A 2-ARC TRANSITIVE PENTAVALENT CAYLEY GRAPH OF A39

BO LING and BEN GONG LOU ${ }^{\boxtimes}$

(Received 15 July 2015; accepted 16 October 2015; first published online 11 January 2016)

Abstract

Zhou and Feng ['On symmetric graphs of valency five’, Discrete Math. 310 (2010), 1725-1732] proved that all connected pentavalent 1-transitive Cayley graphs of finite nonabelian simple groups are normal. We construct an example of a nonnormal 2-arc transitive pentavalent symmetric Cayley graph on the alternating group A_{39}. Furthermore, we show that the full automorphism group of this graph is isomorphic to the alternating group A_{40}.

2010 Mathematics subject classification: primary 20B25; secondary 05C25, 20D06.
Keywords and phrases: normal Cayley graph, symmetric graph, automorphism group, finite simple group.

1. Introduction

For a graph Γ, we use $V \Gamma, E \Gamma$ and $A u t \Gamma$ to denote the vertex set, edge set and full automorphism group of Γ, respectively. An arc in Γ is an ordered pair of two adjacent vertices. A graph Γ is said to be symmetric if Aut Γ acts transitively on the set of all arcs of Γ.

Let G be a finite group with identity 1 and let S be a subset of G such that $1 \notin S$ and $S=S^{-1}:=\left\{x^{-1} \mid x \in S\right\}$. The Cayley graph of G with respect to S, denoted by $\operatorname{Cay}(G, S)$, is defined on G such that $g, h \in G$ are adjacent if and only if $h g^{-1} \in S$. Then $\operatorname{Cay}(G, S)$ is a regular undirected graph of valency $|S|$. It is well known that Γ is connected if and only if $\langle S\rangle=G$, that is, S is a generating set of the group G. For a Cayley graph $\operatorname{Cay}(G, S)$, the underlying group G can be viewed as a regular subgroup of $\operatorname{AutCay}(G, S)$ which acts on G by right multiplication. Conversely, a graph Γ is isomorphic to a Cayley graph of a group G if and only if Aut Γ contains a subgroup which is regular on $V \Gamma$ and isomorphic to G (see [10]). A Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is said to be normal if G is normal in Aut Γ; otherwise, Γ is called nonnormal.

Cayley graphs of finite simple groups have received much attention. Let T be a finite nonabelian simple group and let $\Gamma=\operatorname{Cay}(T, S)$ be a connected symmetric Cayley

[^0]graph of T. In the case where Γ is cubic, Li [6] proved that Γ must be normal except for seven finite nonabelian simple groups. On the basis of Li's result, Xu et al. [11, 12] proved that a nonnormal Γ must have automorphism group A_{48} and be isomorphic to one of two Cayley graphs of A_{47}. In the case where Γ is pentavalent, Zhou and Feng [13] proved that Γ is normal when Γ is 1-transitive. But there are no known examples of connected pentavalent symmetric Cayley graphs of finite simple groups which are nonnormal. In this paper, we construct a 2 -arc transitive pentavalent nonnormal Cayley graph of a finite simple group.

Theorem 1.1. There exists a nonnormal connected pentavalent Cayley graph on the alternating group A_{39} with full automorphism group A_{40}.

2. Preliminaries

In this section, we give some necessary preliminary results.
First we introduce the definition of a coset graph. Let G be a finite group and let H be a core-free subgroup of G. Define the coset $\operatorname{graph} \operatorname{Cos}(G, H, g)$ of G with respect to H as the graph with vertex set $[G: H]$ such that $H x, H y$ are adjacent if and only if $y x^{-1} \in H g H$. The following lemma about coset graphs is well known.

Lemma 2.1. A graph Γ is G-arc transitive for some $G \leq \mathrm{Aut} \Gamma$ if and only if $\Gamma \cong$ $\operatorname{Cos}(G, H, g)$, where $H=G_{\alpha}$ for some $\alpha \in V \Gamma, g \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right) \backslash G_{\alpha}$ is a 2-element such that $g^{2} \in H$ and β is adjacent to α.

