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Abstract

Zhou and Feng [‘On symmetric graphs of valency five’, Discrete Math. 310 (2010), 1725–1732] proved
that all connected pentavalent 1-transitive Cayley graphs of finite nonabelian simple groups are normal.
We construct an example of a nonnormal 2-arc transitive pentavalent symmetric Cayley graph on the
alternating group A39. Furthermore, we show that the full automorphism group of this graph is isomorphic
to the alternating group A40.
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1. Introduction

For a graph Γ, we use VΓ, EΓ and AutΓ to denote the vertex set, edge set and full
automorphism group of Γ, respectively. An arc in Γ is an ordered pair of two adjacent
vertices. A graph Γ is said to be symmetric if AutΓ acts transitively on the set of all
arcs of Γ.

Let G be a finite group with identity 1 and let S be a subset of G such that 1 < S
and S = S −1 := {x−1 | x ∈ S }. The Cayley graph of G with respect to S , denoted by
Cay(G, S ), is defined on G such that g, h ∈ G are adjacent if and only if hg−1 ∈ S .
Then Cay(G, S ) is a regular undirected graph of valency |S |. It is well known that Γ
is connected if and only if 〈S 〉 = G, that is, S is a generating set of the group G. For a
Cayley graph Cay(G, S ), the underlying group G can be viewed as a regular subgroup
of AutCay(G, S ) which acts on G by right multiplication. Conversely, a graph Γ is
isomorphic to a Cayley graph of a group G if and only if AutΓ contains a subgroup
which is regular on VΓ and isomorphic to G (see [10]). A Cayley graph Γ = Cay(G,S )
is said to be normal if G is normal in AutΓ; otherwise, Γ is called nonnormal.

Cayley graphs of finite simple groups have received much attention. Let T be a
finite nonabelian simple group and let Γ = Cay(T,S ) be a connected symmetric Cayley
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graph of T . In the case where Γ is cubic, Li [6] proved that Γ must be normal except
for seven finite nonabelian simple groups. On the basis of Li’s result, Xu et al. [11, 12]
proved that a nonnormal Γ must have automorphism group A48 and be isomorphic to
one of two Cayley graphs of A47. In the case where Γ is pentavalent, Zhou and Feng
[13] proved that Γ is normal when Γ is 1-transitive. But there are no known examples
of connected pentavalent symmetric Cayley graphs of finite simple groups which are
nonnormal. In this paper, we construct a 2-arc transitive pentavalent nonnormal Cayley
graph of a finite simple group.

Theorem 1.1. There exists a nonnormal connected pentavalent Cayley graph on the
alternating group A39 with full automorphism group A40.

2. Preliminaries

In this section, we give some necessary preliminary results.
First we introduce the definition of a coset graph. Let G be a finite group and let H

be a core-free subgroup of G. Define the coset graph Cos(G,H, g) of G with respect
to H as the graph with vertex set [G : H] such that Hx, Hy are adjacent if and only if
yx−1 ∈ HgH. The following lemma about coset graphs is well known.

Lemma 2.1. A graph Γ is G-arc transitive for some G ≤ AutΓ if and only if Γ �
Cos(G,H, g), where H = Gα for some α ∈ VΓ, g ∈ NG(Gαβ)\Gα is a 2-element such
that g2 ∈ H and β is adjacent to α.

In particular, for the coset graph Γ = Cos(G,H, g), the following statements hold:

(1) the valency, valΓ, of Γ is given by valΓ = |H : H ∩ Hg|;
(2) Γ is connected if and only if 〈H, g〉 = G;
(3) if G has a subgroup R acting regularly on the vertices of Γ, then Cos(G,H, g) �

Cay(R, S ), where S = R ∩ HgH.

Denote by F20 the Frobenius group of order 20. The next lemma gives the structure
of the vertex stabilisers of pentavalent symmetric graphs, as determined in [4, 13].

