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Introduction

Throughout by an algebrawe mean afinite dimensional K -algebrawith anidentity
over an algebraically closed field K. By a module over an algebra A we mean a
right A-module of finite K-dimension.

From Drozd's remarkable Tame and Wild Theorem [21] the class of algebras
may be divided into two digoint classes. One class consists of tame algebras for
which the indecomposable modules occur, in each dimension d, in afinite number
of discrete and a finite number of one-parameter families. The second class is
formed by the wild algebras whose representation theory is as complicated as
the study of finite dimensional vector spaces together with two non-commuting
endomorphisms, for which the classification is a well-known unsolved problem.
Hence, we can hope to classify the modules only for tame algebras. Frequently,
applying covering techniques, we may reduce the study of modules over tame
algebras to that for the corresponding simply connected algebras. Here, we are
concerned with the representation theory of tame simply connected algebras.

Among the tame algebras we may distinguish the class of representation-finite
algebras, having only finitely many isomorphism classes of indecomposable mod-
ules. This class of algebrasis presently rather well understood (see[7], [13], [15],
[16]). In particular, we know that if a representastion-finite algebra A has afaith-
ful indecomposable module X, then A admits a Galois covering A which has an
indecomposable module X whose push-down is X and whose support is simply
connected (see [14], [15], [16]). The class of sincere representation-finite simply
connected algebras has been classified completely by quiversand relations. It con-
sists of 24 infinite regular families of Bongartz [10] (whose Gabriel quiver has at
least 14 vertices), being of considerabletheoretical interest, and 16.344 exceptional
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algebras (see [18], [19], [40]). We note also that, for a representation-finite simply
connected algebra A, the Auslander-Reiten quiver I' 4 of A isdirected, and hencethe
indecomposable A-modules are uniquely determined by their dimension-vectors,
being the positive roots of the Titsform ¢4 of A (see[11], [39]).

Therepresentation theory of tame representation-infinite algebrasisonly emerg-
ing. At present the most accessible seem to be the (tame) algebras of polynomial
growth, for which there exists an integer m such that the number of one-parameter
familiesisbounded, in each dimension d, by d". Thisclass of algebrashasbeenthe
subject of intensive research over the last 15 years. It contains the class of domes-
tic algebras for which there is a constant bound on the number of one-parameter
families in each dimension. Important classes of polynomial growth algebras are
representation-infinite tilted algebras of Euclidean type and tubular algebras for
which a complete representation theory was established in the Ringel’s book [39].
Later O. Kerner proved in [24] that all tametilted algebras are domestic, and hence
of polynomial growth. Moreover, it was shown in [39] that the support of any inde-
composable module which does not lie on a cycle of nonzero nonisomorphisms
between indecomposable modules (directing module) is a tilted algebra. Hence,
all tame agebras having sincere directing indecomposable modules are tilted and
domestic. This class of tame algebras has been investigated by J. A. de la Pefia
in [33], [34]. On the other hand, by a result due to L. Peng—J. Xie [30] and the
author [45], the Auslander—Reiten quiver of an algebra A hasat most finitely many
DTr-orbits containing directing modules. Hence, in order to develop the repre-
sentation theory of arbitrary tame algebras, we need informations on cycles of
indecomposable modules. This was the main objective of studiesin [3], [4], [5],
[50] where atheory of algebras with finite cycles of indecomposable modules has
been devel oped.

One of the main objectives of this paper is to describe the structure of the
category mod A of modules over an arbitrary strongly simply connected algebra A
of polynomial growth. Recall that an algebra A without oriented cyclesinitsGabriel
quiver is called strongly simply connected [44] if, for any convex subcategory C
of A, the first Hochschild cohomology group H(C, C) vanishes. For A of finite
representation type this coincides with the simply connectedness in the sense of
[15] (the geometric redlization |I"4| of the Auslander—Reiten quiver I'y of A
is simply connected). We characterize the polynomial growth of strongly simply
connected algebras (Theorem 4.1) by propertiesof theinfiniteradical rad®°(mod A)
of mod A, the shape and behaviour of the Auslander—Reiten componentsin mod A,
and properties of cycles of indecomposable modules in mod A. In particular, we
get that, for a polynomial growth strongly simply connected A, all but finitely
many DTr-orbits in I 4 are periodic, the components of "4 are standard and
partially ordered (in mod A), and each of them is either directed or a glueing of
finitely many coils[4] by directed parts. Moreover, we obtain that astrongly simply
connected algebraisof polynomial growthif and only if A doesnot containaconvex
subcategory which is hypercritical or pg-critical. This gives a handy criterion for
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the polynomial growth of strongly simply connected algebras. In the course of our
proof of Theorem 4.1 (Section 6) we establish al so the following important fact. For
an arbitrary strongly simply connected algebra A of polynomial growth, there are
tame coil enlargements of critical algebras (coil algebras) [5] By, ..., B, which
are convex subcategories of A and whose indecomposable modules exhaust all
but finitely many (up to isomorphism) indecomposable A-modules. Moreover, the
remaining indecomposable modul esare directing, and hencetheir supportsaretame
tilted algebras. This open a door to a complete classification of indecomposable
modules over polynomial growth strongly simply connected algebras. We prove
here (Corollary 4.7) that the one-parameter families of indecomposable modules
over such algebras are given by the one-parameter families of indecomposable
modules over critical and tubular algebras. In Section 4 we give aso severd
characterizations of domestic strongly simply connected algebras (Corollary 4.3).
In particular, we get that a strongly simply connected algebra A is domestic if and
only if A does not contain a convex subcategory which is hypercritical, pg-critical
or tubular.

We shall mention that our Theorem 4.1 isessentially appliedin[52] to establisha
handy criterion for the polynomial growth (respectively, domestic type) of algebras
having strongly simply connected Galois coverings.

Theresultsof thispaper were partially announcedin[46], [49], [51] and present-
ed during the Conferences in Oberwolfach (1991), Ottawa (1992), Mexico (1994)
and the Universities of Bielefeld, Paderborn, Trondheim, Paris V1, Nagoya, Tsuku-
ba, Sherbrooke, Beijing, Singapore, Sao Paulo, Mexico. The author is grateful to
these ingtitutions for providing the possibility of discussing our investigations.

The research is also partially supported by Polish Scientific Grant KBN No.
2P03A 020 08.

1. Terminology and notation

Throughout this paper K will denote a fixed algebraically closed field. By an
algebra is meant an associative finite dimensional K-algebra with an identity,
which we shall assume (without loss of generality) to be basic. For such an algebra
A, there exists an isomorphism A ~ K@Q/I, where K () is the path algebra of the
Gabriel quiver Q = Q4 of A and I isan admissible ideal in KQ. Equivalently,
A = KQ@Q/I may be considered as K -category whose class of objectsisthe set (o
of vertices of 9, and the set of morphisms A(z,y) from z to y is the quotient of
the K-space KQ(z,y), formed by the K -linear combinations of pathsin @@ from
x to y, by the subspace I (z,y) = KQ(z,y) N I. An agebra A with Q4 having
no oriented cycleis said to be triangular. A full subcategory C of A is said to be
convex if any pathin Q4 with source and target in Q¢ liesentirely in Q.

For analgebra A, wedenote by mod A the category of finitely generated right A-
modules and by ind A its full subcategory consisting of indecomposable modules.
The term A-module is used for an object of mod A if not specified otherwise.
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We shall denote by rad(mod A) the Jacobson radical of mod A, that is, the ideal
of mod A generated by all noninvertible morphisms in ind A. Then the infinite
radical rad>°(mod A) of mod A is the intersection of all powers rad’(mod A),
1 > 1, of rad(mod A). We say that rad>(mod A) is nilpotent (respectively, locally
nilpotent) if there exists m > 1 such that (rad>°(mod A))"* = 0 (respectively,
(rad>* (M, M))™ = 0for any module M inind A). A path of length ¢ inmod A is
a sequence of nonzero nonisomorphisms

() Mot% My— - — M1 25 M,

with ¢ > 1 and the modules M; in ind A. Such a path is said to be infinite if
fi € rad>*(mod A) for some 1 < 7 < t. A cycle of length ¢ is a path (x) with
Moy ~ M;. A module M from ind A is said to be directing if it does not lie on a
cyclein mod A. For amodule M in mod A, we denote by dim M the dimension-
vector (dimg M (3))icq, Of M. The support supp M of amodule M € mod A is
the full subcategory of A given by all verticesi € Q4 such that M (i) # 0. We
denoteby D: mod A — mod A the standard duality D = Homy (—, K'), where
AP denotes the oposite algebra of A.

For an algebra A, we shall denote by T"4 the Auslander—Reiten quiver of A,
and by 74 and 7 the Auslander—Reiten translations DTr and TrD, respective-
ly. We shall identify the vertices of T"4 with the corresponding indecomposable
A-modules. A connected component C of I 4 issaid to be standard if the full sub-
category of mod A formed by all modules of C is equivalent to the mesh-category
K (C) of C (see[15], [39]). Moreover, following [47], aconnected component C of
"4 is said to be generalized standard if rad>°(X,Y) = 0 for al modules X and
Y inC. It is known [28] that every standard component is generalized standard.
For the components which do not contain both a projective module or an injective
module, the converse implication is also true [48] but in general it is not the case.
For a subquiver I of I" 4 we denote by supp " the support of T', that is, the full
subcategory of A formed by all vertices z of ()4 such that the simple A-modules
S(z) at z occur as the composition factors of modules lying in I'. Finally, the
component quiver X4 of A [46] is defined as follows: the vertices of X 4 are the
connected components of I" 4, and two componentsC and D are connected in X 4
by anarrow C — D if and only if rad*°(X,Y") # 0 for some modules X in C and
Y in D. Observe that a connected component C of I"4 is generalized standard if
and only if X4 hasnoloop at C.

