THE MINKOWSKIAN 
GEOMETRIES 

B. B. P H A D K E 

1. The s p a c e d of this paper is a metrization, with a not necessarily symmetr ic 
distance xy, of an open convex set D in the ^-dimensional affine space An 

such t ha t xy + yz = xz if and only if x, yf z lie on an affine line with y between 
x and z and such t h a t all the balls px S p are compact . These spaces are called 
s t ra ight desarguesian G-spaces or sometimes open projective metric spaces. 
T h e hyperbolic geometry is an example; a large var ie ty of other examples is 
studied by contr ibutors to Hilber t ' s problem IV. When D = An and all the 
affine translat ions are isometries for the metric xy, the space is called a Min-
kowskian space or sometimes a finite dimensional Banach space, the (not 
necessarily symmetr ic) distance of a Minkowskian space being a (positive 
homogeneous) norm. In this paper geometric conditions in terms of equidis tant 
loci are given for the space R to be a Minkowskian space. 

More precisely and in detail , denote for a set M and a point p by Mp and 
pM, respectively, the numbers mi\mp\m £ M) and \ni{pm\m £ M) and 
define the equidis tant loci of M to be the sets E(M, a^) = {x\Mx = a] and 
E(M, *~a) = {x\xM = a} for a ^ 0. Denoting the two sides of a hyperplane 
H by <r±(H), define E±(H, V ) = E(H, V ) H a±(H). In this paper the 
following theorems are proved: 

T H E O R E M 1. The space R is Minkowskian if and only if for all hyper planes 
H the equidistant loci E±(H, *~a~*) are also hyperplanes. 

T H E O R E M 2. The space R is Minkowskian if and only if for all lines L the 
equidistant loci E(L, ^~a~*) are convex sets which are unions of lines. 

T H E O R E M 3. The space R is Minkowskian if and only if all the balls xp S P 
are also compact, the sets E(L, *~a~*) are convex, and for hyperplanes H either 
all E±(H, *"a) or all E±(H, a~*) are hyperplanes. 

Examples are also given a t the end to show t h a t weaker hypotheses on the 
equidis tant loci do not suffice to single out interesting geometries. 

For n = 2 and under strong differentiability and regulari ty assumptions 
(the la t ter in the sense of calculus of var ia t ions) , our Theorem 1 is a special 
case of a theorem of F u n k [2; 3], who shows t h a t we obtain a Minkowskian 
or his "Géométr ie der spezifischen Massbes t immung" when the equidis tant 
loci of lines (n = 2!) are lines locally; i.e., an affine segment S in the space has 
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a convex neighborhood U such tha t the points x in U a t a constant distance 
from the line containing S lie on lines. We make no assumption other than 
convexity on the domain D of définition of the geometry and give a purely 
synthet ic proof of all our theorems in n dimensions. In fact our proof would 
reduce to only a few lines (see § 3) \i D is assumed to be either the entire 
affine plane or the interior of a strictly convex closed curve in the plane (which 
is the case considered by F u n k ) . 

Acknowledgement. This paper consti tuted a par t ol my P h . D . dissertation 
wri t ten a t the University of Southern California. I am grateful to Professor 
H. Busemann for his guidance, encouragement and suggestions throughout 
the preparat ion of the dissertation. T h e work was partially supported by the 
National Science Foundat ion of the United States. I thank also Professor 
H. S. M. Coxeter and the National Research Council of Canada for support 
a t the University of Toronto . 

2. N o t a t i o n a n d pre l iminar i e s . In this paper we use the following nota­
tion. The balls px < p and xp < p are denoted by S+(p, p) and S~(p, p), 
respectively, while the spheres px = p and xp = p are writ ten K+(p, p) and 
K~(p, p). When Mp = qp we say tha t q is an initial foot (^-foot) of p on M 
and when pM = pq we say tha t q is a terminal foot (/-foot) of p on M. Stra ight 
lines are always parametrized as x(t), a < t < GO , so t ha t x(t)x(s) = s — t 
for s > t. A segment joining p to q is denoted T(p, q) and the symbol (pqr) 
s tands for collinear points p, q, r with q between p and r. We pu t C (M, ~*a) = 
{x\Mx ^ a) and define the sets C(M, ^a) analogously. When all E±(H, ^a^) 
are hyperplanes we say tha t the equidistant loci are flat or that the space 
has the equidistant locus property and when all tubes E(L, *~a~*) are convex 
unions of lines we say tha t the tubes are cylindrical or t ha t the space has the 
cylindrical tubes property. When considering the case of symmetric distance 
we shall sometimes omit the arrows or the signs + or — when they indicate 
the direction of distance. 

We collect below some results on the convexity of spheres and on perpen­
diculars which will be useful later. 

Since the convex sets in our space are affine convex sets it is easy to prove 
t ha t if every supporting hyperplane of a compact set M meets M in a convex 
set then M contains the boundary of its convex hull. Consequently, if such a 
set M is star-shaped then it is convex. An immediate application of this fact 
is t ha t if the set of /-feet (respectively, i-ieet) of every point on every line is 
connected, then the balls px ^ P (respectively, compact xp ^ p) are convex. 
An argument similar to t ha t of [1, § 20] then shows tha t if all px S P are 
convex then they are strictly convex and tha t if every point has a t most one 
i-ioot on every hyperplane then compact xp ^ p are strictly convex. 

The perpendiculars are denned as follows: Let H and G be two straight 
lines in a 2-dimensional space meeting a t a point p. Let ^(G) denote the 
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two sides of G. If for all x £ H C\ a+(G) p is the unique terminal loot of x on 
G, and for all x £ H Pi <r~(G) p is the unique initial foot of x on G, then we say 
that H is perpendicular to G incoming on the side o-+(G) of G. Using the 
methods of [4, § 8] and [1, § 20], we can show: In a 2-dimensional space, if all 
compact circles are convex, then given a line L and a point p $ L, there exists 
exactly one perpendicular to L through p incoming on the side of L containing 
p. There exists exactly one perpendicular through p incoming on the other 
side of L if p has an initial foot on L. In a higher dimensional space perpendic­
ulars to hyperplanes are similarly defined. An analogue of the above result 
then holds true. 