In particular, for the coset graph $\Gamma=\operatorname{Cos}(G, H, g)$, the following statements hold:
(1) the valency, val Γ, of Γ is given by $\mathrm{val} \Gamma=\left|H: H \cap H^{g}\right|$;
(2) Γ is connected if and only if $\langle H, g\rangle=G$;
(3) if G has a subgroup R acting regularly on the vertices of Γ, then $\operatorname{Cos}(G, H, g) \cong$ $\operatorname{Cay}(R, S)$, where $S=R \cap H g H$.

Denote by F_{20} the Frobenius group of order 20. The next lemma gives the structure of the vertex stabilisers of pentavalent symmetric graphs, as determined in [4, 13].

Lemma 2.2. Let Γ be a pentavalent (X, s)-transitive graph for some $X \leq \operatorname{Aut} \Gamma$ and $s \geq 1$. Let $v \in V \Gamma$. If X_{v} is soluble, then $\left|X_{v}\right| \mid 80$ and $s \leq 3$. If X_{v} is insoluble, then $\left|X_{v}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$ and $2 \leq s \leq 5$. Furthermore, one of the following holds:

$$
\begin{align*}
& s=1, X_{v} \cong \mathbb{Z}_{5}, \mathrm{D}_{10} \text { or } \mathrm{D}_{20} ; \tag{1}\\
& s=2, X_{v} \cong \mathrm{~F}_{20}, \mathrm{~F}_{20} \times \mathbb{Z}_{2}, \mathrm{~A}_{5} \text { or } \mathrm{S}_{5} ; \\
& s=3, X_{v} \cong \mathrm{~F}_{20} \times \mathbb{Z}_{4}, \mathrm{~A}_{4} \times \mathrm{A}_{5},\left(\mathrm{~A}_{4} \times \mathrm{A}_{5}\right): \mathbb{Z}_{2} \text { or } \mathrm{S}_{4} \times \mathrm{S}_{5} ; \\
& s=4, X_{v} \cong \operatorname{ASL}(2,4), \operatorname{AGL}(2,4), \operatorname{A} L(2,4) \text { or } \operatorname{A\Gamma L}(2,4) ; \\
& s=5, X_{v} \cong \mathbb{Z}_{2}^{6}: \Gamma \mathrm{L}(2,4)
\end{align*}
$$

Let G be a finite group and let H be a subgroup of G. Denote by $\mathrm{C}_{G}(H)$ the centraliser of H in G and by $\mathrm{N}_{G}(H)$ the normaliser of H in G. Then we have the following lemma (see [5, Ch. I, Theorem 4.5]).

Lemma 2.3. The quotient group $\mathrm{N}_{G}(H) / \mathrm{C}_{G}(H)$ is isomorphic to a subgroup of the automorphism group $\operatorname{Aut}(H)$ of H.

Simple groups which have subgroups of index dividing $2^{6} \cdot 3^{2}$ are given in the following lemma (see [2, Lemma 2.4]).

Lemma 2.4. Let T be a nonabelian simple group which has a subgroup L of index dividing $2^{6} \cdot 3^{2}$. Then T, L and $n:=|T: L|$ are given in the following table.

T	L	n	Remark
A_{n}	$\mathrm{~A}_{n-1}$	n	$n \mid 2^{6} \cdot 3^{2}$
M_{11}	$\operatorname{PSL}(2,11)$	12	
M_{12}	M_{11}	12	
M_{24}	M_{23}	24	

The following proposition, from [7, Proposition 3.2] plays an important role in the proof of Theorem 1.1.