Let A beanagebraand K [z] the polynomial algebrain one variable. Following
[21] Aissaidtobetameif, for any dimension d, thereexistsafinitenumber of K[z]—
A-bimodules M;, 1 < i < ng, which are finitely generated and free as left K |[x]-
modules, and al but a finite number of isomorphism classes of indecomposable
A-modulesof dimension d areof theform K [z]/(z — \) ® g, M; for some ) € K
and some i. Let p4(d) be the least number of K[z]—A-bimodules satisfying the
aboveconditions. Then A issaid to be of polynomial growth (respectively, of linear
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growth) if there exists a positive integer m such that p4(d) < d™ (respectively,
pua(d) < md)forany d > 1[43]. Further, A isdomesticif p4(d) < m for afixed
m > 1and any d > 1. From the validity of the second Brauer—Thrall conjecture
we know that A is representation-finite if and only if p4(d) = Oforany d > 1.
Thereisstill an open problem whether all polynomial growth algebrasare of linear
growth.

We recall that, if B is arepresentation-infinite tilted algebra of Euclidean type
A, then one of the following holds:

(a) B isadomestic tubular extension of atame concealed algebra C' and

FB :PO\/,]-OVIOa

where Py is the preprojective component of I'¢-, 7o is aP1 (K )-family of pairwise
orthogonal and standard ray tubes, obtained from the stable tubes of I'; by ray
insertions, and Zy a preinjective component containing a slice of type A.

(b) B isadomestic tubular coextension of atame concealed algebra C' and

I»WB ::7)u>V/7Eo Vl1507

where P, is a preprojective component containing a slice of type A, 7 is a
P1(K)-family of pairwise orthogonal and standard coray tubes, obtained from the
stabletubesof I'; by coray insertions, and Z., isthe preinjective component of I'¢.
The ordering from the left to the right indicates that there are nonzero morphisms
only from any of these classes to itself and to the classes on its right (see [39,
(4.9)]).

If Bisatubular dgebrathen B isatubular extension (respectively, coextension)
of atame concealed algebra C' (respectively, C') and

I'p=PoVToV ( \ 7;) V Too V Ioo,

geQt

where Py is the preprojective component of I'¢», 7o is aP1(K)-family of pairwise
orthogonal ray tubes, obtained from the stable tubes of I by ray insertions, Z is
the preinjective component of I'cv, T isa Py (K )-family of pairwise orthogonal
coray tubes, obtained from the stable tubes of I'» by coray insertions, and, for
eachq € Q", 7, isaP1(K)-family of pairwise orthogonal stable tubes. Moreover,
all componentsof I'g are standard (see [49, (5.2)]).

The Tits form of atriangular algebra A = K@Q/I isanintegral quadratic form
qa: Z" — Z,n = |Qo|, defined, for z = (z;) € Z", by

qga(z) = Z :vlz— Z xirj + Z (1, 7) iz,

1€Qo (i—j)€Q1 4,J€Q0
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where ()1 denotes the set of arrows in @ and (7, ) is the cardinality of L N
I(4,7), for aminimal set of generators L C |J; ; I(i, j) of theideal I. If moreover
gl.dim A < 2, then g4 coincides (see[11]) with the Euler form x 4 of A which, for
an A-module X, is defined by

xa(dimX) = 3" (=1) dimg Ext (X, X),
i=0

(see [39, (2.4)]). It is known (see [31]) that, if A is tame, then ¢4 is weakly
nonnegative, that is, g4 () > 0 whenever z € N”.

Finally, for an algebra B and a B-module R we denote by B[R] the one-point
extension algebra

o 5]

For a basic background on the representation theory applied here we refer the
reader to [22], [39], [4], [5].

2. Simply connected algebras

Let A beatriangular algebraand @ its Gabriel quiver. For each vertex x of (9, denote
by Q(z) the subquiver of () obtained by deleting all those vertices of () being a
source of apath in Q with target z (including the trivial path from z to ). We shall
denote by A(x) the full subcategory of A whose objects are the vertices of Q(z).
Moreover, for each vertex = of (), denote by P(z) the indecomposable projective
A-moduleat z, and by R(z) theradical of P(x). Then R(x) issaid to be separated
if R(x) isadirect sum of pairwise nonisomorphic indecomposable modules and
whose supports are contained in pairwise different connected componentsof Q(x).
Following [8] we say that A has the separation property if R(z) is separated for
any vertex z of Q. It was shown in [44] that if A hasthe separation property then
A issimply connected in the sense of [1], that is, for any presentation A ~ KQ/I
of A as a bound quiver algebra, the fundamental group m1(Q,I) of (Q,I) is
trivial. Recall also that A is called strongly simply connected [44] if every convex
subcategory of A issimply connected. The following characterizations of strongly
simply connected algebras have been proved in [44, (4.1)].

(2.1) PROPOSITION. For a triangular algebra A the following conditions are
equivalent:

(i) A isstrongly simply connected.

(ii) Every convex subcategory of A hasthe separation property.
(iii) Every convex subcategory of A% has the separation property.
(iv) HY(C,C) = 0 for every convex subcategory C of A.
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We note also that a representation-finite algebra A is simply connected if and
only if A isstrongly simply connected (see [16]). Moreover, the class of strongly
simply connected algebras contains the class of completely separating algebras
investigated by P. Draxler [20].

We shall now exhibit some important classes of strongly simply connected
algebrasplaying acrucial rolein our investigations of polynomial growth algebras.
Observe that a hereditary algebrais simply connected if and only if it is the path
algebraof atree. Let A be afinite connected quiver whose underlying graph A is
atree, and H = KA. Thenit isknown that H is representation-infinite and tame
if and only if A isone of the Euclidean graphs

[ ] [ ] °
Dy, o—eo —---—0—@ I~E6 l
n>4 |
o ° o—o—0—0—0
~ [ - °
E7 | g |
o—o —9o—0—0—0—0 o—o —90—90—90—0—0—0

Hence H = KA iswildif and only if A contains one of the following graphs

T5 ><_. ]I:Dn .\._._‘”_._./o ° IZE6 0—o_£_._._.
S - S B

wherein the case of D,, the number of verticesisn + 2,4 < n < 8.

Assumethat H = K A isrepresentation-infinite (A is not aDynkin quiver) and
T is a preprojective tilting H-module, that is, Ext}, (T, T) = 0 and T is a direct
sum of n = |Ag| pairwise nonisomorphic indecomposable H-moduleslying in the
Trr-orbits of projectivemodules. Then C' = End 4 (7') iscalled aconcealed algebra
of type A. It is known that gl.dim C' < 2 and C has the same representation type
as H (see[39]). A concealed algebra of type A = D,,, Eg, E7 or g (respectively,

A = T5,]D>n,IE6,IE7 or Eg) is said to be critical (respectively, hypercritical). The
critical (respectively, hypercritical) algebras are strongly simply connected and
have been classified completely by quiversand relationsin[12], [23] (respectively,
[26], [55], [56]). It is known (see [11], [12]) that a strongly simply connected
algebra A isrepresentation-finite if and only if A doesnot contain acritical convex
subcategory, and if and only if ¢4 isweskly positive (that is, g4 (x) > 0 whenever
z # 0 and has nonnegative coordinates). It is expected that a strongly simply
connected algebra A is tame if and only if g4 is weakly nonnegative. We shall
show in the paper that thisis true for strongly simply connected algebras without
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pg-critical convex subcategories defined below. We shall use the following result
proved in [32, (3.1)].

(2.2) PROPOSITION. Let A be a strongly ssimply connected algebra. Then ¢4
is weakly nonnegative if and only if A does not contain a hypercritical convex
subcategory.

For tubular extensions (respectively, coextensions) of critical algebraswe have
the following fact.

(2.3) PROPOSITION. Let B beatubular extension (respectively, coextension) of
acritical algebra C. Then the following conditions are equivalent:

(i) Bistame.
(if) B istubular or representation-infinitetilted of Euclidean type.
(iii) gp isweakly nonnegative.

Proof. Followsfrom [39] and [36, (3.3)].

Following [29] by a pg-critical algebra we mean an algebra A satisfying the
following conditions:

() A isoneof the matrix algebras
KK..KKKN]

K..KKKO

K R
B[R]:[OB]7 B[N, t] = KKKO|/|>
K 0O
0 K 0
B

where B is a representation-infinite tilted algebra of Euclidean type D,,, n > 4,
with a complete slice in the preinjective component of I'z, R (respectively, N) is
an indecomposable regular B-module of regular length 2 (respectively, length 1)
lyinginatubeof I'p withn — 2rays, t + 1 (¢ > 2) is the number of isoclasses of
simple B[N, t]-modules which are not B-modules.

(i) Every proper convex subcategory of A is of polynomial growth.

The pg-critical algebras have been classified by quiversand relationsin[29]. In
particular, it is shown in [29] that al pg-critical algebras are ssimply connected of
global dimension 2. There are 31 frames of such algebras, and among them only
16 frames are strongly simply connected.

The following proposition describes the representation type of hypercritical,
pg-critical and tubular algebras.

https://doi.org/10.1023/A:1000245728528 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000245728528

SIMPLY CONNECTED ALGEBRAS OF POLYNOMIAL GROWTH 107

(2.4) PROPOSITION. (i) Every hypercritical algebraiswild.

(if) Every pg-critical algebraistame but not of polynomial growth.

(iii) Everytubular algebrais nondomestic of linear growth.

Proof. (i) It follows from [38] and [39, (4.2)], that, if B is hypercritical, the
I" 3 has no homogeneoustube, and so B iswild by [17, Corollary E]. Seealso [32,
(3.1)], for adifferent proof.

(ii) For aproof we refer to [42].

(iii) See[43, Lemma 3.6].

(2.5) PROPOSITION. Let B be atubular algebraand

L =PVToV ( \ 7;) V T V oo,

geQt

the standard decomposition of I'g. Let M be an indecomposable B-module lying
iNPoV ToV (Vyeo+ Tq) @nd A = B[M]. Then g, is not weakly nonnegative.