3. The 2-dimensional case. We will first prove the first theorem in the 
2-dimensional case with symmetric distance. The details of the proof in the 
^-dimensional case are given in §§ 4 and 5 with § 5 giving the proof in the 
general case of a not necessarily symmetric distance. We then prove Theorem 2 
by showing that the equidistant locus property is implied by the cylindrical 
tubes property. The proof of Theorem 3 is then given. The paper is concluded 
with some examples of spaces which satisfy weaker conditions regarding the 
equidistant loci. 

Let therefore the dimension of R be 2 and assume that the equidistants of 
lines are lines. We first collect several geometric properties of the space implied 
by the equidistant locus property. We use the easily proved fact that if Lx 

is equidistant to L2 then L2 is equidistant to L± to show that every point x 
has a unique foot on every line L. For if x had two feet / i and f2 on L, draw 
Li = E{L, xfi) and L2 equidistant to Lx on the side of L\ not containing L. 
Let yx = L2x, and if y, x,f± are not collinear let the line joining y and fi 
meet L\ in g 7e x. Then we have yx ^ yg, xfi ^ gfi but, by the triangle 
inequality, yg + gfi — yfi < yx + xfi which is a contradiction. Thus y, x,fi 
must be collinear. So also y,x,f2 are collinear, showing t h a t / i = f2. This 
argument also shows that if La is equidistant to L$ and L$ is equidistant to Ly 

then the successive feet of points are collinear, so the distances add up and hence 
La and Ly are also equidistants. Also, since the successive feet are collinear, 
a family of equidistants has common perpendiculars. In other words a family 
of equidistants and their perpendiculars form a net in the space. Since the 
interior of a strictly convex closed curve in the plane cannot admit a net we 
see that in the case considered by Funk [3], our theorem follows at once 
because in this case D can only be the entire plane and then from [1, Theorem 
24.1] the space is Minkowskian. 

We resume the discussion when D need not be the interior of a strictly 
convex closed curve. From the uniqueness of feet we see that the circles are 
convex as noted in § 2. Therefore at every point on the boundary of the circle 
there exists a supporting line and the line joining the center to this point is 
perpendicular to the supporting line. Thus given a line H we can always find 
a line L such that H is perpendicular to L. 
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We use the above geometric properties to show tha t the domain D in which 
the geometry is defined is either a triangle or a str ip or the entire affine plane. 
We observe the fact t ha t if D contains an entire affine line then it must be a 
half plane or a str ip which are projectively equivalent. If it does not contain 
an entire affine line, then it has a supporting line L which meets the affine 
closure of D in an affine compact set. Choosing U parallel to L as the line a t 
infinity we can transform D into a compact set. If D is compact it has a t least 
three extreme points pi, p2j pz say. We prove tha t D is in fact the triangle 
pip2p%. For, if it is not the triangle then one of the sides of the triangle, say 
Pip2, separates D. Let p and Hi lie on opposite sides of the line H which joins 
pi and p2. Since the line Hi and the point p lie on opposite sides of H, the 
equidis tant H2 through p of Hi cannot contain both pi and p2 because p (? H. 
However, every point x of the region between Hi and H2 is collinear with its 
feet fi on Ht since Hu being equidistants, have a common perpendicular 
through x. T h u s the region between Hi and H2 is the convex hull of Hi \J H2. 
Since either pi or p2 must belong to this region either pi or p2 is not an extreme 
point, which is a contradiction to the hypothesis. T h u s D is the triangle pip2p%. 

Hence to prove tha t the geometry is defined in the entire affine plane it 
suffices to prove tha t it cannot be defined inside a triangle or in a strip. T o 
show tha t it cannot be defined inside a triangle observe first t ha t the equidis­
t an t s of a line through a vertex of the triangle must again pass through t h a t 
vertex. T o prove this, it is first clear t h a t the equidistants must pass through 
the vertex a t least on one side since the vertex is an extreme point of the 
triangle and hence cannot lie between two equidistants as observed above. So 
we get two equidistants Lx and L2 passing through the vertex p, say. I t suffices 
to show tha t we obtain an equidistant to Li on the side <r{L{) of Lx which does 
not contain L2. If Li and L2 are a t a distance rj > 0, choose y with yx < 77, 
y G cr(Li), x £ Li, and let Lz join y and p. We assert t ha t the equidistant L 3 ' 
to L 3 through x must be Li because, otherwise, L 3 ' intersects L2 and contains 
points a t a distance >rj. Hence all lines through a vertex are mutual ly equi­
dis tant . 

Now let L be a line not passing through a vertex and let H be a perpendicular 
to L a t w. We show t h a t H mus t pass through a vertex. For if not, we can find 
a side of the triangle which intersects H and L say in p and g, respectively. 
Then we have equidistants L i and L2 , a t a distance a > 0 say, which join a 
vertex to p and q. Then for each x on the ray of H containing p, if the per­
pendicular through x to Lt meets them in u and v, respectively, and meets L 
in z, we have xw < xz < uv < a showing tha t an outgoing ray of H has finite 
length. This is a contradiction, so H mus t pass through a vertex. However, 
this also leads to a contradiction as can be seen by revolving L about w and 
noting t h a t the perpendiculars must vary continuously. T h u s the geometry 
cannot be defined inside a triangle. 

Next we show tha t the geometry cannot be defined inside a strip. For, if it 
is defined inside a strip bounded by A and A', then find a line L and its per-
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pendicular G such that L and G meet A and A' in g, s and p, r, respectively. 
Let L and G meet in u and let the perpendicular to N from u meet N, M in v 
and w, respectively, where N and M are lines joining p, q and 5, r. Let AT be 
represented by x(t) and let x(/o) = w. Since G is perpendicular to L we have 
min x(t)N = wiV and x(t)N —» oo as / —» GO and as £ —> — GO . But then the 
equidistant through w to N can neither intersect nor coincide with M. Thus 
the geometry cannot be defined inside a strip. 