Proposition 2.5. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected X-arc-transitive Cayley graph, where $G \leq X \leq \operatorname{Aut} \Gamma$. Let H be the stabiliser of $1 \in V \Gamma$ in X. If S contains an involution z, then $z \in \mathrm{~N}_{\mathrm{S}_{|H|}}\left(H \cap H^{z}\right) \backslash\left(\cup_{1 \neq K \unlhd H} \mathrm{~N}_{\mathrm{S}_{||H|}}(K)\right), \Gamma \cong \operatorname{Cos}(X, H, z), X=\langle z, H\rangle$, $G=\left\{\sigma \in X \mid 1^{\sigma}=1\right\}$ and $S=\left\{\sigma \in H z H \mid 1^{\sigma}=1\right\}$.

3. Construction

Construction 3.1. Let G be the alternating group A_{39} and X the alternating group A_{40} and let $H=\langle a, b, c\rangle<\mathrm{A}_{40}$, where

$$
\begin{aligned}
a= & \left.\left(\begin{array}{l}
1 \\
1
\end{array} 1131\right)(2221232)\binom{3}{2519} 37\right)(4262038)(5291733) \\
& (6301834)(7231539)(8241640)(9271335)(10281436), \\
b= & (13579)(246810)(1113151719)(1214161820) \\
& (2123252729)(2224262830)(3133353739)(3234363840), \\
c= & (12)(34)(56)(78)(910)(1112)(1314)(1516)(1718)(1920) \\
& (2122)(2324)(2526)(2728)(2930)(3132)(3334)(3536)(3738)(3940) .
\end{aligned}
$$

Define an involution $x_{1} \in G$ by

$$
\begin{aligned}
x_{1}= & (212)(334)(429)(538)(625)(714)(89)(1015)(1316)(1726) \\
& (1837)(1930)(2033)(2232)(2336)(2427)(2839)(3540) .
\end{aligned}
$$

Define $\Gamma=\operatorname{Cos}\left(X, H, x_{1}\right)$.
Lemma 3.2. The graph $\Gamma=\operatorname{Cos}\left(X, H, x_{1}\right)$ from Construction 3.1 is connected, symmetric and isomorphic to the nonnormal Cayley graph $\operatorname{Cay}(G, S)$ of G, determined by $S=\left\{x_{1}, x_{2}, x_{2}^{-1}, x_{3}, x_{3}^{-1}\right\}$ with

$$
\begin{aligned}
x_{2}= & (2203240104151929279173624351316) \\
& (53733368303425391123262214)(73121)(123828), \\
x_{3}= & (218297301234289333315212720223214) \\
& (42636839351125231317402463819371016) .
\end{aligned}
$$

Proof. Let $\Omega=\{1,2, \ldots, 40\}$ and consider the natural action of X on Ω. By Magma [1], $\left\langle H, x_{1}\right\rangle=X$ and so Γ is connected by Lemma 2.1(2). Note that $b^{a}=b^{2}$ and c centralises $\langle a, b\rangle$. It follows that $H=\langle a, b, c\rangle=\langle a, b\rangle \times\langle c\rangle \cong\left(\mathbb{Z}_{5}: \mathbb{Z}_{4}\right) \times \mathbb{Z}_{2}$. It is easy to see that H is transitive on Ω and so is regular on Ω. Hence, X has a factorisation $X=G H=H G$ with $G \cap H=1$. Therefore, Γ is isomorphic to a Cayley graph of $G=\mathrm{A}_{39}$. Further computation shows that $|H| /\left|H \cap H^{x_{1}}\right|=5$. By Lemma 2.1(1), Γ is pentavalent. Let

$$
\begin{aligned}
x_{2}= & (2203240104151929279173624351316) \\
& (53733368303425391123262214)(73121)(123828), \\
x_{3}= & (218297301234289333315212720223214) \\
& (42636839351125231317402463819371016)
\end{aligned}
$$

and $S=\left\{x_{1}, x_{2}, x_{2}^{-1}, x_{3}, x_{3}^{-1}\right\}$. Computation shows that $G \cap\left(H x_{1} H\right)=S$. Then $\Gamma \cong$ Cay (G, S) by Lemma 2.1(3). Obviously, G is not normal in X and so is in Aut Γ. Thus, Γ is nonnormal.