Proof. Let w be the extension vertex of B[M]. Since M belongsto Py V 7o V
(Vgeo+ Tg) wehavepdp M < 1 and hencegl.dimA < 2. In particular, gy = xa-
Moreover, there existsp € Qt such that M belongsto Py V 7o V (Vy<p Tg)- Since
T, is separating (see [39, (3.1)]), there exist modules X and Y" lying in different
homogenous tubes of 7, such that Homp (M, X) # 0 and Homg(M,Y') # O.
TakeZ =X @Y andputv = dimZ + e,,. Then

gr(v) = xa(v) = (dMZ +e,,dimZ + e,)
— (dimZ,dim Z) + (e, dimZ) + (A Z,e,) + (eu, e.)
~ (ew,dimZ) + 1 = (dim P(«w) — dim M, dim Z) + 1
= —(dimM,dim Z)+1=—-dimyx Homg (M, Z)+1<0,

because Exty (M, Z) ~ DHomg(Z,75M) = 0. Therefore, gy is not weakly
nonnegative.

(2.6) PROPOSITION. Let B be a tubular extension of a critical algebra C, T
a ray tube in I'p obtained from a stable tube of ' by ray insertions, and R
an indecomposable B-module in 7 having two direct successors. Assume that
A = BJR] isstrongly simply connected and does not contain a pg-critical convex
subcategory. Then g, is not weakly nonnegative.

Proof. By Propositions2.3 and 2.5, we may assumethat B istilted of Euclidean
type A (= D,,n > 4, 0rE,,6 < p < 8). Let r bethe length of maximal sectional
path in 7" with source R and consisting of arrows pointing to the mouth. We know
from [39, (4.9)] that B = Endy(T'), where H is a hereditary algebra of type
A and T atilting H-module without preinjective direct summands. Moreover,
R = Homg (T, R') for an indecomposableregular H-module R’ of regular length
r lying in a stable tube 7" of I'y. Since by our assumption A has no pg-critica
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convex subcategory, in the case A = D,,, we have additionally that » > 3 or
T isnot of rank n — 2. Let w be the extension vertex of A = B[R]. Then by
[31, (2.1)], there are preinjective H-modules V1,...,V,, and ¢ € N such that
g (Z dimHomy (T, V) + ae,,) < 0, and hence ¢, is not weakly nonnegative.

(2.7) COROLLARY. Let A bea strongly simply connected algebra of the form

F N7
A= ,
oc]
where C isa critical algebra, N a simpleregular C-module, F' is given by one of
the quivers
'Y b
we—e—--. —e—eg w._._..._._.{ \I
\, N

with theright quiver bound by the commutativity relation, and such that A(z, y) =
N(y)®k F(z,w) for anyverticesz € Qr andy € Q¢. Theneither A ispg-critical
or g, is not weakly nonnegative.

Proof. Assumethat A isnot pg-critical. In order to show that ¢, is not weakly
nonnegative, we may assumethat a — b is oriented asa < b. Let B be the convex
subcategory of A given by all objects except . Then B is a tubular extension of
C and A = B[R], where R istheradical of P(b). It is easy to see that R is an
indecomposable B-modulelying in theray tube 7 of I"z, obtained from the stable
of I containing IV by ray insertions, and hastwo direct successorsin 7. Applying
now the above proposition weinfer that ¢, is not weakly nonnegative.

We shall need also the following fact.

(2.8) PROPOSITION. Let A be a connected hereditary algebra of wild type, T
a tilting H-module without preprojective direct summands, and B = Endy (7).
Then ¢ is not weakly nonnegative.

Proof. See[24, (6.2)].

3. Infiniteradical of module categories

In this section we shall establish properties of the infinite radical of module cate-
gories over pg-critical, hypercritical and tubular algebras.

For a one-point extension B[R] of an algebra B by a B-module R, we identify
mod B[R] with the category of triples (V, X, ¢) where V' is a K -vector space, X
isa B-module and ¢ : V' — Homg(R, X) a K-linear map. Then a morphism
(V,X,p) — (W,Y,4) is given by a par (f,g) where f : V — W isa K-
linear map, g : X — Y is a B-homomorphism and /f = Homg(R, g)¢. For
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a background on the one-point extensions of algebras and vector space category
methods we refer to [39] and [41].
We shall need the following lemma.

(31) LEMMA. Let B be an algebra, R a B-module, and ¢ : ¥ — Z a
nonzero map in ind B. Assume that there are nonzero nonisomorphisms f;: W; —
Wit1,4 > 1,inind B and nonzer'o maps g : R — Y, fo: R — Wj such that
wg =0, fi...fo #0fori > 1, and Homg(R,h) = Oforany h: Y — W; or
h: W; = Y,i > 1. Then ¢ belongsto rad>(mod B[R]).

Proof. SinceHomg(R,h) = Oforal mapsh: Y — W;orh: W; — Y, > 1,
we may consider the indecomposable B[R]-modules Z; = (K,Y & W;, A;),i >
1, where A;: K — Homg(R,Y @ W;) = Homp(R,Y) & Homg(R,W;) is
given by A;(1) = (g, fi—1-.- fo). Further, let L be the indecomposable B[R]-
module (K,Y,v) wherey: K — Homg(R,Y) is given by (1) = g. For each
i > 1, denote by a;: Z; — Zi11 themap (1, (3 J?l_)), andby 3;: Z; — L the
canonical map (1, (1,0)) induced by the projection Y & W; — Y. Further, let
ap: Y =(0,Y,0) = (K,Y @ W3, A1) = Z1 bethe monomorphism given by the
canonical map Y — Y @ Wi. Finaly, since og = 0, we get also a honzero map
p=1(0,¢): L= (K,Y,y) = (0,7,0) = Z. Observe that ¢ = pfi;10;...ap
forany i > 1. Clearly, themaps «;: Z; — Z;11 are nonisomorphisms. Therefore,
¢ € rad*(mod B[R)).

(3.2) PROPOSITION. Let A beapg-critical algebra. Then(?,,,.1 (rad>(mod A))™
# 0and rad®(mod A) is not locally nilpotent.

Proof. Consider first the case when A is of the form B[N,t]. Then A is
obtained from the one-point extension B[N] by identifying its extension vertex
with the vertex w of the following quiver

®h
we—e—:--— 0—0g

®c

Denote by B’ the convex subcategory of A given by all objects of A except b.
Observe that B’ is a representation-infinite tilted algebra of Euclidean type D, ¢
(if B isof typeD,) having a complete slice in the preinjective component of Tz
and R' = Ppg/(a) is an indecomposable regular B’-module of regular length 2
lyinginaray tubeof I' g havingn + ¢t — 2 rays. Hence A’ = B’[R’] isapg-critical
algebra obtained from B by reversing the arrow a — b on a « b. Consider the
APR-tilting module T' = 7, (Sa(b)) ® P, where P isgivenby A = Sx(b) & P,
associated to the simple A-module S4(b) at b. Then A’ ~ End(T") and, by [6,
Theorem 1.11], the functor Homy (7", —) induces an equivalence between the full
subcategory of mod A formed by all moduleshavingno S 4 (b) asadirect summand
and the full subcategory of mod A’ formed by all modules having no Sy (b) asa
direct summand. Clearly, (,,,.1(rad> (mod A))"™ # 0 (respectively, rad> (mod A)
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is not localy nilpotent) if and only if (1,51 (rad>(mod A’))™ # O (respectively,
rad>°(mod A’) is not locally nilpotent). Therefore, we may assume that A is a
one-point extension A = B[R] where B is a tilted algebra of type D, being
the corresponding tubular extension of the critical algebra C of type D,, R is an
indecomposable B-module lying in aray tube C of I' 5 obtained from a stable tube
T of rank n — 2 of I by asequence of ray insertions, and such that we havein C
afull trangdlation subquiver of the form

Y1 Yo == Y Yigp — o

R=X1— Xy -+ = X;

Xi—l—l - ..

with Y7 lying on the mouth of C. Since C does not contain injective modules,
the modules Z; = 75Y;_1,¢ > 2, are nonzero. Fix r > 2 and take an arbitrary
irreducible map ¢,-: Y, — Z, inmod B. We claim that ,., considered as a map
(0,¢,): (0,Y;,0) — (0, Z,,0) in mod B[R] = mod A, belongsto rad>(mod A).
Choose arbitrary irreducible maps u; : X; — X;y1,7 > 1, andv: X, — Y,.
Consider the modules W; = X,.;,i > 1Y =Y,,Z = Z, and the maps ¢ =
or Y = Zg =wur1...u1: R — Y, fo=u....u1: R — Wi, and
fi = upyi: W; — Wiga,1 > 1. SinceC isastandard ray tubein 'z and Y7 lies
on the mouth of C we get that g # 0,09 = Oand f;... fo # Oforany i > 1.
Moreover, Homg (R, h) = Oforany h: Y — W;orh: W; — Y,i > 1,inmod B.
Hence, applying Lemma 3.1 we infer that ¢ = ¢, belongs to rad*°(mod B[R)).