It is now easy to prove that the geometry, defined in all of A2, is Minkow-
skian. In fact our circles are now convex curves such that a pair of equidistant 
supporting lines at the ends of a diameter are parallel. This implies, from 
the theory of convex curves in the affine plane (see [1, 16.7, p. 89]), that the 
metric center of a circle is its affine center. Thus the metric midpoint of a 
segment coincides with its affine midpoint which shows (see [1, p. 941) that 
the geometry is Minkowskian. 

4. The ^-dimensional case (symmetric distance). All the geometric 
properties proved for the 2-dimensional case carry over without much change 
for the higher dimensional spaces satisfying the equidistant locus property. 
Thus for example, the relation of being equidistant is an equivalence relation 
among the hyperplanes of the space, every point has a unique foot on every 
hyperplane, the spheres are strictly convex, and perpendiculars to hyperplanes 
exist. 

However, to prove the theorem in this case we will need some additional 
results. We first prove that the equidistant loci E(L, a) are convex. It suffices 
to show that for every x with xL = a we have a supporting hyperplane H to 
E(L, a) at x. Since L supports the sphere K(x, a), L can be imbedded in a 
supporting hyperplane H' to K{x, a). Then the equidistant H to Hr through x 
supports E(L,a) which proves that E(L,a) are convex. We use this result 
to prove that the map </> which sends each point x on H to its foot on an 
equidistant hyperplane H' is a projectivity, i.e., an incidence preserving 
bijective map. Since H and H' are mutually equidistant, at a distance a say, 
and since the feet of points on hyperplanes are unique, it follows that 0 is a 
bijection. To show that a line L C H is sent into a line, we observe first that 
</>L = Hr C\ E(L, a) as is easy to prove. But since H' and E(L, a) are convex 
this implies that the curve </>L is a 1-dimensional convex set which implies 
that it must be a straight line. This proves that 0 is a projectivity. Hence <t> 
can be written as a linear transformation in terms of suitable affine co-ordinates 
and can be extended to the affine boundary of D Pi H. Thus <£ carries boundary 
into boundary and extreme points into extreme points. Now denote by cj>a the 
projectivity between H and Hay equidistant to H at a distance a, on a given 
side of H. Then the images pa = 4>ap, P G H are all collinear since they lie on 
the perpendicular to H at p. The same result holds, by continuity, for points p 
on the boundary of D C\ H. 

We will need one more preliminary result. We prove the following: 
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If an entire affine line L is contained in D and if H is a hyper plane containing 
L, then perpendiculars to H along L are coplanar. 

Proof. Suppose tha t p is a point on a perpendicular to H a t a point a of L. 
Let P denote the two-plane containing p and the line L. Then if pa = a, the 
hyperplane E(H, ^a) through p meets P in a line L'', say. Since the set D is 
convex and since L is an entire affine line contained in it, the plane P meets D 
in a strip or a half plane bounded by a line parallel to L or else P meets D in 
an entire two-plane. Hence U is the only line through p in P which does not 
meet L and hence V is the affine parallel of L in P passing through p. 

Now if for a certain x f L ' , /3 = xL > a then consider the support ing 
hyperplane i ï 7 to E(L, *"/3) a t x Ç £ ( £ , *73). Then I T intersects P in a line L" 
and since every point of Hf is a t least xL units away from L, L " and L are 
also nonintersecting and are affine parallels of each other. Since the point x is 
common to both Lf and L", we have V = L". Then a = pL ^ xL > a, 
which is a contradiction. Hence for all x £ L\ xL = a or this implies t h a t L 
and L' are equidistant . Since U = P C\ E(H, *~a) we have proved t ha t the 
perpendiculars to H along L all meet U and hence they are coplanar. 

We re turn to the proof of Theorem 1 in the n-dimensional case. By using 
arguments similar to those in the 2-dimensional case we can show tha t the 
set D in which the geometry can be denned is protectively equivalent to either 
a simplex, a cylinder with r-dimensional generators, a strip between two hyper-
planes, or the entire affine space. We show tha t the geometry cannot be 
denned in the simplex or the cylinder, the proof of the impossibility of the 
str ip is similar to t ha t in the 2-dimensional case. See also § 5 for a more 
detailed proof of the case of the strip. 

In the case of the simplex also, we need consider only the 3-dimensional 
case because the higher dimensional case is similar. We first show tha t whenever 
a hyperplane passes through a vertex all its equidistants also pass through 
the same vertex. For a proof, let the te trahedron be OABC and assume tha t 
the hyperplane H passes through A. Since the images of A under the projec-
tivities are collinear, either all equidistants on the side <r~(H) or on the side 
<J+(H) pass through A. We show tha t both these events happen. Otherwise, 
suppose t h a t all equidistants on <r~(H) pass through A and tha t there is a 
last equidis tant H0 on a+(H) which passes through A. Let <T~~(H0) contain 
H and draw Hi C cr+(H0) through A. Then all equidistants of H± on <T+(HI), 
o-+(i7i) ~jb H0, pass through A. Let H2 be such an equidistant ; say H2 = 
E+(Hlja~^). Then since H0 and H2 are separated by Hi from which H2 is 
equidis tant we have 

£ = inf{x0x2 |xi G Hi} > 0. 

Now H* = E+(H0, ft/2) mus t pass through A because otherwise H* would 
contain points on a+(H2) and all points x on a+(H2) satisfy H0x > (3. However, 
t h a t iJ* passes through A is a contradiction to the hypothesis t ha t H0 is the 
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last of the associated equidistants in a family of equidistants of H which pass 
through A. 

We use the above result to prove that the geometry cannot be defined in a 
simplex. For an indirect proof, assume that the geometry is defined inside a 
simplex OABC. Then if if is a plane AQP with {CQB) and (CPO), all £ (if, a) 
pass through A and therefore the projectivities between H and its equidistants 
induce perspectivities on all lines in H which pass through A because A is 
self-corresponding. The center of perspectivity of these perspectivities must 
be the point C because otherwise an interior point x and its successive images 
would not be collinear. This implies that the projectivity between H and its 
equidistant must be a perspectivity from C because the projectivity coincides 
with the perspectivity for four suitable points of H, no three of which are 
collinear. 