For convenience, we recall some definitions here. A transitive permutation group G is quasiprimitive if each nontrivial normal subgroup of G is transitive. Praeger [8] extended the O'Nan-Scott theorem for primitive groups to quasiprimitive groups, and divided quasiprimitive groups into eight O'Nan-Scott types, namely HA, AS, HS, HC, SD, CD, TW and PA. Further details can be found in [3].

The next lemma completes the proof of Theorem 1.1.
Lemma 3.3. Let $\Gamma=\operatorname{Cos}\left(X, H, x_{1}\right)$ as in Construction 3.1 and let $A=\operatorname{Aut} \Gamma$. Then A acts quasiprimitively on $V \Gamma$ and $A=\mathrm{A}_{40}$ acts 2-arc transitively on Γ.

Proof. Suppose, on the contrary, that A is not quasiprimitive on $V \Gamma$. Let N be a minimal normal subgroup of A which is not transitive on $V \Gamma$. Then $N \cap X \unlhd X$. It follows that $N \cap X=1$ or A_{40}. If $N \cap X=\mathrm{A}_{40}$, then $X \leq N \unlhd A$. This implies that N is transitive on $V \Gamma$, which is a contradiction. If $N \cap X=1$, then $|N|$ divides $|A| /|X|$. Let v be a vertex of Γ. It is easy to see that $X_{v}=H \cong \mathrm{~F}_{20} \times \mathbb{Z}_{2}$. Then $\left|A_{\nu}\right| /\left|X_{v}\right| \mid 2^{6} \cdot 3^{2}$ by Lemma 2.2. Since $|A| /|X|=\left|A_{\nu}\right| /\left|X_{\nu}\right|$, it follows that $|N|$ divides $2^{6} \cdot 3^{2}$. Thus, $N \cong \mathbb{Z}_{2}^{r}$ or \mathbb{Z}_{3}^{l}, where $1 \leq r \leq 6$ and $1 \leq l \leq 2$. Let $F=N X$. Then $F=N: X$. By Lemma 2.3, $F / \mathrm{C}_{F}(N) \lesssim \operatorname{Aut}(N) \cong \mathrm{GL}(r, 2)$ or $\mathrm{GL}(l, 3)$. Note that $N \leq \mathrm{C}_{F}(N)$. If $N=\mathrm{C}_{F}(N)$, then $F / \mathrm{C}_{F}(N)=F / N=X=\mathrm{A}_{40}$. However, by Magma [1], GL($\left.2, r\right)$ and GL($3, l$ have no subgroup isomorphic to A_{40} for $1 \leq r \leq 6$ and $1 \leq l \leq 2$. Hence, we have $N<\mathrm{C}_{F}(N)$ and $1 \neq \mathrm{C}_{F}(N) / N \unlhd F / N=X=\mathrm{A}_{40}$. Thus, $\mathrm{C}_{F}(N) / N=\mathrm{A}_{40}$, that is, X centralises N. Hence, $F=N \times X=N \times \mathrm{A}_{40}$ and $F_{v} / X_{v} \cong F / X=N$. This implies that F_{v} is soluble. Since $X_{v}=\mathrm{F}_{20} \times \mathbb{Z}_{2}$, it follows from Lemma 2.2 that $F_{v}=\mathrm{F}_{20} \times \mathbb{Z}_{4}$ and $N \cong \mathbb{Z}_{2}$. So, $F=\mathbb{Z}_{2} \times \mathrm{A}_{40}$.

