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1. Introduction. Let K be a non-abelian cubic field of discriminant D, and £K(s) its
Dedekind zeta-function. Set ip(s) = £K(s)/£(s). Then it is known that t/f(s) is the Artin
L-series associated with the field K. It is also known that ip(s) is an entire function of
order 1.

If K is not a totally real field then i//(s) satisfies the functional equation

•Ml - s) = -j- ( ^ s i n i r s T2(S)IIJ(S).

If K is a totally real field then «|/(s) satisfies the functional equation

4

Barrucand, in [1], has given asymptotic formulae for certain coefficient sums of
Here, using these results, and the methods of [2], [5] we prove the following:

THEOREM 1.

for sufficiently small 8 > 0.

(The positive constant A = ^ ^ J f f ^f f i E ( 2 ) is defined in [1, p. 962-A].)
\ 7T D(l).fc(l) /

COROLLARY 1.

|«K!+ it)\2dt~2AT log T.

THEOREM 2.

for sufficiently small 5 > 0.

COROLLARY 2.
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2. Lemmas.

LEMMA 1 (Van der Corput [4, p. 61]). Let F(x) and G(x) be real functions,
G(x)/F'(x) monotonic and F'(x)/G(x)^m>0, or F'(x)/G(x)<-m<0, throughout the
interval (a, b). Then

If G(x)eiF(x) dx
m

LEMMA 2 (Euler Summation [4, p. 13]). Let cf>(x) be a real function with a
continuous derivative in the interval (a, b). If, for a^x^b, </>'(x)s:0 or <£'(*)s0, then

b

dx-

The proof of the following lemmas follows easily from [1] and [2, p. 124], and will be
omitted.

LEMMA 3. Let tp(s)= X a(n)n~s (a>l). Then

and

(The constant A has been defined previously.)

LEMMA 4. Let t//(s)= £ fc(")«~s (<r>l), (TTius &(n) = -a (n ) log n.) Then, for suffi-
n = l

ciently small j3 > 0, we have

and

LEMMA 5.
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and

I^e-- = ,

3. Proof of Theorem 1. Throughout the rest of the paper we assume K is not
totally real. The results and methods for K totally real are exactly the same as for K not
totally real.

Now we have, for say cr>0, and some constant C > 0 ,

This follows easily from the functional equation and an application of the Phragmen-
Lindelof Theorem.

Now we consider the integral

~ f r(s)iKs)z-'ds= t ^ f r(s)(nz)-ds= £ a{n)e~n* (Rez>0).
2m J2_jo= n = 1 2m J2_iro n = 1

Moving the line of integration to a = a (0 < a < 1) we get

sds= £ a(n)c—=<f>0(z),
2m Ja-joo '

say. Hence, as in [4, p. 137], we have

f m+it)
Jo

'dt=\ \4>0(ixe~i&)\2dx+O(\)

for sufficiently small 8 > 0.
Now we remark that

bo\ix^)
277" . i&± (4TT2 . „'

ixe \ — — ixe

This transformation formula may be proven as in [4, p. 142], using the functional
equation.

Now, as in [2, pp. 125-126], we have

i:
•VD/(2ir)

4TT2 f "

J ) J

l *o(

2dx
^2
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Now

\<l>o(ixe

-T i
co

2 sin

fl(n)

n)a{

2(n)
n

2dx

m = l

g-4ir

LENARD WEINSTEIN

+ 2

m=2
- 2 £ a(m)

(m + n)sin 8 cos[2ir(m — n)cos
(m + n)2sin2 S + (m-n)2cos:

(m — n)cos 8 sin[2Tr(m — n)cos

+ n)2sin2 8 + (m-n)2cos2

= A1(S) + 2A2(S)-2A3(S),

say. By Lemma 4,

Also A2(S) may be evaluated, as in [4, p. 145], to give

The sum A3(S) is slightly more complicated, and may be evaluated as in [3, p. 150] to give I

Collecting these extimates, we obtain

I"
JZ

and this gives

Corollary 1 now follows from the theorem of [4, p. 136].

4. Proof of Theorem 2. We consider the integral

27T! J2_i
(Rez>0).
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Again, moving the line of integration to a = a (0 < a < 1), we get

13

r(sW(s)z-sds= t b(n)e—= <f>i(z),

say.
We remark that

/4TT 2

\ D

- l og x ^ o ( ^

This transformation formula may be proven using the functional equation, as in the
first part.

Now, as in the first part,

f
r oo

dx = \<t>i(ixe'iS)- 2
JjD/(2-n)

- 2 log x<po(ixe'iS) + 2i8<t>0(ixe-ia) + O ( x a - X ) | 2 dx

= f \^{ixe-iB)\2 dx
JJ5/(2TT)

•V5/(2TT)

- 2 log xf(-ixei8)^0(ixe"8) dx
•VD/(2ir)

+ 4 f log2 x |4>0(uce-iS)|2 dx + O ^

=

- 2 [ l o g x £ £ b(n)a(m)e-"(-ixe'6)e-m<ixe"") dx

- 2 log* i(n)a(m)e"'l(iiri ')e"m("iM")(lx
n = l m = l

+ 4 f l o g 2 x £ £ a(n)a(m)e-n(ixc"8)e-m(-ixei8) dx
J2-irlJn n = l m = l
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Now let us look at the terms with n = m in the above sum. They equal

£ a\n) \ log2(nx2)e-2n*sinS dx.