Lemma 2.2. Let Γ be a pentavalent (X, s)-transitive graph for some X ≤ AutΓ and
s ≥ 1. Let v ∈ VΓ. If Xv is soluble, then |Xv| | 80 and s ≤ 3. If Xv is insoluble, then
|Xv| | 29 · 32 · 5 and 2 ≤ s ≤ 5. Furthermore, one of the following holds:

(1) s = 1, Xv � Z5, D10 or D20;
(2) s = 2, Xv � F20, F20 × Z2, A5 or S5;
(3) s = 3, Xv � F20 × Z4, A4 × A5, (A4 × A5) : Z2 or S4 × S5;
(4) s = 4, Xv � ASL(2, 4), AGL(2, 4), AΣL(2, 4) or AΓL(2, 4);
(5) s = 5, Xv � Z

6
2 : ΓL(2, 4).

Let G be a finite group and let H be a subgroup of G. Denote by CG(H) the
centraliser of H in G and by NG(H) the normaliser of H in G. Then we have the
following lemma (see [5, Ch. I, Theorem 4.5]).
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Lemma 2.3. The quotient group NG(H)/CG(H) is isomorphic to a subgroup of the
automorphism group Aut(H) of H.

Simple groups which have subgroups of index dividing 26 · 32 are given in the
following lemma (see [2, Lemma 2.4]).

Lemma 2.4. Let T be a nonabelian simple group which has a subgroup L of index
dividing 26 · 32. Then T , L and n := |T : L| are given in the following table.

T L n Remark
An An−1 n n | 26 · 32

M11 PSL(2, 11) 12
M12 M11 12
M24 M23 24

The following proposition, from [7, Proposition 3.2] plays an important role in the
proof of Theorem 1.1.

Proposition 2.5. Let Γ = Cay(G, S ) be a connected X-arc-transitive Cayley graph,
where G ≤ X ≤ AutΓ. Let H be the stabiliser of 1 ∈ VΓ in X. If S contains an
involution z, then z ∈ NS|H|(H ∩ Hz)\(

⋃
1,KEH NS|H|(K)), Γ � Cos(X,H, z), X = 〈z,H〉,

G = {σ ∈ X | 1σ = 1} and S = {σ ∈ HzH | 1σ = 1}.

3. Construction
Construction 3.1. Let G be the alternating group A39 and X the alternating group A40
and let H = 〈a, b, c〉 < A40, where

a = (1 21 11 31)(2 22 12 32)(3 25 19 37)(4 26 20 38)(5 29 17 33)
(6 30 18 34)(7 23 15 39)(8 24 16 40)(9 27 13 35)(10 28 14 36),

b = (1 3 5 7 9)(2 4 6 8 10)(11 13 15 17 19)(12 14 16 18 20)
(21 23 25 27 29)(22 24 26 28 30)(31 33 35 37 39)(32 34 36 38 40),

c = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)
(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)(33 34)(35 36)(37 38)(39 40).

Define an involution x1 ∈ G by
x1 = (2 12)(3 34)(4 29)(5 38)(6 25)(7 14)(8 9)(10 15)(13 16)(17 26)

(18 37)(19 30)(20 33)(22 32)(23 36)(24 27)(28 39)(35 40).
Define Γ = Cos(X,H, x1).

Lemma 3.2. The graph Γ = Cos(X, H, x1) from Construction 3.1 is connected,
symmetric and isomorphic to the nonnormal Cayley graph Cay(G,S ) of G, determined
by S = {x1, x2, x−1

2 , x3, x−1
3 } with

x2 = (2 20 32 40 10 4 15 19 29 27 9 17 3 6 24 35 13 16)
(5 37 33 36 8 30 34 25 39 11 23 26 22 14)(7 31 21)(12 38 28),

x3 = (2 18 29 7 30 12 34 28 9 3 33 31 5 21 27 20 22 32 14)
(4 26 36 8 39 35 11 25 23 13 17 40 24 6 38 19 37 10 16).
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Proof. Let Ω = {1,2, . . . ,40} and consider the natural action of X on Ω. By Magma [1],
〈H, x1〉 = X and so Γ is connected by Lemma 2.1(2). Note that ba = b2 and c centralises
〈a, b〉. It follows that H = 〈a, b, c〉 = 〈a, b〉 × 〈c〉 � (Z5 : Z4) × Z2. It is easy to see that
H is transitive on Ω and so is regular on Ω. Hence, X has a factorisation X = GH = HG
with G ∩ H = 1. Therefore, Γ is isomorphic to a Cayley graph of G = A39. Further
computation shows that |H|/|H ∩ Hx1 | = 5. By Lemma 2.1(1), Γ is pentavalent. Let