Let $\Delta=[F: G]$, the set of right cosets of G in F. Since $G=\mathrm{A}_{39}$, the core of G in F is $\operatorname{Core}_{F}(G):=\bigcap_{x \in F} G^{x}=1$. Thus, F may be viewed as a subgroup of the symmetric group $S_{|\Delta|} \cong \mathrm{S}_{80}$ by considering the right multiplication action of F on Δ. For convenience, we identify $\Delta=[F: G]$ with $\Omega=\{1,2, \ldots, 80\}$. Then the action of F on Δ is equivalent to the natural action of F on Ω. Now F_{v} is a regular subgroup of S_{80} and G is a stabiliser of $i \in\{1,2, \ldots, 80\}$ in F. Without loss of generality, we may assume that G fixes 1. Since F is transitive on the set of arcs of Γ, by Lemma 2.1,
Γ can be represented as a coset graph $\operatorname{Cos}\left(F, F_{v}, \tau\right)$, where $\tau \in \mathrm{N}_{F}\left(F_{v w}\right)$ is a 2-element such that $\tau^{2} \in F_{v}, v \in V \Gamma$ and $w \in \Gamma(v)$. Note that F_{v} is a regular subgroup of S_{80} and all isomorphic regular subgroups of S_{80} are conjugate in S_{80} (see, for example, [12, Lemma 4.6]). Thus, we may assume that $F_{v}=\langle a, b, c\rangle$, where

$$
\begin{aligned}
a= & (116116)(217127)(318138)(419149)(5201510) \\
& (21363126)(22373227)(23383328)(24393429)(25403530) \\
& (41565146)(42575247)(43585348)(44595449)(45605550) \\
& (61767166)(62777267)(63787368)(64797469)(65807570), \\
b= & (1467735)(2436628)(3607521)(4576434)(5547327) \\
& (6516240)(7487133)(8458026)(9426939)(10597832) \\
& (11566725)(12537638)(13506531)(14477424)(15446337) \\
& (16417230)(17586123)(18557036)(19527929)(20496822), \\
c= & (1171395)(21814106)(31915117)(42016128) \\
& (2137332925)(2238343026)(2339353127)(2440363228) \\
& (4157534945)(4258545046)(4359555147)(4460565248) \\
& (6177736965)(6278747066)(6379757167)(6480767268) .
\end{aligned}
$$

By Lemma 3.2, $\Gamma \cong \operatorname{Cay}(G, S)$. Then the 2 -element τ is an involution by Proposition 2.5 and $\tau \in \mathrm{N}_{\mathrm{S}_{80}}\left(F_{v} \cap F_{v}^{\tau}\right) \backslash\left(\bigcup_{1 \neq K \unlhd F_{v}} \mathrm{~N}_{\mathrm{S}_{80}}(K)\right)$. Since Γ is pentavalent, we have $\left|F_{v}: F_{v} \cap F_{v}^{\tau}\right|=5$. Thus, $F_{v} \cap F_{v}^{\tau}$ is a Sylow 2-subgroup of F_{v}. Since all Sylow 2-subgroups of F_{v} are conjugate in F_{v}, we may assume that $F_{v} \cap F_{v}^{\tau}=\langle a, b\rangle$. Then $\tau \in \mathrm{N}_{\mathrm{S}_{80}}(\langle a, b\rangle) \backslash\left(\bigcup_{1 \neq K \unlhd F_{v}} \mathrm{~N}_{\mathrm{S}_{80}}(K)\right)$ is such that $1^{\tau}=1$ and $\left\langle F_{v}, \tau\right\rangle=F \cong \mathbb{Z}_{2} \times \mathrm{A}_{40}$. However, by computing with Magma [1], such τ does not exist.