We shall show now that (7,1 (rad>(mod A))™ # 0. Take an indecomposable
C-module U lying on the mouth of 7 and consider the sectional path

I ---—>UZ'—>UZ',1—>--'—>U1—>U0:U

in7 consisting of arrows pointing to the mouth of 7. Let P’ be anindecomposable
projective C-module such that Homq(P',U) # 0. Let f: P' — U be anonzero
map. Clearly, f € rad*(P’,U) because P’ isnot in 7. Since T is a standard
stabletubeinI'¢, there areirreducible morphisms g; : U; — U; 1 and morphisms
h;: P' = U;,i>1,inmodC suchthat f = g1...g;h; forany: > 1. ThetubeC
of I'p is obtained from 7 by a sequence of ray insertions, and hence each arrow
U; — U;—1 of T either remains an arrow of C or is replaced by a finite sectional
path U; — --- — U;—1 in C, consisting of modules pointing to the mouth of C.
Hencethe modules U;, i > 0, lie on a sectional path ¥’ of C consisting of modules
pointing to the mouth. Observe that the intersection of 3’ with the sectional path

OV —=Y—= - =Y, =Y,
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is infinite. Therefore, there exists a sequence 1 < 17 < 12 < i3 < ... of pos
itive integers such that, for each s > 1, the subpath of ¥’ with source U;,
and target U;, , contains a module, say Y;, , of €, different from U;, ,. Then
gi, = ns¥s&s for an irreducible map ¢, : Y;, — Z; and some maps ¢; :
Ui, = Yj, andn,: Z;, — U;, , in mod B. We know that the maps )5 belong to
rad>(mod B[R]) = rad>(mod A), and so g;, also belongtorad>(mod A). Conse-
quently, f € (,,>1(rad>*(mod A))™. This provesthat 1,4 (rad> (mod A))™ #
0. Finally, we provethat rad>*(mod A) is not locally nilpotent. Fix m > 1. Takean
indecomposable C-module X in 7" of quasi-length (m + 1)(n — 1), wheren — 2
isthe rank of 7. Since the full subcategory of mod C' given by the modulesin the
standard stable tube 7 is serial, we infer that Endc (X)) ~ K[T]/(T™+1) (see[39,
(3.2)]). Consider a path of irreducible epimorphisms

X =Xo-5X— - 2EX, =W
and a path of irreducible monomorphisms
W =Y, o5 —Y1-BYy = X,

inmodC,andputv = v1...vp_2,4 = Up_2...u1,h = vu. Thenh € rad(X, X)
and ™ # 0. Asabovewe concludethat in mod B the morphism « has a decompo-
sitionu = nyé foranirreduciblemap+: Y; — Z; andsomemapsé: X — Y; and
n: Z; = X,_2.Sincet belongstorad>(mod A), weget that h = vu aso belongs
to rad>(mod A). Therefore, (rad> (X, X))™ # 0. This proves that rad>(mod A)
isnot locally nilpotent.

(3.3) PROPOSITION. Let A beanalgebrasuchthat,,.,(rad>(mod A))™ = 0
or rad*°(mod A) islocally nilpotent. Then A is tame.

Proof. Suppose that A is not tame. Then By [21] (see dso [17]), A iswild,
that is, denoting by K (z,y) the free K-algebrain two noncommuting variables x
and y, there exists a K (x, y)—A-bimodule M, free and finitely generated as a left
K (z,y)-module, such that the functor F': — ® .,y M : mod K (z,y) — mod A
preserves indecomposability and isomorphism classes; in particular F' is faith-
ful. Let now A be a pg-critical algebra. It is well-known that there exists a
full exact embedding G : modA — mod K(z,y). Hence, we get a faithful
functor FG : modA — mod A. From Proposition 3.2 we infer that there is a
nonzero morphism f in (-, rad>*(mod A)™. Then FG(f) # 0 and belongs to
Nims1(rad>®(mod A))"™. Similarly, for each m > 1, there exists a module X €
ind A and a nonzero morphism h,,, in (rad*(X, X))™. Then FG(h,) # 0 and
belongs (rad> (FG(X), FG(X)))™. Therefore, weget that ),,,~ 1 (rad**(mod A))™
# 0and rad®> (mod A) is not locally nilpotent, a contradiction. This provesthat A
istame.

Asadirect consequence of Propositions 2.4 and 3.3 we get the following fact.

(3.4) COROLLARY. Let A beahypercritical algebra. Then(,,,1(rad>(mod A))™
# 0and rad>*(mod A) is not locally nilpotent.
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We shall need also the following fact.
(3.5) PROPOSITION. Let A beatubular algebra. Then

rad® (A, D(A)) = (rad® (A4, D(A)))? = (rad®(4,D(A))® = ...

In particular, ,,~4(rad>(mod A))™ # 0.
Proof. Itisadirect consequence of the separation property of tubular families
inT 4 [39, (5.2)]. For acomplete proof we refer to [25, (1.5)].

4. Strongly smply connected algebras of polynomial growth

The following theorem gives different characterizations of polynomia growth
strongly simply connected algebras and their modul e categories.

(4.1) THEOREM. Let A be a strongly simply connected algebra. The following
conditions are equivalent:

(i) A isof polynomial growth.
(if) A isof linear growth.
(iii) A doesnot contain a convex subcategory which ispg-critical or hypercritical.
(iv) rad>(mod A) islocally nilpotent.
(v) X4 isdirected.
(vi) Every connected component of I' 4 is standard.
(vii) A isamulticoil algebra.

The proof will be presentedin Section 6. Here, we shall derive several important
consequences of the above theorem. First observe that the condition (iii) gives
a handy criterion for a strongly simply connected algebra to be of polynomial
(respectively, linear) growth. The condition (v) givesapartial order of all connected
component of I" 4 in mod A. In particular, it implies that every cyclein mod A is
finite (A iscycle-finitein the senseof [2]), and sorad™> (M, M) = 0for any module
M from ind A. Moreover, the condition (vii) gives a more precise description of
cyclesin mod A. Namely, there exists a natural generalization of the notion of a
tube called a coil (see[3], [4], [5]). Then a multicoil consists, roughly speaking,
of afinite number of coils glued together by some directed parts, and a multicoil
algebrais an algebra A having the property that every cyclein mod A consists of
modules of a (standard) coil of amulticoil of T 4.

The following corollary is a direct consequence of Theorem 4.1, Proposition
2.2 and the fact that the hypercritical algebras are wild.

(4.2) COROLLARY. Let A be a strongly simply connected algebra having no
pg-critical convex subcategory. The following conditions are equivalent:
(i) Aistame.
(ii) A isof polynomial growth.
(iii) ga isweakly nonnegative.
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The following corollary gives characterizations of domestic strongly simply
connected algebras and their module categories.

(4.3) COROLLARY. Let A bea strongly simply connected algebra. The following
conditions are equivalent:

(i) Aisdomestic.
(ii) A doesnot contain a convex subcategory which ishypercritical, pg-critical or
tubular.

(iii) N1 (rad>*(mod A))™ = 0.
(iv) rad>*(mod A) is nilpotent.
(V) X4 isdirected and there is a common bound on the length of pathsin X 4.

Proof. It follows from Theorem 4.1 that, if A is of polynomia growth, then
every cycle in mod A is finite. Then the equivalence of (i) and (ii) is a direct
consequenceof Theorem 5.1in[50]. Clearly, (v) implies(iv), and (iv) implies (iii).
Moreover, by Propositions 3.2, 3.5 and Corollary 3.4, (iii) implies (ii). Therefore, it
remainsto show that (ii) implies (v). Assumethat (ii) holds. Then, by Theorem 4.1,
Y4 is directed and every connected component of I'4 is (generalized) standard.
Applying now [47, Corollary 3.11], we infer that all but finitely many connected
components of I" 4 are stable tubes. Further, since A is a cycle-finite agebra, we
infer by Theorem 4.1 in [50] that the support supp7 of any stable tube 7 inT"4
is a convex critical or tubular subcategory of A. Moreover, the stable tubes in
the Auslander-Reiten quiver of any critical algebra are pairwise orthogonal and
standard. Therefore, the fact that A has no tubular convex subcategory, implies that
the pathsin X 4 are of bounded length. This finishes the proof.

Recall that an Auslander-Reiten quiver T4 is called quasi-periodic if all but
finitely many 74-orbitsinI" 4 are periodic.

(4.4) COROLLARY. Let A beastrongly simply connected algebra of polynomial
growth. ThenT" 4 isquasi-periodic and all but finitely many componentsinT 4 are
stable tubes. If A is domestic then all but finitelly many componentsin I"4 are
stable tubes of rank 1.

Proof. From [47, Theorem 2.3], every generalized standard component of T4
admits at most finitely many nonperiodic 74-orbits. Further, since A is cycle-
finite, we know by [50, Proposition 3.3], that every regular generalized standard
component of I" 4 is a stable tube. Hence our claim follows from Theorem 4.1(vi)
and [50, Theorem 4.4].

For a component C of I"4 we denote by |C| the geometric realization of C as
defined in [15, (4.1)]. Moreover, following [4, (3.3)], acoil ' inT'4 is said to
be proper if each of its vertices belongs to an oriented cycle of I". As a direct
conseguence of our proof of Theorem 4.1 given in Section 6 we get the following
fact.
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(4.5) COROLLARY. Let A bea strongly simply connected algebra of polynomial
growth, C a (connected) component of " 4, X a vertex of " 4, and r the number
of pairwise digoint proper coilsin C. Then the fundamental group 71(|C|, X) isa
free (noncommutative) group in » generators.

We shall now derive some informations on the supports of indecomposable
modules over strongly simply connected algebras of polynomial growth.

(4.6) COROLLARY. Let A beastrongly simply connected algebra of polynomial
growth and 7 a stable tube in I 4. Then the support of 7 is a critical or tubular
convex subcategory of A.

Proof. See[3, (4.1)], or [50, (4.2)].

The following corollary describes the one-parameter families of indecompos-
able modules over strongly simply connected algebras of polynomial growth.

(4.7) COROLLARY. Let A bea strongly simply connected algebra of polynomial
growth. Assume that M is a modulein ind A such that there are infinitely many
pairwise nonisomorphic modules N inind A withdim N = dim M. Then supp M
isa convex critical or tubular subcategory of A.

Proof. Since A istame, we know from [17] that all but finitely many isoclasses
of indecomposable A-modules of dimension-vector dim M lie in the stable tubes
of rank 1. Hence, by our assumption, dim M = dim N for amodule N lying in a
stabletube 7 of rank 1. Consequently, by the abovecorollary, supp M = supp N =
supp 7 isaconvex critical or tubular subcategory of A.

By acoil algebrawe mean atame coil enlargement of atame concealed algebra
(inthe senseof [5]). Asadirect consequence of the proof of Theorem 4.1 presented
in Section 6 we get also the following fact.

(4.8) COROLLARY. Let A beastrongly simply connected algebra of polynomial
growth. Then there exist convex coil subcategories By, ... B,, of A whose inde-
composable modules exhaust all but finitely many isoclasses of indecomposable
A-modules. Moreover, if the support D = supp X of anindecomposable A-module
X isnot contained in one of the categories By, . .., B,,, then X is directing, and
so D isatametilted algebra.