Now, since the projectivities depend continuously on H and since the plane 
AOR with (CRB)j say H0, is a limit of planes H for different P and Q, we see 
that the projectivities between H0 and its associated equidistants are also 
perspectivities from C. But then the plane H0 can also be approached through 
planes H* = AQP with (CQB) and (OPB), and by the same arguments as 
given above for planes H, the projectivities between H* and its associated 
equidistants are also perspectivities, this time from the point B. This implies 
that the projectivities between HQ and its associated equidistants are per­
spectivities from B. Putting the above results together, the projectivities 
between H0 and its associated equidistants are perspectivities from C as well 
as from B. This is impossible and hence the geometry cannot be defined inside 
a simplex. 

Assume next that the geometry is defined inside a cylinder D with r-dimen-
sional generators. We introduce the notion of an extreme generator. We say 
that a generator G is an extreme generator if it is not contained in the interior 
of a portion of an (r + 1)-dimensional flat on the boundary. For example, if 
D is a cylinder in the 3-space based on a quadrilateral then the generators 
which pass through the vertices of the quadrilateral are extreme generators. 
A generator is extreme if and only if an (n — r)-dimensional section of the 
cylinder meets the generator in an extreme point of the cross section. 

A section of the cylinder by an (n — r)-dimensional flat which does not 
contain a generator, i.e., which intersects the generators in points only, is a 
compact section and we can prove, by a method exactly similar to that in § 3 
that this section has only (n — r + 1) extreme points. Consequently, there 
are only a finite number of extreme generators. Hence if G is an extreme gener­
ator and H is a hyperplane, G Cf. H, then the set G C\ H goes into 
G C\ E(H, ^a^) under the projectivities. This is because points of an extreme 
generator must go into points of an extreme generator only, by linearity, while 
they cannot go into points of a different extreme generator because the pro­
jectivities change continuously and there are only a finite number of extreme 
generators. 
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Now unless the set D is a strip enclosed by two parallel hyperplanes, there 
is at least one extreme generator, G say. We have already considered the case 
of the strip, so we assume the existence ol an extreme generator G. Let F be 
the portion of an (r + 1)-dimensional flat contained in D which is spanned 
by G and an r-flat in D parallel to G. Then F is actually an (r + 1)-dimensional 
strip or a half-space but not an entire (r + 1)-dimensional affine fiat. However, 
we will show that F has the equidistant locus property and this will provide 
the necessary contradiction because, since (r + 1) < n, the induction hypo­
thesis implies that if F has the equidistant locus property then F is an entire 
affine flat. 

To show that F has the ELP, let G0 be an r-dimensional flat, i.e., a hyper-
plane in F and let p be a point in F — Go, q be the terminal (or initial) foot of 
p on Go, and let L be the line joining p and q. By using the convexity of balls 
we can find a hyperplane H containing Go such that L is perpendicular to H 
at q. We show that all the perpendiculars to H at points of G0 lie in F. Suppose 
then that x Ç G0. If the line Li joining q and x does not meet the generator G 
then it is an entire affine line and all the perpendiculars along it are coplanar. 
On the other hand if the line L\ meets the generator G in a point r say, then 
since G is an extreme generator, under the projectivities r goes again into a 
point 5 of G only as observed above. Then the line L\ goes into the line L2, say, 
joining p and ^ and since p and 5 are in F the entire line L2 is also in F. Since 
x G L±, this proves that the perpendicular to H at x lies in F. We have thus 
shown that the perpendiculars to H at points of G0 lie in F. Therefore E (Go, ^a^) 
are precisely E(H, *~a~*) P\ F, thus proving that F has the equidistant locus 
property. This provides the necessary contradiction to our geometry being 
defined in a cylinder. Thus the geometry can only be defined in the entire 
affine space An. 

That the geometry is Minkowskian now follows from [1, Theorem 24.1, 
p. 144]. 

5. Nonsymmetric distance. When the distance of the space is not necessar­
ily symmetric and when the balls xp tk p are not assumed to be compact, the 
straight lines of the space are maps x(t), a < t < oo, x(s)x(t) = t — s for 
t > s, where a need not equal -co. Also, initial feet of points on closed sets 
need not exist. Our proof of Theorem 1 therefore needs important changes. 
The main parts are the proof that the equidistant locus property implies that 
every point has a unique initial foot on every hyperplane and the proof that 
the geometry cannot be defined inside a strip. 

Since a complete proof would repeat many of the methods of the proof of 
the previous sections, we only outline the modifications necessary. Thus by 
using the compactness of the balls px ^ p and a continuity argument, we can 
show that the relation of "being equidistant" is an equivalence relation, the 
terminal foot (and the initial foot when existing) of a point on a hyperplane 
is unique, and that all compact spheres are convex. 
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Since all the balls px ^ p are compact , the terminal foot of a point on a 
hyperplane always exists. W e show t h a t the initial foot also exists. Since 
H = E±(H', a~*) if and only if H' = E±(H, *«) , it suffices to show t h a t the 
map which takes p' G H' = E+(H, *~a) into its /-foot p on H is a bijective 
topological map . T h e proof is quite long and is based on families of equidis tant 
hyperplanes. W e pu t H_a = E+(H, * a ) , Ha = £ _ ( # , O and H0 = H. Each 
point of the space lies on exactly one Ha. If /3 > a, Hp C <J+{Ha), then Hp = 
E_(Ha, (/3 — a)~*) and Ha = E+(Hp, *~(£ — a)). Since successive /-feet of a 
point on Ha are collinear, a perpendicular corresponding to the family \Ha\ 
is a line 3>(/), YÎ/ < t < ° ° , with y(h)y(t2) = t2 — h, y (a) G i7 a such t h a t for 
iS > a, the point 3/(0) is the /-foot of 3/(a) on Hp and 3/(0;) is the 2-foot of y (ft) 
on Ha. W e prove t h a t 7 y is independent of the perpendicular y (/). This implies 
t ha t each perpendicular meets each Ha and this in turn implies the existence 
of an initial foot on every hyperplane of every point. 