x2 = (2 20 32 40 10 4 15 19 29 27 9 17 3 6 24 35 13 16)
(5 37 33 36 8 30 34 25 39 11 23 26 22 14)(7 31 21)(12 38 28),

x3 = (2 18 29 7 30 12 34 28 9 3 33 31 5 21 27 20 22 32 14)
(4 26 36 8 39 35 11 25 23 13 17 40 24 6 38 19 37 10 16)

and S = {x1, x2, x−1
2 , x3, x−1

3 }. Computation shows that G ∩ (Hx1H) = S . Then Γ �
Cay(G, S ) by Lemma 2.1(3). Obviously, G is not normal in X and so is in AutΓ. Thus,
Γ is nonnormal. �

For convenience, we recall some definitions here. A transitive permutation group
G is quasiprimitive if each nontrivial normal subgroup of G is transitive. Praeger [8]
extended the O’Nan–Scott theorem for primitive groups to quasiprimitive groups, and
divided quasiprimitive groups into eight O’Nan–Scott types, namely HA, AS, HS, HC,
SD, CD, TW and PA. Further details can be found in [3].

The next lemma completes the proof of Theorem 1.1.

Lemma 3.3. Let Γ = Cos(X,H, x1) as in Construction 3.1 and let A = AutΓ. Then A
acts quasiprimitively on VΓ and A = A40 acts 2-arc transitively on Γ.

Proof. Suppose, on the contrary, that A is not quasiprimitive on VΓ. Let N be a
minimal normal subgroup of A which is not transitive on VΓ. Then N ∩ X E X. It
follows that N ∩ X = 1 or A40. If N ∩ X = A40, then X ≤ N E A. This implies that N is
transitive on VΓ, which is a contradiction. If N ∩ X = 1, then |N| divides |A|/|X|. Let
v be a vertex of Γ. It is easy to see that Xv = H � F20 × Z2. Then |Av|/|Xv| | 26 · 32 by
Lemma 2.2. Since |A|/|X| = |Av|/|Xv|, it follows that |N| divides 26 · 32. Thus, N � Zr

2
or Zl

3, where 1 ≤ r ≤ 6 and 1 ≤ l ≤ 2. Let F = NX. Then F = N : X. By Lemma 2.3,
F/CF(N) . Aut(N) � GL(r, 2) or GL(l, 3). Note that N ≤ CF(N). If N = CF(N), then
F/CF(N) = F/N = X = A40. However, by Magma [1], GL(2, r) and GL(3, l) have no
subgroup isomorphic to A40 for 1 ≤ r ≤ 6 and 1 ≤ l ≤ 2. Hence, we have N < CF(N)
and 1 , CF(N)/N E F/N = X = A40. Thus, CF(N)/N = A40, that is, X centralises N.
Hence, F = N × X = N × A40 and Fv/Xv � F/X = N. This implies that Fv is soluble.
Since Xv = F20 × Z2, it follows from Lemma 2.2 that Fv = F20 × Z4 and N � Z2. So,
F = Z2 × A40.

Let ∆ = [F : G], the set of right cosets of G in F. Since G = A39, the core of
G in F is CoreF(G) :=