We shall note that the module categories over coil algebras are well understood
(see [5]). Moreover, a complete classification of coil algebras with sincere nondi-
recting indecomposable modules lying in nonstable coils will be presented in a
joint paper with 1. Assem and B. Tomé. Hence, in view of Corollary 4.5, in order to
classify the indecomposable modules over strongly simply connected algebras of
polynomial growth, it remains to describe the supports of directing modules. If X
isadirecting module over such an algebra A then supp X is a convex subcategory
of A[11, Proposition 3.2], andistilted [39, p. 376]. Hence, we need aclassification
of tame tilted strongly simply connected algebras with sincere directing modules.
Thoseof finite representation typeare classified in [10] and [18], [40]. It was shown
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in [33] that the representation-infinite tame tilted algebras with sincere directing
modules have, in each dimension d, at most 2 one-parameter families of modules.
The families of two-parametric tame algebras with sincere directing modules and
having at least 20 vertices in the Gabriel quiver have been classified in [34]. The
classification of the remaining onesis still an open problem.

The support of anondirecting indecomposable modul eover apolynomial growth
strongly simply connected algebra A is not necessarily a convex subcategory of A.
The following smple example is due to P. Draxler. Namely, let C' be the critical
algebra of type Ds given by the fully commutative quiver

N\,
N

and M be the indecomposable C-module
K 0 .’ K
NN
. K? 0
R
K K

Then clearly supp M is not aconvex subcategory of C'. But from the above discus-
sion and our proof of Theorem 4.1 we can deduce the following fact.

(4.9) COROLLARY. Let A beastrongly simply connected algebra of polynomial
growth, M amoduleinind A and A = supp M.

(i) If A isrepresentation-finitethen A is a convex subcategory of A.
(i) If A is representation-infinite, then it contains a full subcategory C' which is
critical.

For M € ind A, denoteby ¢(M ) thenumber of pairwisedifferent critical convex
subcategories of the convex hull of supp M in A. Then we have the following fact.

(4.10) COROLLARY. Let A beastrongly simply connected algebra of polynomial
growth and M a module in ind A. Then ¢(M) < 3. Moreover, if A is domestic,
then ¢(M) < 2.

Proof. Itisadirect consequence of Corollaries 4.7 and 4.8, [4], [5, (4.2)], and
[33].

In the joint work with J. A. de la Pefia [35] we proved that, if A isa sincere
tame strongly simply connected algebra and admits a convex subcategory which
is either tubular or representation-infinite tilted of type Ep, 6<p<8thenAis
of polynomial growth and its quiver Q 4 has at most 19 vertices. Then it follows
(see [35, Corollary 6.2]) that every sincere polynomial growth strongly simply
connected algebrawith at least 14 verticesis domestic.
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We end this section with an exampleillustrating our criteria for the polynomial
growth and domestic type of strongly simply connected algebras.
Let A = KQ/I where Q) isthe quiver

/\/

N b
%
SN
N

3

e
10<—9

2

=

A

/ g
\ g

l¢

21
and I istheideal of KQ generatedby 8y —0 €,(e —nb, kpp— Av, 0k, 0\, € €,0 €,
O, mo€, wp,wv, Tv — @ip. Clearly, A is strongly simply connected. A simple

inspection of the frames of critical algebras presented in [12] and [23] shows that
the following algebras form a complete set of critical convex subcategories of A:

18—2319

<

C1 (of type D4) given by the vertices 1, 2, 3,4, 5;

C- (of type Eg) given by the vertices 1, 3,4, 5,6, 7,9, 10, 23;

Cs (of type Eg) given by the vertices 15, 16, 17, 18, 19, 20, 21;

C, (of type Eg) given by the vertices 15, 16, 17, 18, 19, 20, 22;

Cs (of type Eg) given by the vertices 12, 13, 14, 15, 16, 17, 18, 19, 22.

Similarly, a simple inspection of the frames of hypercritical algebras presented in
[55] shows that A does not contain a convex subcategory which is hypercritical.
Further, there is no extension of C; to a pg-critical convex subcategory of A,
and hence A does not contain a convex subcategory which is pg-critical. Hence,
applying Theorem 4.1, we conclude that A is of polynomial growth. Further, it
is easy to see that the following algebras form a complete set of tubular convex
subcategories of A:

A1 (of type (2, 3,6)) given by the vertices 1,2, 3,4,5,6, 7,9, 10, 23;
A, (of type (2, 3, 6)) given by the vertices 12, 13, 14, 15, 16, 17, 18, 19, 20, 22;
A3 (of type (3, 3, 3)) given by the vertices 15, 16, 17, 18, 19, 20, 21, 22.
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In particular, by Corollary 4.3, A isnot domestic. Onthe other hand, the full convex
subcategory A’ of A formed by all objectsof A except 22 and 23 isarepresentation-
infinite domestic strongly simply connected algebra, containing only two critical
convex subcategories, namely C; and C. Finally, we note that the algebras:

B; given by thevertices 1,2, 3,...,12,13,23;
and
B, given by the vertices 12, 13,14, . .., 20, 21, 22,

are convex coil subcategoriesof A whose indecomposable modules exhaust (up to
isomorphism) all indecomposable A-modules.

5. Partial order of sources

Let A = KQ/I be an agebra with the separation property and S the set of all
sourcesin Q. Theaim of this sectionisto establish apartial order < in S inthecase
when all component quivers ¥ 4,),z € S, are directed. This will play a crucia
role in our proof of Theorem 4.1. We start with the following technical lemma.

(5.1) LEMMA. Let =z € S and C be a connected component of I" 4,y . Assume that
¥ 4(») isdirected and there exists an infinite path

Z=4y—~ 41— —Zs=N,

inmod A(z) suchthat Z belongsto C and N isanindecomposabledirect summand
of R(z). Moreover, let

D=C—--—C=C,

t > 0,beapathin,,) andY amodulein D. Then every indecomposable A-
module M lyingona pathinmod A withtarget Y isan A(z)-module. In particular,
Disafull component of I'4.

Proof. Let M = My — My — --- — M, =Y beapathin mod A with target
Y. Supposethat Hom 4 (P(z), M) # 0. Wemay assumethat My, . .., M, are A(z)-
modules. We shall show that X ;) admits an oriented cycleC — --- — D —
-+ — C, which will contradict our assumption on X 4(,y. Since A = A(z)[R(z)]
wemay consider M asatriple (V, X, p) where V' isa K -vector space, X an A(z)-
module, and ¢ : V' — Hom,,)(R(z), X) a K-linear map. Observe that M is not
isomorphic to the simple injective A-module S(z) = (K, 0, 0), because thereis a
nonzero nonisomorphism M — M, with M7 indecomposable. Hence X # 0 and
let X = X10...0X, beadecomposition of X intoadirect sum of indecomposable
A(z)-modules. Since Homy (P(z), M) # 0 and M isindecomposable, we infer
that ¢ # 0 and Hom,,)(R(2), X;) # O for any 1 < i < r. Moreover, since
Homu (M, M1) # 0 and My = (0O, M;,0), there exists 1 < j < r such that
Hom,,)(X;, M1) # O. Thisshowsthat thereisin mod A(z) apathfrom X; to Y.
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Ontheother hand, thereisinmod A(z) apathfrom Zto NV, and X 4,y admitsapath
D =Co — --- = C; = C. Hence, the supports of X; and IV belong to the same
connected component of Q(z), becausetheradical R(z) of P(z) is separated. But
thenHom .y (R(z), X;) # Oimpliesthat Homy (N, X;) # 0,andsomod A(z)
admitsaninfinitepath Z —+ 7, — --- - N — --- = Y. Thus, weget in 4,
an oriented cycleC — --- — Cp — --- — C; = C, acontradiction. Therefore,
Homy (P(z), M) = 0,and M isan A(z)-module.

Forz,y € S,weset x <* y if and only if thereisan infinite path
M=Zy—~Z1—--—Zs=N,

in mod A(y) with M an indecomposable direct summand of R(xz) and N an
indecomposabledirect summand of R(y). Thenwe havethefollowing proposition.

(5.2) PROPOSITION. Assume that for each z € S the component quiver ¥ 4,
is directed. Then the transitive closure < of <* isa partial order in S.

Proof. Assume that zo <* 1 <* --- <* z, for some zg, z1,...,2, IN S
and r > 1. We shall show that zo # x,. We may assume by induction that
z0, L1, - - - r_1 (respectively, z1, . . . , z,) are pairwisedifferent. By our assumption,
for each 1 < 7 < r, there exists an infinite path

pit Mi_1=25— - — Z. =N,

in mod A(z;) with M;_, an indecomposable direct summand of R(z;_1) and NN;
an indecomposable summand of R(z;). Denote by Dy, ..., D,_1 the components
of I'4(5,) containing the modules Mo, ..., M,_1, respectively. Observe that, in
order to prove our claim, it is enough to show that Dy is a full component of
" 4. Indeed, then Dy consists of A(z,)-modules and contains P(xzo), because I" 4
admits an arrow Mo — P(zo). Hence P(zo) # P(x,), and S0 2o # x,. Since
pr—1 1S aninfinite path from M, 1 to N, in mod A(z,.), applying Lemma 5.1 for
t=0D=D, 1,Z =M, 1and N = N,, wegetthat D, 1 isafull component
of " 4. Hence, we may assume that » > 2. Now, since z1,...,z, 1 are sources
in Q different from z,., we concludethat P(z1), ..., P(z,_1) are A(z,)-modules.
Then, for each 1 < ¢ < r — 1, the component D; admits arrows M; — P(xz;)
and N; — P(z;). Applying Lemma 5.1 again, we prove by descending induction
on i that, foreachr —1 >4 > 1,p;_1 consists of A(z,)-modules, D;_1 isafull
component of I' 4, and X 4.,y admitsapathD; 3 — --- — D, 3. Fori = 1, we
get that Dy isafull component of " 4. This finishes the proof.