W e show in fact t h a t yy = Sup{xi7|x G <j~(Ha)}. I t suffices to show this: 
If y (a) = p and Hp is denned for fi < a then y(i) is defined for / < (3. (We 
use here the fact t h a t /3 = Sup xH is impossible.) 

If p has an i-foot on Hp then there is nothing to prove. W e show t h a t we 
reach a contradiction if p does not have an i-foot on Hp. Choose first /3 < 7 < a 
and so close to a t ha t p has an initial foot q on Hy. Since Hpp = a — 0, we have 
a sequence {/„} in Hp such that fvp —> « — /3. We show t h a t / , —>/, a point on 
the boundary of Z> (since >̂ is assumed not to have an initial foot on Hp), and 
t h a t p, q, f are collinear. We show later on t h a t this leads to a contradict ion. 

By uniqueness of feet we have xp > a — 7 in x G Hy — {q}. Hence T(f„, £ ) 
intersects i77 in a point g„. Then qvp ^ a — y with the equal i ty holding only 
for qv = q. Since fvp ^ 7 - / 3 we have qvp —> a — 7, /„£ ^ 7 — /3. Hence if 
{g„} has an accumulat ion point in Hyj it can only be q. T o show tha t qv —» q it 
mus t be shown tha t no subsequence {gM} of {qv\ can tend to a point of the 
boundary of Hy or to a point a t infinity in An. 

T h e set C = {x\qx = 1, x G iJ7} is compact and hence min{x^|x G C} = 
<5 > a — 7. Consider the line LM through q and gM where ju is so large t h a t 
a — 7 < gM/> < 5. T h e line LM intersects C in aM and 6M, say, and q^ (? T{all1 by) 
because, otherwise, {gM} would have an accumulat ion point. 

Now a up ^ ô > a — y = qp. Hence u with (a^uq) and up = q^p exists. 
Similarly, v with (qvby) and vp = q^p exists. B u t then S~(p, q^p) would not 
be convex, since it meets LM in three points. Therefore qv —» q and the line 
through/ , , and p converges. S e t / = l im/„ w h e r e / m a y lie a t infinity or on the 
boundary of D. Then the above a rgument shows, for ft > /3i, t h a t / G Hpx 

also. We show tha t this leads to a contradiction. Let / G F = Hp C\ Hpx and 
pu t L = L(f,q). Let i J* be the hyperplane containing L and F. W e show 
t h a t H* is equidis tant from Hpx. Since if^ separates if* and if/^, inf {yx\y G if^, 
x £ H*} = <5 > 0. T a k e £ with <5i = i f ^ < <5 and <52 = pH* < Ô. Such a /> is, 
for example, the midpoint of T(y,x), y G Hpv x G iJ*, yx < 35/2. T h e n 
E+(H0l1 ~*ôi) mus t pass through T7 and p because, otherwise, it contains points 
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a t a distance greater than <5i which lie on the side of H* containing Hy. Similarly, 
£ _ ( # * , % ) passes through F and p showing £ _ ( # * , % ) = E+(HPl1 Ô{*). By 
transi t ivi ty, i7* and i ? ^ , and hence i7T, are equidistant. But H* cannot be 
equidis tant to Hy since L C H* and L intersects Hy in g. This completes the 
proof t ha t yy is independent of y. 

T h e existence of initial feet of points on hyperplanes now follows as oberved 
above. T h u s if <j> denotes the map which sends a point x (E Hi to its terminal 
foot on H2 = E+(Hi, a*) then 0 is a bijective map. T h a t 4> is continuous 
follows from the compactness of px ^ 8 while the continuity of $ _ 1 can be 
proved using ideas similar to those in the proof of the independence of yy and y. 

The existence of initial feet clears the way to extend other geometric proper­
ties and the classification of domains to the nonsymmetric case with methods 
similar to those in the symmetric case. T h u s the geometry can be defined 
inside a simplex, a cylinder with r-dimensional generators, the strip between 
two hyperplanes, or the entire affine space. The impossibility of the simplex 
and the cylinder with r-dimensional generators can be proved in the same 
manner as the symmetric case. W e outline the proof of the impossibility of 
the strip in the 2-dimensional case since the proof in the ^-dimensional case is 
similar. 

In the following we denote, for a line L and a point p, by 3%+(L, p) a ray of 
L bounded hyp and oriented in a direction going away from p, and by 3%~(L, p) 
a ray of L bounded by p and oriented in a direction coming towards p. Since 
the closed positive balls are compact, the rays &+(L, p) always have infinite 
length, while the rays S?~(L,p) may have finite length. W e denote by A 
and A' the lines which bound the strip D. For a line L with sides ^ ( L ) we 
define 0+(Z,) = SupJxZ, x G cr+(L)}, p~(L) = {xL, x G o - ( Z ) } . 

1. Let P be a line affinely parallel to A and let p 6 P . If a ray &~(P, p) has 
Unite length, then we get a contradiction. 

Proof. Let length &~(P,p) = p < oo. We can assume without loss of 
generality t ha t p < p < ]S±(P) = Sup{xP|x G R}, because if not, we can 
move the point p for a suitable distance. Then the disc S~(p, p') contains all 
of R~(P,p) since p < p' while because p < / ^ ( P ) , there exist points a in 
the space such t ha t qP > p1'; in particular, qp > p . Let p = qP and d raw 
through q the equidistant P' to P a t a distance p. Then P ' is the affine parallel 
to P through q. Therefore all lines L which meet A have their rays oriented 
towards p of length a t least p. By convexity of spheres, we find a line H such 
t h a t its incoming perpendicular a t p say L meets A and lies on the same side 
of H as contains t%~~(P,p). This leads to a contradiction because then we 
can draw Hi = E(H, *~p) meeting &~(P,p) in r, say. Then p = length of 
&~(P, p) > rp ^ rH = p, which is a contradiction. This proves 1. 

