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Abstract

The homotopy method is used to find all eigenpairs of a generalised symmetric
eigenvalue problem Ax = XBx with positive definite B. The determination of
n eigenpairs (x, A) is reduced to curve tracing of n disjoint smooth curves in
R n x R x [0,1]. The method might be attractive if A and B are sparse symmetric.
In this paper it is shown that the method will work for almost all symmetric
tridiagonal matrices A and B.

1. Introduction

Solving a generalised symmetric eigenvalue problem with positive definite B,

Ax = XBx, (1.1)

can be regarded as solving a nonlinear algebraic equation

f(x, A) = [(Ax - XBx, (1 - xTx)/2] = 0, (1.2)

where A, B are two n x n symmetric matrices in R, x e R" and A e R.
The classical Newton's method for solving (1.2) has two difficulties: (1) it is

only locally convergent, (2) it is not obvious how to choose the starting vectors
(zoi Ao)- In this paper we present a homotopy method that is globally convergent
and where the starting vectors are obvious. We construct a homotopy from a
trivial function, whose roots are easy to determine, to / . It can be shown that
there exist n disjoint smooth curves characterised by a differential equation.
Therefore one can trace them by an ODE software solver.
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Chu in [3] has applied the homotopy method to the ordinary symmetric eigen-
value problems Ax = Ax. Recently, Li and Rhee [4] have given an elegant fast
algorithm for this problem. Moreover, a paper by Li and Sauer [5] has proposed
some important theoretical results by using the homotopy method for gener-
alised eigenvalue problems. In this paper, we seek to generalise the approach
of Chu [3] to (1.1), and to develop some numerical strategies. If both A and B
are tridiagonal one has to reduce the generalised symmetric eigenvalue problem
to the form L~1AL~Tx = Ax, where B — LLT is the Cholesky decomposition.
In general, we have fill-in in the matrix L~1AL~T. We propose that applying
the homotopy method to (1.1) together with sparse matrix techniques might be
competitive to the QR-method [8] applied to L~1AL~T.

In the next section we shall construct a special homotopy equation and show
that this homotopy will work for almost all symmetric tridiagonal matrices A
and B. In the third and fourth sections, we refer to the applicability of the
method and present some numerical results.

2. Main theorems

Let A, B be two symmetric tridiagonal matrices and D be an arbitrary diago-
nal matrix with n distinct elements. Consider the mapping H: Rn xRx[0 , l ] -»
Rn x R defined by

H(x, X,t) = [((1 - t){D - XI) + t{A - XB))x, (1 - xTx)/2], (2.1)

x e R " , A e R , t€ [0 , l ] .

Denote by e* the t'th unit vector in Rn. Then we have the following homotopy
with 20 = (ei,di) and F(z) = [Ax-XBx, ( l-xTx)/2] for zT = (xT,A) e R n x R :

(H(zo,O) = O

If t runs from 0 to 1, then the trivial matrix pencil D — XI passes over to the
matrix pencil A — XB. Let

C = (1 - t){D - XI) + t{A - XB) (2.3)

and F denote the graph of the homotopy equation, i.e.

T := {(x, A, t) e Rn x R x [0, l)\H{x, A, t) = 0}. (2.4)

Denote by 6iH the Jacobian matrix of H referring to the first variables (x,A).
We claim

THEOREM 1. // rank(C) = n - 1, then 6iH is nonsingular for all (x,X,t)
er.
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PROOF. Observe that ^H = [_^T ~%x] for {x,X,t) € F, where Cx = 0
and B := tB + (1 - « ) / is nonsingular for t E [0,1]. Assume that 6iH [v

a] = 0 for
j / S R " and a e R, then Cz = a5x and xTy = 0. From 0 = xTCy = axJBx it
follows that a = 0 (for xr Bx > 0), therefore Cj/ = 0. We then have y is contained
in the nullspace of C. If rank(C) = n - 1, the nullspace of C is spanned by x.
Because xTy = 0, the vector y must be the null vector.

REMARK. If A ^ a^+i/ftt.j+i in (2.3) for all i = 1, • • • , n—1, where Ot,t+i and
biti+i denote the subdiagonal elements of A and B respectively, then rank(C) =
n - 1. Rank(C) < n — 1 may occur only when A = ali,-+i/6ji,-+i for some i.

THEOREM 2. //rank(C) = n-l for all {x,X,t) £ F, f/iew Me se* F can be
characterised by a differential equation

[dx/dtdX/dt] = -6^(1, X,t)-162H(x, X,t), (2.5)

where
* iit \ *\ \(D-A-XIxXB)x]
62H(x,x,t)= r 0 ' I

denotes the derivative of H with respect to t.