6. Proof of Theorem 4.1

Let A beastrongly simply connected algebra. We may assumethat A isconnected.
Clearly, (ii) implies (i). By Proposition 2.4, (i) implies (iii). Further each of the
conditions (v) and (vi) impliesthat rad>° (M, M) = Oforany M € indA, and then

https://doi.org/10.1023/A:1000245728528 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000245728528

SIMPLY CONNECTED ALGEBRAS OF POLYNOMIAL GROWTH 119

(iv) holds. From Proposition 3.2 and Corollary 3.4, (iv) implies (iii). Moreover, the
implication (vii) = (ii) isadirect consequenceof [3, Theorem 4.6], and Proposition
2.4(iii) (seealso [50, Theorem 4.3]). Therefore, it remainsto provethat (iii) implies
(v), (vi) and (vii).

Assume that A = K (/I does not contain a convex subcategory which is
pg-critical or hypercritical. Then, by Proposition 2.2, the Tits form ¢4 of A is
weakly nonnegative. We shall prove (v), (vi) and (vii) by induction on the number
of verticesin (). We use the notations of Sections 4 and 5. Observe that, for any
source z of @), the algebra A(x) is strongly simply connected and does not contain
aconvex subcategory which is pg-critical or hypercritical. Hence, we may assume
that, for any sourcez in @, A(x) isamulticoil algebra, 3 ) isdirected and every
component of I, is standard. Therefore, applying Proposition 5.2, we endow
the set S of al sourcesin @ by the partial order < induced by <*. Denote by M
the set of all maximal elementsin S with respect to <. We divide our proof into
two main steps.

(1) Assumefirst that, for each z € M, R(x) isadirect sum of indecomposable
modules whose successorsin I' 4,y are al directing A(z)-modules. Fix z € M
and consider adecomposition R(z) = M1 ®--- @ M, of R(x) into adirect sum of
indecomposable A(z)-modules. For each 1 < 7 < r, denote by C; the component of
I 4(z) containing the module M;, by D; the full translation subquiver of C; formed
by all successorsof M; inC;, and by &; thefull translation subquiver of C; given by
the remaining indecomposablemodules. Clearly, D; isclosed under successorsand
&; isclosed under predecessorsin C;. Moreover, by our assumption, each D; consists
entirely of directing A(z)-modules, and hence the number of 7,(,)-orbitsin D; is
finite (see [53]). Further, let C be the component of I" 4 containing P(z), D thefull
translation subquiver of C formed by all successors of modules M, ..., M, inC,
and & the full translation subquiver of C given by the remaining indecomposable
A-modules. We shall show that M3, ..., M,, P(x) aredirecting modulesin mod A
and D contains all indecomposable projective A-modules being successors of
modules My, ..., M, inmod A. Since the component quiver 3 4,y is directed and
R(x) isseparated, we have Hom, .y (R(x), Z) = Ofor any indecomposable A(z)-
module Z being predecessor in mod A(x) of an indecomposable module lying
in one of the subquivers &1, ..., &,. Applying now [39, (2.5)], to the one-point
extension A = A(z)[R(z)] weinfer that £ isthedigoint union of &1,. .., &, and,
if' - --- — CisapahinX, withI' # C, thenT" isafull component fromT" ;.
Clearly, thisimplies that the modules M;, ..., M,, P(z) aredirecting in mod A.

Let now M; = Yp — Y1 — --- — Y; = P(b) be a path in mod A, for
some 1 < 7 < r. We claim that this path is finite, and hence P(b) belongs to
D. Suppose that this is not the case. Then there is an infinite path in mod A of
thefom M; =Yy - Y1 —» - =2 Y, —» --- = Y, = P(c) withc € S.
Clearly, Homy (P(c), M;) = 0 because ¢ is source. Observe that then m > 2 and
Homy (P(c),Y;) # Ofor somel < j < m — 1. Indeed, otherwisewe haver <* ¢
which contradicts z € M. In particular, P(c) is nondirecting in mod A, and by
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the above considerations ¢ ¢ M. Hence ¢ <* d for some d € S. Consequently,
there is an infinite path Z = Zo — Z1 — --- — Z; = N in mod A(d) with
Z an indecomposable direct summand of R(c) and N an indecomposable direct
summand of R(d). Since Z and P(c) belong to the same component, say C’, of
[ 4(q) Weinfer by Lemma5.1 that Yo, Ya, . .., Y, are A(d)-modules. In particular,
P(c) is nondirecting in mod A(d). Since A(d) is a multicoil algebra, we then
conclude that P(c) lies on a cycle in a coil I of C'. Observe also that the path
Z =2Zy— Z1 — -+ — Zs = N isnot formed by directing modules lying on a
sectional path of C’, because it is infinite (see [9]) and C’ is a standard multicoil.
Then we infer that mod A (d) admits an infinite path of the form

M;=Yo—-Y1—--=Y,=P()—>-+— Z;=N.

But thisimpliesz <* d, again acontradiction with x € M. Therefore, D contains
any indecomposable projective A-module which is successor of amodule M;, 1 <
i < r, in mod A. The above arguments show also that, if P(c) withc € Sisa
successor of P(x) in D, then ¢ € M. From the first part of our proof we know
that, for any ¢ € M, P(c) isadirecting A-module. Hence we may choose z € M
in such away that any indecomposable proper successor of P(x) in mod A is not
projective. For each 1 < ¢ < r, denote by 2; the set of all modules X in D; such
that any pathin C; from M; to X issectional. Observethat each (2; isfinite because
the modules from €2; belong to pairwise different 74 ,-orbitsin D;. Further, put
Q = (Uicicr ) U{P(z)}. Then, by the above discussion, we get that Q2 isfinite
and consists of directing A-modules. Moreover, it follows from our new choice of
x that any module U in D is of the form TglV forsomeV € Q,l > 0. Observe
also that D has no oriented cycles. Indeed, since any proper successor of P(z) in
D is not projective, any cycleUp — Uy — --- — Uy — Up in D gives acycle
TWUo — 74U1 — - -+ — 74U — 7, Uo, for somel > 0 passing through amodule
from 2, a contradiction because €2 consists of directing modules. Finally, suppose
that thereisin mod A acycle

W=Wo—=>W1=Wo—=... =W, =>W,11=W,

with W from D. Since D has no oriented cycle there exists 1 < ¢ < n such that
W, € Dforanyl > ¢ but W, ¢ D. But then from the shape of C described above,
we infer that mod A admits acycle of the form

W=Wo—=W1—-=>Wy,—=L—>Wy1—-—=Wya=W,

with L from €. But it is not possible because €2 consists of directing modules.
Therefore, D consists entirely of directing modules. We know that any modulein
C belongs either to £ or to D. Hence C either consists of directing modulesor C is
amulticoil (if oneof &; containsacoil). We shall show now that C is also standard.
Observe that, since the modules M;, 1 < i < r, are not predecessors of modules
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from £ in mod A, we have Hom, (X,Y) = Oforall X € DandY € &. This
impliesthat C is generalized standard. But £ isstandard, D is directed with finitely
many 74-orbits, so applying arguments as in [48], we conclude that C isin fact a
standard component of I 4. We shall now describeT" 4. Observethat any component
X of T 4, which has no module M with Hom,,)(R(x), M) # O remains afull
componentin T 4, by [39, (2.5)]. Hence, we must describe the components of T" 4
containing successors of P(z) in mod A. Consider the right stable part D, of D
obtained from D by removing the 74-orbits of injective modules. If D, is empty,
C is the unique component of I" 4 which is not a component of I ). Clearly,
then A = A(z)[B(z)] isamulticoil algebra, ¥ 4 isdirected and every component
of I'4 is standard. Assume that D, is not empty. The D admits a full translation
subquiver F of D, which is closed under successorsin D (hencein C), contains
all but finitely many modules of D, and is a disoint union of translation quivers
of theform F; = (—-N)A;,1 < j < t, for some finite quivers Ay, ..., A; without
oriented cycles (see [27] for the shape of right stable quivers without oriented
cycles). Fix 1 < j < t. Since F; consists of directing modules, applying the dual
of Proposition 2.4 in [53], we conclude that there exists a hereditary algebra H; of
type A; and atilting H;-module T; without preprojective direct summands such
that the tilted algebra B; = Endy;, (T;) is a convex subcategory of A and F; isa
full translation subquiver of a connecting component P; of I' g, which is closed
under successors. Since g4 is weakly nonnegative, we concludethat g, isweakly
nonnegative, and hence, by Proposition 2.8, A ; isan Euclidean quiver. In particular,
P, isthe preprojective component of I, . Recall that (see Section 1) I'p, consists
of P, aPy(K)-family 7; of tubes without projective modules and a preinjective
component Z;. Moreover, al componentsof I' g, are standard, X p; isdirected, and
Bj isamulticoil algebra. Now, since P(x) has no proper projective successorsin
mod A, it follows that any component X in I" 4 different from C and containing a
successor of P(z) inmod A is acomponent from the family \/,;,(7; V Z;). We
know also that Hom (7, V Z,,, 7T, V Z,) = Ofor p # ¢. Therefore, we get that X 4
isdirected, all components of I" 4 are standard, and A is amulticoil algebra.