2. If there exists a line L meeting A and a perpendicular G of L also meeting 
A with, say, @+(L) = oo, then also we get a contradiction. 

https://doi.org/10.4153/CJM-1972-026-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-026-7


322 B. B. PHADKE 

Proof. Suppose x = L P A, y = G P A, x' = L P A', and / = G H A'. 
Let iV be the line joining x' to y oriented towards x' and represented by x{t). 
Let M join x to 3/. Let the incoming perpendicular to M through p meet N 
in r, let r = x(/0), and assume f Ç a+(M). 

We know that the function x(t)M is strictly monotonie. We prove that 
it decreases in (a(N), t0) and increases in (t0, oo ). This will give us the necessary 
contradiction. 

If x(t) does not decrease in (a(TV), /0] , then it increases there and so ft = 
s(*o)M = max{x(0M|^ e (<*(N), t0]}. Then if E+(M, *j8) = Mi, the ray of 
iV joining 3; to r is contained between Mi and ikf. Hence if u is any point on 
&+(y> P) and if the incoming perpendicular to M from u meets L in A, then we 
have up < uv < 0. This is a contradiction to the hypothesis that the length of 
the perpendicular joining y to p is 00. Thus #(£)M decreases in (a(N), t0]. 
We can similarly prove that x(t)M increases in [t0, 00 ). These two conclusions 
are incompatible with x(t)M being strictly monotonie. This proves the 
assertion 2. 

3. If the hypotheses of 1 and 2 do not hold, then also we get a contradiction. 
Thus our geometry cannot be defined in a strip. 

Proof. Let P be parallel to A and p £ P. Let L be a transversal to P through 
p. Since not all lines through p can be transversal to P , we have line Li and 
its perpendicular Pi through p such that Li and Pi both meet A. Let v+(L) 
contain the outgoing rays of P and Pi. 

Then since the hypotheses of 1 and 2 do not hold, length &~(P, p) is 
equal to 00 and P~(Li) is a finite number. Put q = Li P A, r = L P A. Let 
x G S$~(P, p) and Xi be the terminal foot of x on Li and x2 be the terminal foot 
of Xi on L. Then x£ ^ xx2 ^ xxi + Xix2 < fi~(Li) + xix2. Since xp —> 00 as x 
recedes on S%~(P, p) we see that xxx2 —> co as x recedes on 3$~(P, p), or which 
is the same, as Xi —> q in the affine sense. 

But the lines joining Xi and x2 are parallel to A and so they are perpendicular 
to L. Thus Xix2 —» 00 implies that the triangular region Apqr contains portions 
which have arbitrarily large lengths. Therefore every £_(L, *~a) meets the 
domain Apqr. Hence the length of the ray joining q to p has infinite length. 
So also all rays joining s to p have infinite length where 5 is any point outside 
Apqr and 5 Ç a~(L). We can therefore choose such a ray which is perpendic­
ular to a line meeting A. This is a contradiction to the assumption that the 
hypothesis of 2 does not hold. 

This completes the proof that our geometry cannot be defined inside a strip. 
The proof that the geometry is Minkowskian is now easy to complete. As 

in the case of the strip we can prove that every receding ray of every line has 
infinite length; consequently, all the balls xp ^ p must also be compact. Thus 
our space is defined in the entire affine space, it is finitely compact, and all 
the balls are convex. Hence by [4, Theorem 10.3], the space is Minkowskian. 
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6. The cylindrical tubes property. In this section we prove Theorem 2 by 
showing that the cylindrical tubes property implies the equidistant locus 
property. The proof is quite long and the first step is to prove that the cylindri­
cal tubes property implies the convexity of spheres. 

Observe first that the convexity of the tubes implies the convexity of 
C(H, *"«"*). In fact if (pqr) and a = max(Hp, Hr), then for every integer n 
there exist points pn and rn in H such that pnp, rnr < a + 1/n. Then 
p,r Ç C(Ln, (a + 1/n)^) where Ln denotes the line joining pn and rn. By 
convexity of C(Ln,a + 1/n) we have q Ç C(Lni (a + 1/n)^). Therefore 
Hq ^ Lnq S oc + 1/n for each n which shows that Hq ^ a. This proves the 
convexity of C(H, a~*). We can similarly prove that C(H, *~a) are also convex. 
We use this result to show that the set of terminal feet of a point on a line is a 
connected set. To show this let pL = pq = pr = a and pu = max{px\x with 
(qxr)} = p. We show that a = /3. Since pL = a, we know that fi ^ a. We 
show that 0 = a + 2e with e > 0 leads to a contradiction. Let i7 support 
E(L, *"«) at £ and put L\ = H C\ P, where P is the plane of the triangle pqr. 

Then L\U ^ max(Lig, L\r) ^ a. Therefore there exists a point p G £i , 
z>Z£ < a + e. Let x be the point in which T(u, v) meets, say, T(p, r). We 
distinguish two cases. 

Case 1. If px ^ vx, we have a + e < pu < px + xu ^ vx -\- xu = vu < 
a + e, which is a contradiction. 

Case 2. If £# > vx, we have w < vx + xr < >̂x + xr = pr = a. But yr < a 
is a contradiction to v belonging to the supporting plane of E(L, *"a). 

Thus in either case we get a contradiction. This proves that pu = /3 = a. 
Hence u is also a foot of £. Therefore the set of terminal feet of a point on a 
line is connected and so the balls px S p are convex as observed in § 2. We can 
prove similarly that the set of initial feet of a point on a line is a connected set 
and hence the balls xp ^ p are convex whenever they are compact. 