This last sum equals, upon an integration by parts,

log2(47T2n/P)a2(n) e _ 4 m i l l i n w V 5 + f a2(w) f" 41og(nx2) ^ 2 n x s i n 8

J
1 y log2(47Tn/P)a(n) e_4mil l inwV5+ f

2 sin 5 „ = ! n n = 12n sin

S), say.
By Lemma 4,

Substituting 3nxy/~D/(2v) for x, we find

3 n x

2(_ y 2a2(n) r log_ne_4wxsi

n = = 1 n s i n 5 j 3 n x

_f 2a\n)

= B21(8)-B22(8)-B23(8),

say.
Now by Lemma 2, we find

sin 5 m=3 m

By Lemmas 3, 4, and 5,

Similarly, by Lemmas 3, 4, and 5,

„=! n sin 6 m ~ 3 n wi

By interchanging the order of summation, we obtain

—4-nn sin
e
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Thus

We now consider the terms with n^m, which are

P t 1 ft(n)b(m)e-"(ixe"16)e—(-ixc") dx
•feir/VD n = 1 m = 1

- 2 f l o g x £ £ b(n)a(m)e-"(-ixe'6>e-m(ixe"8) dx
li-nt-Ju n = 1 m = 1

- 2

+ 4 [ l o g 2 x £ Z a(n)a(m)e-n(ixe"S)e-m(-ixe'B) dx

= Q(S) - 2C2(8) - 2C3(5) + 4C4(8),
say.

Let us first consider C4(S).

C4(5)= £ I a(n)a(m) f log2
 x<r*[(m+n)SinS+i(-

n = l m = l J2-jr/y/D
n^ m

Upon an integration by parts,

i m^x (m + n)sin S + i(n-m)cos

a(n)a(m)
+ 2 I I - ^ n s i n 3 + ,-(n-m)cos5j

= C41(5) + 2C42(5),

say.
We consider first, C42(5).

(m\(m + n^sin ft f°° Inn r

dx
a(»)a(m)(m + n)sin8 f- log_x (m+n)s in8 i (_x)(n-m)cos8

f y iq(n)q(m)(n-m)cos8 i iugx (m+n)sins j(_x)(n_m)cosS

n% m% (m + nf sin2 5 + (n -m) 2 cos2 8 ' - -

= C4 2 1(8)-C4 2 2(S),

say.
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C421(5)

a(n)a(m)(m + n)sm8 f°° log_x g_x(m+n)s inv (_x

J
f°°

J 2 7 r /
y f

n r 2 m = i (m + n)2 sin2 8 + (n- m)2 cos2 8 J2

f f
^ 2 tx (m + nf sin2 S + (n- m)2 cos2 5 J27r/V5- x

V "yl a(n)a(m)(m + n)sin

say.
C4211(5) = o( £ "f |a(")||a(m

2
)|2^Sin5 I f" l28ie-(—)-.e.(-)(-.)-.. J )

V=2n=i (n-m) 2 cos 2 S I J2ir/VD ^ 1/

and upon substituting exVD/(27r) for x, we obtain

C4211(5)

logx 2m(m+B)s

cos
f 2m(m+B)sin8/(e75) i(_2mt)(B_m)col8(eV5)

a ( n ) \ \ a ( m ) \ 2 m s i n S\ f " l 2 T O ( m + 1 , ) d I l W ( e v 5 ) I ( _ 2 m t ) ( l l _ m ) c o . a / ( , V D )| JA (n-m)2cos2S | Je x
\a(m)\ 2m sin 5y

=2n=i (n-m)2cos2S (m-n)cosS / '
by Lemma 1. This sum may be evaluated as in [4, p. 145] to give

Similarly C4212(6) = o(^, and so C421(S) = ol^j.

By the same procedure as above, we find C422(5) = O ( T ) , and so C42(S) = Ol"^)-
We now consider C41(8). V 6 / VS/

y f a(n)q(m)(m + rc)sin 8 cos[27r(n - m)cos
(m + n)2sin2S + (m-n) 2 cos 2 S

y a(n)q(m)(m - n)cos 8 sin[2^r(n - m)cos5/VP] £-2^(m+n)sin

(m + n)2sin25 + (m-n) 2 cos 2n)2sin25 + (m-n) 2 cos 2 8

= C4U(8) + C412(6),
say.

C411(S) may be evaluated as in [4, p. 145], to give
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The second sum, again, is slightly more complicated and may be evaluated as in [3, p.
150] to give

Thus C41(S) = o ( - ] , and so C4(8) = O[~).
\8/ \o/

Proceeding as above, we find similarly

Cl(S)=o(ilog4),

Collecting all the estimates, we obtain

Now J^/VD I<^I(»^~'6)|2 dx may be evaluated as before to give

Thus

and this gives

Corollary 2 now follows as before.
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