(2) Assume now that, for somey € M and an indecomposabledirect summand
U of R(y), there existsapah U = Up — Uy--+ — U, = Z in Ty, with Z
nondirecting. We shall show that then there exists = € M such that R(z) admits
a nondirecting indecomposable direct summand M. If U is nondirecting, we set
x =yand M = U. Assume U is directing. Since A(y) isamulticoil agebra, Z
liesin a coil © of a standard multicoil X of T'4(,y. By [4, Lemma 3.3], we may
assume that the coil €2 is proper, that is, any module from €2 lies on acyclein €.
Observe that 2 contains at least one projective module, because thereisin X a
path from the directing module U to the module Z lying in Q2. Further, it follows
from the structure of standard coils that, if Hom(,)(P(a), P(b)) # O for P(a)
from Q and P(b) from &, then P(b) liesin €. Hence, we infer that there exists
inX apahU = Uy — U1 — --- — Ug; — P(z) such that P(z) liesin © and
Hom ) (P(z), P(c)) = Ofor any projective module P(c) from A nonisomorphic
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to P(x). Weclaimthat x € M. First we show that z € S. Supposez ¢ S. Then
we havein mod A(y) apath P(z) — P(e1) — --- — P(e;) = P(z) withz € S.
By our choice of z weinfer that P(e1) doesnot belongto X'. Then, since X 4, is
directed, we have Homy ) (P(z),U;) = 0 for any 0 < I < s. Therefore we get an
infinite path in mod A(z) of the form

U=Up—U;—-+—Us— Plx) > - — Ple,—1) =V,

where V' is an indecomposable direct summand of R(z). But then y <* z, a
contradiction becausey € M. Hence, z € S. Suppose now that z <* w for some
w € §. Then mod A(w) admits an infinite path

N=Zo—~Z1— - —=2Z4=T,

where NV isan indecomposable direct summand of R(z) and 7" an indecomposable
direct summand of R(w). Denoteby ) and Z the componentsof I 4.,y containing
the modules V and 7', respectively. Clearly, Y # Z, because X, is directed.
Applying now Lemma 5.1 we conclude that ) isin fact a component of I" 4 and
for any path in mod A with target lying in ) its source is an A(w)-module. Let p
be minimal such that Z,, does not belong to ). Thenrad>(Z,_1, Z,) # 0, and we
havein mod A(w) paths

N=Zo—...—>Zp 1 Wi—-=Wy,—2Zy,—-—Z,=T,

for al m > 1. On the other hand, since N is a direct predecessor of P(x) and
P(x) liesin a proper coil A of the standard multicoil ) of T (,,, we infer that
P(z) isapredecessor of W,,, in A for asufficiently large m. We then conclude that
mod A(w) admitsaninfinitepath = Uy — --- = P(z) = -+ = Wy, = Z, —
= Zy=T,ands0y <* w. Thiscontradiction provesthat z € M. Let M bea
nondirecting indecomposable direct summand of R(z) and B the connected part
of A(x) suchthat M isa B-module. Since B is aconvex subcategory of A(z), the
conditions (v), (vii) and (viii) hold for B. Further, M is nondirecting in mod B,
and so it belongsto aproper coil I' of a standard multicoil C of T 5. We shall show
that the vector space category Homg (M, C), given by the objects Homg (M, X)
with X from C, isthe K-linear category of one of the following partially ordered
sets:

(@  Homg(M, Xo) — Homp(M, X1) — Homp(M, X3) — - -

Homp(M,Y;) < --- <—Homp (M, Y1)

(b)
Homy (M, Xo) — Homg (M, X1) — ---

with ¢ > 1 and Xj injective,
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(©

Homg (M, Y1) -Homg(M,Y>2) — - - =-Homp (M, Y;)

| | |

Homg (M, Xo)—Homp (M, X1)— - - - —Homp (M, X,—1)— Homs (M, X;) — - --
witht > 2 and X;_; injective,

where M = X, X1, X5, ... lie on aunique infinite sectional path Xg — X; —
X2 — ---inC with source M = Xp, and Y3, ...Y; are directing modules lying
on asectiona path Y7 — Y>--- — Y, in C. Moreover, we clam that, if R(x) is
decomposable, then A(z) = B x D, R(z) = M & N, where D is connected, N
is an indecomposable D-module, Homg (M, C) is of the form (a), and the vector
space category Homp, (I, ind D) isthe K-linear category of apartially ordered set

Homp (N, Y1) - Homp(N,Y2) — -+ — Homp (N, Y;)

witht > 1land N = Y7,..., Y, directing modules lying on aunique sectional path
Yi— - = Y inDp.

We divide our considerationsinto several steps.

(a) Supposethat C = I' isa stable tube. Then C' = suppT is a convex subcat-
egory of B (see[2, (3.1)]) whose Auslander-Reiten quiver admits a sincere stable
tube. Since, by our assumption, C'isalso amulticoil algebra(hencecycle-finite), we
get from [3, (4.1)] (seealso [50, (4.1)]), that C' is either critical or tubular. Clearly,
E = C[M] isasoaconvex subcategory of A, and hence ¢z isweskly nonnegative
and F does not contain apg-critical convex subcategory. Then, by Proposition 2.5,
C' is critical. Applying now Proposition 2.6, we infer that M is a simple regu-
lar module, and so F is a tubular extension of C. Therefore, E is either tubular
or representation-infinite tilted algebra of Eulidean type with a complete slice in
the preinjective component, because g5 is weakly nonnegative (Proposition 2.3).
Clearly, inthiscase, C admitsauniquesectional path M = Xo — X1 — Xo — -+~
consisting of arrows pointing to infinity, and Homp (M, C) is of type ().

(6) Assumethat C is not a stable tube. Then by [4, (5.9)], there exists a critical
convex subcategory C' of B and a stable tube 7 in I such that A = suppI’ is
obtained from C' by a sequence of admissable operations of types (ad 1), (ad 2),
(ad 3), (ad 1%), (ad 2*) or (ad 3*), 'y admits a coil I'" obtained from the stable
tube 7" be the corresponding sequence of admissible operations, and such that '
isthe full translation subquiver I, of I consisting of all moduleslying on cycles
in T (see[4, Section 3] for details). Then A = suppl is a coil enlargement of C'
in the sense of [5]. Moreover, A is a convex subcategory of B. Applying now [5,
(3.5)], we infer that there is a unique tubular extension £ = A™ of C whichisa
convex subcategory of A and such that A can be obtained from E by a sequence of
one-point coextensions of types (ad 1*), (ad 2*), or (ad 3*). Furthermore, there is
aray tube 7+ in T'g such that T” can be obtained from 7+ by the corresponding
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sequence of admissible operations of types (ad 1*), (ad 2*), or (ad 3*), being coray
insertions. Since M liesinT' = F’w there exists an infinite sectional path

YIM=Xo—=>X1=-+Xo =+ Xg—---

inI" consisting of arrows pointing to infinity. Further, sinceI” is obtained from the
ray tube 7+ by asequenceof coray insertions (operations of types (ad 1*), (ad 2*),
(ad 3*)), we get that, for infinitely many 7+ > 0, X; is an E-module. We claim
now that Homp (M, C) does not contain a full subcategory which is the K -linear
category of the partially ordered set

Homp(M,U;) — Homy,(M,Usy1) — Homg(M,Usyp) — ---

I I I

Homgp (M, X;) — Homp (M, Xsy1) — Homp(M, Xs42) — - --

s > r, with Us,Us41, ..., lying on an infinite sectional path Us — Usy1 —
Usi2 — ---inT" whichisparalel to Xy, — X1 — Xs12 — - -. Suppose that
thisis not the case. Then by the above remark 7+ admits a subquiver of the form

Uil — Uiz — Ui3 —

[

Xil — Xi2 — Xi3 —

where M’ = X, istherestriction of M = Xpto E = A*. Moreover, E' = E[M']
is a convex subcategory of A, and hence is strongly simply connected. Applying
now Proposition 2.6 to the one-point extension E' = E[M'] we get that either E’
contains a convex pg-critical subcategory or g is not weakly nonnegative, which
contradicts our assumptionson A. The proved fact showsthat X isauniqueinfinite
sectional path in C with source M. We claim now that if X; — P isanarrow inC
with P projective then P lieson X. Supposethat X; — P, for somei > 0, isan
arrow in C with P projective not lying on 3. From the above remarks we know that
then C has no infinite sectional path with source P and parallel to . Hence, there
isj >4suchthat X, ..., X;_ 1 arenoninjective but X; isinjective. Applying now
Lemma (3 + 3+ 2) in[2, (2.1)], we obtain an exact sequence

0—>Xi—>P@Xj@V—>T§Xj,1—>O.

On the other hand we have dimg X; < dimg P and dimg7; X1 < dimgX;.
This contradiction proves our claim. We recall also that by [5, (3.5)], there is a
unique tubular coextension F = A~ of C' and acoray tube 7~ in ' such that A
is obtained from F' by a sequence of admissible operations of types (ad 1), (ad 2)
or (ad 3), and I isobtained from 7 by the corresponding sequence of admissible
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operations (ray insertions). Hence, if X; — Z isan arrow in C with Z # X1
then Z is from 7. In particular, any module X;,7 > 0, has at most two direct
successorsin C. Therefore, if M has exactly one direct successor, then the vector
space category Homg (M, C) is of type (a).

(v) Assume now that C admits afull translation subquiver

Y — Yo == Y,

[ I

Xo— Xg == X1 — Xy — Xygy1 — -+

with ¢ > 2 and X;_1 injective. We claim that then R(z) = M, Homg(M,C) is of
the form (c), induced by the above subquiver of C, and no module Y;,1 < j < ¢,
is predecessor of a projective module in C. Suppose that R(z) # M or C admits
anarrow Y; — Wwithl < j <tand W # Yj,4 (possibly W is projective). We
know that themodulesY?s, . . ., Y; arefrom the coray tube 7, and so their supports
arein one coextension branch of the tubular coextension F’ of C'. We look now on
the supportsof themodules Y, . .., Y; and apply therulesfor the Auslander-Reiten
sequencesin the modul e categoriesover special biserial simply connected algebras
described in [54, p. 180] (see also [37]). Then asimple analysis (see the proof of
Lemma 3.5 in [3]) showsthat A = A(z)[R(z)] admits a convex subcategory of
a form described in Corollary 2.7. This contradicts our assumption on A. Hence
R(z) = M and Homg (M, C) isof the required form (c). Suppose now that one of
themodulesYs, ..., Y; isapredecessor of aprojectivemoduleinC. Then C admits
apath of the form

Yi=Vo—>Vi—= - = V,.1-V,=Ply),

withj >2,p> 2, V1 =15Y;_1and Vg, V1,...,V, directinginmod B. Let
P(y) = P(yo) = P(y1) = -+ = P(y) = P(2),

be apath in mod B with z € S. We then have a path
M=Xo— - —=X; 1> VoodVi—= = Vy1—=--—1L

with L and indecomposable direct summand of R(z). Since Vg,...,V, 1 are
directing modulesin mod B, weinfer that in fact it isapathinmod A(z). Weclaim
that ¢ belongs to rad>°(mod A(z)). Indeed, this follows from Lemma 3.1 if we
take R = Xo,Y = Yj,Z = T_}/']',l,Wi =Xppine 2L fi W = Wigq,1 > 1,
arbitrary irreduciblemapsand g : R — Y, fo : R — Wj the compositions of the
corresponding irreducible maps. Hence we get an infinite path in mod A(z) from
M to L, and s0 x < z. But thisis a contradiction with the maximality of z in S.
Therefore, the modules Y7, . . . , Y; have no projective successorsin C.
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(0) Assume now that Homg (M, C) is of theform (&) but R(z) = M & N with
N # 0. We know that the restriction M’ of M to the tubular extension E = A™
of C'isnonzero. Then applying Corollary 2.7 we infer that IV isindecomposable,
and moreover uniserial. Hence, A(xz) = B x D where D is connected and N is
inmod D. Let D be the component of ', containing N. We claim that thereis a
sectional path

N=Y1—-Y— - =Y

in D formed by directing modules such that the vector space category Homp (IV,
ind D) isthe K-linear category of the partialy ordered set

Homp (N, Y1) - Homp(N,Y2) — -+ — Homp (N, Y;).