We need in fact a stronger result that the balls are strictly convex. To show 
this it suffices to show that every point has a unique terminal foot and at 
most one initial foot on every line. We give the proof for the initial feet. 
Suppose p has two feet q and r on L and let qp = rp = a. Let L\ be the inter­
section of a supporting plane H to E(L, a~*) and the plane of the triangle pqr. 
We can find a point x on a curve C in this 2-plane, joining two points on Lu 

such that p is an initial foot of x on L\ and such that x lies on the side of L\ 
in the 2-plane pqr which does not contain L. Then if, say, x,p, q are not 
collinear we have qx < qp + px, while if T(q, x) meets L\ in y, yx ^ px and 
qy ^ a = qp shows that qx = qy + yx ^ qp + £x. Thus x, £, g must be 
collinear. Similarly x, p, r are collinear. This implies q = r. Thus every point 
has at most one initial foot on every line. Consequently, all compact xp S p 
are strictly convex. Similarly, all px ^ p are strictly convex. 

We need to show that the sets E±(H, *~a~*) are hyperplanes. The proof that 
E±(H, *~a) are hyperplanes is shorter. We show that p, q G E±(H, ^a) implies 
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that T{p, q) is contained in E±iH, *~a). An argument similar to that of [1, 
24.14] then shows that E±(H1 *~a) are hyperplanes. Suppose then that pH = 
pr = qH = qs = a and ipxq). We have to show xTZ" = a. Let mm{xH\ ipxq)} — 
XoH = Xoy0 — j3. By convexity, f$ rg a. Hence it suffices to show that £ < a 
leads to a contradiction. Suppose there is a 7 such that 13 < 7 < a. Let Lx and 
L be the lines joining p, q and r, s, respectively. Then since the supporting 
hyperplane to E(H, *~a) at p cannot meet Tiq, s) at a point other than q for 
all x G Li to the left of p, we have x77 ^ a. Similarly, for all y with y to the 
right of q we have 3>7T ^ a. Hence i7 supports E(Xi, 0"*) at 3/0- Therefore there 
exists a line Lyo C H such that for all u G Lyo, we have L\u = 0. Hence for 
each u G 7,yo, there exists a, pu £ Li such that puu < 7. Also, because of the 
observation above, pu G Tip, q). We show that this leads to a contradiction. 
Now we havey0u ^ y0Xo + x0pu + £w^ ^ 3/0X0 + max(x0£, x0g) + 7 = a num­
ber ô independent of u. But y0u —> 00 as u traverses LVo, and hence the con­
tradiction. 

This shows that p, q G E±(H, *~a) implies that Tip, q) C E±{H, *~a) and 
this in turn implies, as observed above, that the sets E±(H, *~a) are hyper­
planes. 

It remains to show that E(H, a*) are hyperplanes. We break the complicated 
proof into several parts. 

1. (Transitivity of equidistants.) Let Hi, H2, Hz be three hyperplanes with 
Hi, H% lying on opposite sides of H2. Suppose that H2 = £(i73 , *~(3) and that 
Hi = EiH2, "~a). Then Hi = E(i73, «7), 7 =<* + &. 

Proof. For any x G Hi, let y be the /-foot of x on H2 and z the /-foot of y on 
Hz. Then xy = a, yz = /3. On the other hand, for any two points w, W\ in 
Hi, Hz, respectively, we have if T(w, w\) meets H2 in w2, ww2 ^ a, while 
w2Wi ^ 13. Thus x, y, z are collinear and xz = xy + yz = 7. This proves 1. 

2. 7/ 7/"/? = qp = a and H' is a supporting hyperplane to EiH,a~*), then 
H = EiHf,^a). 

Proof. Since qH' = qp = a, we draw E(i7' , «a) = if" through g. Then 77" 
is a hyperplane. If 7T' ^ H then 7Z*" intersects 7T and there exists a point 
x G Tf" such that x lies on the side <r+iH) of i7 which does not contain H'. 
Then if y is the terminal foot of x on 7T and if T(x, y) meets H in z, then 
:ry = a while XJS > 0 so that zy < a. This is a contradiction to y G 7T and 7T 
being a supporting hyperplane of E(H, a'*). 

3. 7/ w£ = Hp = Hq = vq = a, then for all x with ipxq) we have Hx = a. 

Proof. Let Hf support E(H, a'*) at p. If q G 77' we have nothing to prove, 
because then x G H' and since ipxq), Hx ^ a while x G i7 ' gives 77x ^ a. 
Then 77 = E(H', *a), and since g (? 77', there exists r £ H' with z/r = a, 
r 9^ q. Let L be the line in which the plane of triangle rvq meets the hyper­
plane H. Then there exists a point w on the side of H which does not contain 
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p such that the /-foot of w on L is v. Joins T(w, q) and T{w, r) meet Lint and 5 
respectively. Since wv S ws and wv ^ w/, we have either vr > sr or vq > /g. 
However, z;r > sr implies sr < a which contradicts r £ H' and H' supporting 
E(H,a~*), while flg > tq contradicts v being the initial foot of q on H. This 
proves 3. 

4. Le/ i l = E(Hi, *~a) and C = {x\x G Hi, x is the t-foot of some point on H). 
Then the set C is convex, open, and (n — 1)-dimensional. 

Proof. The proof of this can be obtained along the same lines as in § 5. The 
convexity of C then follows from 3 and from the fact that if x is /-foot of y, 
then y is i-foot of x. 

5. Suppose Li and L2 are two lines and L2p = qp = a and L2u = a for all 
u G L\. Then either-, (i) a ray S% of L2 from q is equidistant from L\, i.e., for each 
v G 0H, vL\ = a, or (ii) each point u G Li has an initial foot on L2. 

Proof. If (i) does not hold, then there exist two points r, s on L2 one on each 
side of q such that rL\, sL\ > a. Suppose that rLu sL\ > a + e. Draw through 
r a supporting hyperplane H to E(Li, *>Li). Since g/> = a < a + e, the plane 
i i cannot contain q. Hence for every x with (xrq), we have xu > a + e. 
Similarly, we can prove that for every u G Lx and 3/ with (353;), yu > a -\- e. 
Denote by T the segment joining r and 5. Now if u G Li, then L2w = a; hence 
there exists a sequence {̂ wj un G L2 such that unu < a + 1/w. Thus for all 
large n, un G L1. Since T is compact, Sup{ut\t G L} < 00, so there exists a p 
such that for all sufficiently large n, un G S+{u, p). Hence {un) has an accumula­
tion point uo, say. Since u0u = a, u0 is the initial foot of u on L2. Since w is 
any point of L\ we have proved the assertion. 