Hence, A is quasiprimitive on $V \Gamma$. Let $S=\operatorname{soc}(A)$, the socle of A. Then $S \cong T^{d}$ is transitive on $V \Gamma$, where T is simple and the integer $d \geq 1$. Since $|V \Gamma|=|G|=\left|\mathrm{A}_{39}\right|, A$ is obviously not of type HA. Note that $\left|A_{v}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$. It follows that $|G|||S|| 2^{9} \cdot 3^{2}$. $5 \cdot|G|$. So, there must be a prime p such that $p\left||S|\right.$ and $\left.p^{2} \nmid\right| S \mid$. Consequently, $d=1$, that is, $S=\operatorname{soc}(A)=T$ is a nonabelian simple group. It follows that A is not of type HS, HC, CD, SD, TW or PA. Hence, A is almost simple. Since $S \cap X \unlhd X \cong \mathrm{~A}_{40}$, it follows that $S \cap X=1$ or A_{40}. If $S \cap X=1$, then $|S|||A| /|X|| 2^{6} \cdot 3^{2}$. By the Burnside $p-q$ theorem (see [9, page 240]), S is soluble, which is not possible. Thus, $S \cap X=X$ and so $X \leq S$. It follows that $|S: X|||A: X|| 2^{6} \cdot 3^{2}$. By Lemma 2.4, we can conclude that $S=X \cong \mathrm{~A}_{40}$. Thus, $A \leq \operatorname{Aut}(S) \cong \mathrm{S}_{40}$. If $A \cong \mathrm{~S}_{40}$, then $\left|A_{v}\right|=|A| /|G|=80$. By Lemma 2.2, $A_{v} \cong \mathrm{~F}_{20} \times \mathbb{Z}_{4}$. This also leads to a contradiction by arguments similar to those used for F_{v} in the previous paragraph. Hence, $A \cong \mathrm{~A}_{40}$ and so $A_{v} \cong \mathrm{~F}_{20} \times \mathbb{Z}_{2}$. By Lemma 2.2, Γ is 2-arc transitive. This completes the proof of the lemma.

References

[1] W. Bosma, C. Cannon and C. Playoust, 'The MAGMA algebra system I: the user language', J. Symbolic Comput. 24 (1997), 235-265.
[2] X. G. Fang, C. H. Li and M. Y. Xu, 'On edge-transitive Cayley graphs of valency four', European J. Combin. 25 (2004), 1107-1116.
[3] M. Giudici, C. H. Li and C. E. Praeger, 'Analysing finite locally s-arc transitive graphs', Trans. Amer. Math. Soc. 356 (2003), 291-317.
[4] S. T. Guo and Y. Q. Feng, 'A note on pentavalent s-transitive graphs', Discrete Math. 312 (2012), 2214-2216.
[5] B. Huppert, Eudiche Gruppen I (Springer, Berlin, 1967).
[6] C. H. Li, Isomorphisms of Finite Cayley Graphs, PhD Thesis, The University of Western Australia, 1996.
[7] J. J. Li and Z. P. Lu, 'Cubic s-transitive Cayley graphs', Discrete Math. 309 (2009), 6014-6025.
[8] C. E. Praeger, 'An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc-transitive graphs', J. Lond. Math. Soc. (2) 47 (1992), 227-239.
[9] D. J. S. Robinson, A Course in the Theory of Groups (Springer, New York, 1982).
[10] G. Sabidussi, 'On a class of fixed-point-free graphs', Proc. Amer. Math. Soc. 9 (1958), 800-804.
[11] S. J. Xu, X. G. Fang, J. Wang and M. Y. Xu, 'On cubic s-arc-transitive Cayley graphs of finite simple groups', European J. Combin. 26 (2005), 133-143.
[12] S. J. Xu, X. G. Fang, J. Wang and M. Y. Xu, '5-arc transitive cubic Cayley graphs on finite simple groups', European J. Combin. 28 (2007), 1023-1036.
[13] J. X. Zhou and Y. Q. Feng, 'On symmetric graphs of valency five', Discrete Math. 310 (2010), 1725-1732.

BO LING, School of Mathematics and Statistics, Yunnan University, Kunmin 650031, PR China
e-mail: bolinggxu@163.com
BEN GONG LOU, School of Mathematics and Statistics, Yunnan University,
Kunmin 650031, PR China
e-mail: bengong188@163.com

[^0]: This work was partially supported by the NNSF of China (11301468 and 11231008) and the NSF of Yunnan Province (2013FB001).
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