Since N isuniserial and D is strongly simply connected, as a convex subcategory
of A, the support of N is given by a convex linein Qp of theforma; — a2 —

- — a,. Let G be the maximal convex subcategory of D which is the bound
quiver algebra of afinite connected bound subquiver of the following infinite tree

Ea
LR R,
v, vy, vy v,

bound by all possiblerelations o = 0, and N isthe projective G-module Pg (a1).
It isknown (see[49, (4.4)]) that GG is atilted algebra of Dynkin A, and I'; admits
acomplete section (slice) © of the form

N=Y1—=Y,—= - =Y.

Using the maximality of G, our assumptions on A, and applying Corollary 2.7
again, we infer that, if G[V] is a one-point extension of G inside D with V'
indecomposable, then V' is a proper successor of a module Y; and does not lie
on O. In particular, Homp (N, ind D) is the required K -linear category of afinite
linear partialy ordered set. Themaximality of x in S impliesal so that any successor
of N inT'pisaG-module. Indeed, if thisis not the case, then thereisinmod D a
path of the form

YV;=VobVi— - —=V,_1— P(y1) = — P(y) = L
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where j > 2, Vi = 75Y;_1,Vo,...,V,_1 are directing D-modules (in fact G-
modules) and L is an indecomposable direct summand of R(z) for some z € S.
Clearly, then it is a path in mod A(z). We claim that ¢ € rad*(mod A(z)). This
follows from Lemma 3.1 if we put R = R(z),Y = Vo, Z = V1, W; = X; for
i > 1, and take for f; : W; — W,;,41 arbitrary irreducible maps, for fo: R —
W1 = X3 the composition of the projection R = M & N — Xo = M with an
irreducible map Xo — X1 = W1, and for g: R — Y the composition of the
projection R = M © N — N with irreducible maps Y; — --- — Yj. Since
Hom ;) (P(2),Y;) = 0and Homy,)(P(z), X;) = Ofor al i > 1 we get from
the proof of Lemma 3.1 that in fact ¢ € rad>°(mod A(z)). Therefore, we have in
mod A(z) an infinite path from N to L, a contradiction with the maximality of x
inS.

(o) Assumenow that M isinjectiveand hastwo direct successorsinC. Applying
Corollary 2.7 we infer that then R(xz) = M. Let Y3 be the direct successor of M
in C different from X3. Then Y7 is a module from 7 —. Observe that M is not
necessarily an F-module but its restriction to F' is an injective F'-module having
two direct successorsin 7 . Let

Y1:U1—>U2—>---—>Ur,

be the maximal sectional path in 7~ with source Y3. Clearly, it consists of injec-
tive F-modules. Applying Corollary 2.7 again we infer that none of modules
Ui,...,U,_1isadirect summand of the radical of a projective module inside B.
Suppose now that thereisin 7 asectional path

V:V0—>V1—>---—)V5:Uka

with 1 < k& < r — 1 such that V' is a summand of the radical of a projective
module P(d) in B. We may assume that k£ is minimal with this property. Since
F = A~ isatubular coextension of C, the supports of all successorsof V' in7
are contained in one (coextension) branch of F. Looking on the support of V/,
and applying Corollary 2.7 and the formulas for the Auslander-Reiten sequences
in module categories over specia biserial simply connected algebras (see [54],
[37]), we conclude that the vector space category Homg(V,indF') is the K -linear
category of one of the following finite partialy ordered sets:

Homg(V, Vo) — Homg(V, V1) — - -+ — Homg(V, Vj) @)

Homg (V, W;) < --- — Homg(V, W1) «+ Homg(V,Vp) — -+ —
Homp(V, Vi) (b')

withl > 1and V' = Vj injective, (¢')
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HomF(V,Wl)—>H0mF(V,W2)—> M —>H0mp(‘/,Wl)

| | |

Hom g (V,Vo) —Hom g (V,V1) — - -+ —Hom p(V,V;_1)— Homp(V,V}) — - -+ —Hom p(V,V%)
with2 <[ < sand V1 injective.

Moreover, weconcludeasabovethat, if theradical R(d) of P4 (d) isdecomposable,
then Homg(V,ind F) is of theform (&), R(d) = V & W, where W isauniseria
modulewhose supportisthe K -linear category H alinear quiver — (-1 — --- —
2 — 1,1 > 1. Then, applying [4, (2.1)], and [37], we infer that, for F' = F[V] or
F' = (F x H)[V & W], the component of I" -~ containing P(d) is obtained from
the coray tube 7~ by inserting arectangle and glueing with 7 — asfollows:

WY a
NN NN
N NN
N 7N N
NANA NG
P(}“o/‘ \o/‘ \‘oz, i‘os(d)
AT VARV 7N
IR A 3 |
NN NS
AN NS N
' Uk.:>lo/( \;05 2
e |
7

if Hom g (V,ind F) is of type (&) and R(d) decomposable;

Pa=vy

[ ] I e v

wn,w NN
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if Homg (V,indF) is of type (&) and R(d) indecomposable;

4 N
AN NG N

i SN N NN

T}/\f\/\ SR

SINSINN s
TN NS
AN NN

if Hom (V. ind F) is of type (b);

A v W, \% Va
7:%/00/( ;;No—ﬁi)(odﬁoivré)oi g.é‘?ﬁ./ \{o 1% l\n{l
ANNNN ANANAND
NI AN T N
NN N AN N
2N\ NN N N
NSNS N NN
rer\ o/l \o/ \‘ /( \llo‘r W,
+1 \‘./‘ \ \‘./( FYi-1
NG NSNS
\‘./t Vi=Up W] T W
/‘ Up—1

https://doi.org/10.1023/A:1000245728528 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000245728528

130 ANDRZEJ SKOWRONSKI

if Hom g (V,ind F) is of type (c’) and [ is odd; or

NerW W % Vi,
el D SN A N SN
TN AN NN INSNSNL
F}:—\VX‘O) \‘>‘o/‘ \ R /( \J'/‘ \(o/( A \IOT/_‘V =U,
NS N N AN N
2N\ NN\ NG N
NN N NSNS
T V\‘ ./‘ \o/( \ 4 \LOT*W
TN N N AT
AN N AN
NN AN A
\./‘1 VesUp W F
L

if Homg(V,ind F) is of type (c') and [ is even.
Observethat the sectiona pathY; = U; — - -+ — U, isinthisprocessextended
to one of the sectional paths

Yi—oUy— = U =V 5 Ugpr— = U,

or

Yi=U1— =2Ug1—-2Ug—=>Zg— - —Zg

=V = Ugy1— - = U,

Moreover, from the choice of £ and the shape of the inserted rectangle, we infer
that none of Uy, ..., Uy is the target of a sectional path with source being a
direct summand of the radical of indecomposable projective module which is
nonisomorphic to P(d). If one of the modules Z,3, ..., Zy, Vs, Uy, ..., U, lies
onasectional path in C with source being direct predecessor of aprojective module
werepeat the aboveanalysis. Since C admitsonly finitely many projective modules,
we conclude that in fact C admits a finite sectional path

O:Y1T-Y—-- =Y
and Homp (M, C) isof the form (b). Observe aso that after the extension of A(x)
to A = A(z)[R(z)], any irreducible map Y; — Z with Z % Y;11 will belong,

by Lemma 3.1, to rad>°(mod A). In particular, any projective module which is
successor of amodule Y;, 1 < ¢ < ¢, lies on the path ©.
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Applying now [4] and [5] we conclude that, in all cases considered above, M
is the pivot of an admissible operation of type (ad 1), (ad 2), or (ad 3), and the
component C’ of T' 4 containing P(x), isastandard multicoil. Moreover, it follows
from Lemma 5.1 and the maximality of = in S, that any projective module which
issuccessor of P(x) inmod A belongsto C’.

We shall describe the remaing components of I 4. First observe that, if £ isa
component in I 4(,), such that Homy,y(R(x), E) = 0O for al modules £ from
&, then € remains afull componentin I 4, by [39, (2.5)]. Let F be a component
of "4 different from C’ but containing a module Z with Hom(P(x), Z) # O.
By [5, (4.1)], there exists a maximal tubular extension €2 of C' which is a convex
subcategory of A and F isacomponent of I'g,. It follows from Proposition 2.3 and
our assumptionson A that 2 is either (representation-infinite) tilted of Euclidean
type with a complete slice in the preinjective component or tubular. In the first
case, F is the unique preinjective component of I'q. In the second case, F is, in
the notations of Section 1, acomponent in

V 7o | VTe VI

YEQT

We know that all componentsin I', are standard and the component quiver g is
directed. Hence, F is either a standard preinjective component or a standard tube
without projective modules. Applying now our assumptionson A(x), we conclude
that A isamulticoil algebra, al componentsin I 4 are standard, and X 4 isdirected.
Thisfinishes the proof of Theorem 4.1.
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