6. Let H and H\ be two hyperplanes such that E(H\, *~a) = H. Then Hi = 
E{H,a^). 

Proof. Let p be the terminal foot of a point q G H on i i i . Then g£ = a. Since 
for any two points x, y G H, Hi, respectively, we have xy ^ a, Hi supports 
E{H, a~*) at p. Also, since qp = a, q is the initial foot of p on H. 

Given any line Li through q in if, £ G E(Li,a~*). Therefore there exists 
L / through £ in ii"i such that L / is equidistant to Li; i.e., for all w G L / , 
Li^ = a. 

We show that different lines Li, L2 in i i correspond to different lines LÎ, 
L2' in Hi. This is because, if Lx, L2 contained in H, Li p̂  L2, correspond to the 
same line L\ we reach a contradiction. In fact, in that case, by 5, there exist 
segments Ti, T2 (formed by initial feet of points of L / ) on Li, L2, respectively, 
such that each point of 7\ and L2 is at a distance a from LÎ. Since H supports 
E(Li, *~a) and since E(Li, *~a) is convex, the convex hull of T\ \J T2 is also 
equidistant from L / . Let U be an open 2-dimensional set in Conv(Li KJ T2) 
and define 0:Z7—>L/ by sending x G U to the terminal foot of x on L / . 
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Then by 4, <j> is a homeomorphism of U onto its image. However, this is a 
contradiction because U is 2-dimensional and L / is 1-dimensional. Thus Lu 

L2 cannot both correspond to LÎ. 
Hence as Li sweeps out H, LÎ sweeps out Hi. Consequently, every point 

x of Hi satisfies Hx = a. Hence Hi = EÇH, a~*). 

7. E(H, a~*) are hyperplanes. 

Proof. Let p Ç E(H, a~*) and take any point a on H. Let T(q, p) be repre­
sented by x(t), 0 g 2 ^ j8. Put C = {iix(/)| there exists i?£ such that H = 
E(Ht, *~(Hx(t)))}. Then for small t, x(t) has an initial foot on if and then Ht 

can be taken to be a supporting hyperplane to E(H, Hx(t)~*). Then H = 
E(HU *-(Hx(t))). Hence te C for small /. 

If Hx{tn) Ç C and tn—>t, then let Htn—>Ht through a subsequence if 
necessary. Then taking limits in the equation H = E(Htn, *~(Hx(tn))) as 
n —» oo, we have by continuity of distance, if = E(Ht, ^(i ix (£))). Hence the 
set C is closed. 

We show that Sup C = a. If Sup C = 7 < a, then for small e there exists 
on the side of Hy not containing H, a hyperplane H€ such that Hy = E (He, ^e). 
Then the equations H = E(Hy, *~y) and Hy = E(Ht, *"e) imply that i? = 
E(H€, ^(7 + e)). This is a contradiction to the assumption that Sup C = 7. 

Thus given if, there exists Hi such that H = E(HU *~a). By 6, then we 
have ffi = E(H, a~*). Therefore E(H, a~*) is a hyperplane for all a. 

The results show that the cylindrical tubes property implies the equidistant 
locus property which in turn implies that the geometry is Minkowskian. 

7. The proof of Theorem 3. We now assume that all the balls px ^ p as 
well as xp ^ p are compact, that all E±(H, *~a) are hyperplanes, and that all 
tubes E(L, *~a~^) are convex. To show that the geometry is Minkowskian it 
suffices to show that if H' = E(H, *~a), then H = E(H',a~*), because this 
shows that the sets E(H, a~*) are also hyperplanes, It can be proved as in the 
last section, using the convexity of the tubes, that all spheres are strictly 
convex. Hence from [4, § 8], the perpendiculars exist. Hence given any x G H, 
on the incoming perpendicular to H at x we can find a point y Ç H'. Then x is 
the terminal foot of y G H'. Since H' = E(H, *~a) we have yx = y H = a. 
This implies that H'x = a also, because for any u G H', ux ^ a. while yx = a. 
This proves that H = E(H',a~*). The converse can be proved in a similar 
manner. Thus the hypothesis of Theorem 3 implies the hypothesis of Theorem 1. 
This proves Theorem 3. 

8. Weaker flatness conditions. In closing, we give two examples to show 
that if we simultaneously weaken the hypotheses regarding the compactness 
and the equidistant locus property, then we get a large number of solutions 
which are geometrically of little interest. 
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Consider, for example, a metrization of the upper half plane as follows. 
Denote by e(p, q) the Euclidean distance between two points p = (px, py) and 
q = (qx, qv) and let d(p, q) denote the number \l/pv — l/qy\. Let d*(p, q) = 
e(p, q) if the oriented ray joining^» to q does not meet the x-axis and d* (p, q) = 
d(p, q) + e(p, q) if the oriented ray joining p to q meets the x-axis. One can 
show tha t the function d* is a metric which makes the upper half plane a 
nonsymmetric desarguesian plane with only the balls px ^ p compact for all 
p > 0. Also, given any line L and any number a > 0 a t least one of the four 
sets E±(L, *~a^) is always a line because by choosing the direction suitably 
only the Euclidean distance enters. 

Our other example is a modification of the Funk distance [3]. Using the 
same notat ion as above, def ine / (£ , q) = log(e(p, u)/e(u, q)) if u is the point 
in which the oriented ray joining p to q meets the x-axis. Then the definition 
f*(Pi #) = e(Pt Q.) if t n e oriented ray joining p to q does not meet the x-axis, 
a n d / * ( £ , q) = f(p, q) + e(p, q), otherwise, gives a metric which also has the 
same properties as the first example above. 
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