⋂
x∈F Gx = 1. Thus, F may be viewed as a subgroup of the

symmetric group S |∆| � S80 by considering the right multiplication action of F on ∆.
For convenience, we identify ∆ = [F : G] with Ω = {1, 2, . . . , 80}. Then the action of
F on ∆ is equivalent to the natural action of F on Ω. Now Fv is a regular subgroup of
S80 and G is a stabiliser of i ∈ {1, 2, . . . , 80} in F. Without loss of generality, we may
assume that G fixes 1. Since F is transitive on the set of arcs of Γ, by Lemma 2.1,
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Γ can be represented as a coset graph Cos(F, Fv, τ), where τ ∈ NF(Fvw) is a 2-element
such that τ2 ∈ Fv, v ∈ VΓ and w ∈ Γ(v). Note that Fv is a regular subgroup of S80
and all isomorphic regular subgroups of S80 are conjugate in S80 (see, for example,
[12, Lemma 4.6]). Thus, we may assume that Fv = 〈a, b, c〉, where

a = (1 16 11 6)(2 17 12 7)(3 18 13 8)(4 19 14 9)(5 20 15 10)
(21 36 31 26)(22 37 32 27)(23 38 33 28)(24 39 34 29)(25 40 35 30)
(41 56 51 46)(42 57 52 47)(43 58 53 48)(44 59 54 49)(45 60 55 50)
(61 76 71 66)(62 77 72 67)(63 78 73 68)(64 79 74 69)(65 80 75 70),

b = (1 46 77 35)(2 43 66 28)(3 60 75 21)(4 57 64 34)(5 54 73 27)
(6 51 62 40)(7 48 71 33)(8 45 80 26)(9 42 69 39)(10 59 78 32)
(11 56 67 25)(12 53 76 38)(13 50 65 31)(14 47 74 24)(15 44 63 37)
(16 41 72 30)(17 58 61 23)(18 55 70 36)(19 52 79 29)(20 49 68 22),

c = (1 17 13 9 5)(2 18 14 10 6)(3 19 15 11 7)(4 20 16 12 8)
(21 37 33 29 25)(22 38 34 30 26)(23 39 35 31 27)(24 40 36 32 28)
(41 57 53 49 45)(42 58 54 50 46)(43 59 55 51 47)(44 60 56 52 48)
(61 77 73 69 65)(62 78 74 70 66)(63 79 75 71 67)(64 80 76 72 68).

By Lemma 3.2, Γ � Cay(G, S ). Then the 2-element τ is an involution by
Proposition 2.5 and τ ∈ NS80 (Fv ∩ Fτ

v )\(
⋃

1,KEFv
NS80 (K)). Since Γ is pentavalent,

we have |Fv : Fv ∩ Fτ
v | = 5. Thus, Fv ∩ Fτ

v is a Sylow 2-subgroup of Fv. Since all
Sylow 2-subgroups of Fv are conjugate in Fv, we may assume that Fv ∩ Fτ

v = 〈a, b〉.
Then τ ∈ NS80 (〈a,b〉)\(

⋃
1,KEFv

NS80 (K)) is such that 1τ = 1 and 〈Fv, τ〉 = F � Z2 ×A40.
However, by computing with Magma [1], such τ does not exist.

Hence, A is quasiprimitive on VΓ. Let S = soc(A), the socle of A. Then S � T d is
transitive on VΓ, where T is simple and the integer d ≥ 1. Since |VΓ| = |G| = |A39|, A
is obviously not of type HA. Note that |Av| | 29 · 32 · 5. It follows that |G| | |S | | 29 · 32 ·

5 · |G|. So, there must be a prime p such that p | |S | and p2 - |S |. Consequently, d = 1,
that is, S = soc(A) = T is a nonabelian simple group. It follows that A is not of type
HS, HC, CD, SD, TW or PA. Hence, A is almost simple. Since S ∩ X E X � A40, it
follows that S ∩ X = 1 or A40. If S ∩ X = 1, then |S | | |A|/|X| | 26 · 32. By the Burnside
p–q theorem (see [9, page 240]), S is soluble, which is not possible. Thus, S ∩ X = X
and so X ≤ S . It follows that |S : X| | |A : X| | 26 · 32. By Lemma 2.4, we can conclude
that S = X � A40. Thus, A ≤ Aut(S ) � S40. If A � S40, then |Av| = |A|/|G| = 80. By
Lemma 2.2, Av � F20 × Z4. This also leads to a contradiction by arguments similar to
those used for Fv in the previous paragraph. Hence, A � A40 and so Av � F20 × Z2. By
Lemma 2.2, Γ is 2-arc transitive. This completes the proof of the lemma. �
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