PROOF. Along each component, we take the derivative with respect to the
arclength s. The set F is then characterised by

6iH[dx/ds dX/ds] + 62H^ = 0. (2.6)
as

Since dt/ds ^ 0, otherwise 6iH would be singular, F can be parametrised by the
variable t and (2.6) becomes

[dx/dtdX/dt] = -S1H(x,X,t)-162H(x,X,t).

It is important to know whether the curve F will diverge to infinity or not.
For this we claim

THEOREM 3. //rank(C) = n - 1 for all (x,X,t) 6 F, then the set F is
bounded, and the trivial solution of H(x, A,0) = 0 is connected with the desired
solution H(x,X, 1) = 0 by a smooth curve.

PROOF. For any (x,\,t) € F, it is clear that ||z(*)|| < 1- The equation
(1 - t)(D - XI)x + t(A - XB)x = 0 can be written as

A(t)x = [(1 - t)I + tB}-1 [(1 - t)D + tA]x.

Applying a lub-norm to the above equation leads to

\X(t)\<\\B-l\\{\\D\\
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where B = {l-t)I+tB is positive definite. Since H-B^H is bounded on the com-
pact set [0,1], so is |A(£)|. From the rank condition on 6\H and the boundedness
of A it follows that T has no turning points and this yields the results.

If rank(C) = n - 1 for t e [0,1], the differential equation (2.5) satisfies a
Lipschitz condition. Therefore existence and uniqueness of n distinct solutions
are guaranteed if the starting vectors are linearly independent, and so, under the
condition rank(C) = n — 1 for t € [0,1], all n eigenpairs are found.

3. Applicability

Choosing starting vectors *[Q| = Mj' , where e* denotes the ith unit vector
and d, the ith diagonal entry of D, we can solve (2.5) by using an adequate
ODE-solver, e.g. a predictor-corrector scheme consisting of Adams-Bashforth
and Adams-Moulton formulae from Shampine and Gordon [7] can be used. When
applying this solver, two function evaluations of the right side of (2.5) are nec-
essary at each step, involving solving two linear bordered systems of the form

where b, d and 7 e Rn, y € R and C is a symmetric tridiagonal matrix. The
complexity of performing the homotopy method depends strongly on how inex-
pensively and how stably these linear systems can be solved. As C is (nearly)
singular, the obvious block elimination may produce large errors, also. Gaussian
elimination with partial pivoting will destroy the sparse structure of the system.
Therefore we use a slightly modified technique: row interchanges of a k by k
band matrix are allowed only in the A; preceding rows, producing a fill-in of k
supplemental upper off-diagonals. Applying this technique, we have found some
instability in the case of large systems (n > 100), but if n < 100 then this strat-
egy works quite well in practice. Nevertheless, we think that a much better way
to solve (3.1) is the so-called stabilised block-elimination developed by Chan [1],
or a method proposed by Osborne [6], which works as follows.

We assume that we have a sparse factorisation C = LU with L lower triangular
and

n - 1 1
/ [ /„_! u \ }n
V 0 unn) }1

where unn = 0 or un n = O(an) {an denotes the smallest singular value of C).
According to Chan [2], conventional pivoting strategy will usually be sufficient
to produce such factorisation unless C"1 has a very skew distribution of the sizes
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of its elements. Otherwise, Chan's two-pass algorithm can be applied to force
the element unn in U to be small. (Note that this last algorithm involves row
and column permutation, which may destroy the sparse structure). If unn = 0,
then the last row of L~l is in the null space of C; this implies xT = e^L~l

because rank(C) = n - 1 and xTC = 0. Since xTb = xT(tB + (1 - t)I)x > 0, we
can calculate 7 in (3.1) by

7 = xTr/xrb = elL-lr/elL-lb (3.2)

and then

[CTi{-^ -6 | r + H-'rW] ene;,-.en, (3.3)

where 6 is found from xTy = 0.
A start on the error analysis might be provided by Osborne's paper [6] which

considers the calculation of the right and left singular vectors and demonstrates
the importance (and often the difficulty) in making unn = 0. At present it is
not clear what method is best suited for problem (3.1). A compromise between
preserving the sparse structure and achieving high stability needs to be found.

As we are only interested in z(l) and A(l), it is not worth following the curves
too closely. Most of the well-known ODE-solvers can manage the curve tracing
problem if there are no singular points (that is, no t where rank(C) < n — 1).
In the case of breakdown, nothing can be done except to jump over the singular
point or to start a new homotopy with another diagonal D. Since singular
points occur infrequently for randomly chosen A and B, we did not concentrate
on these pathological cases. Instead, we tried to manage the problem in the case
rank(C) = n — 1 for t E [0,1] by applying the following strategy.

(1) Choose an error bound eps for the ODE-solver, a bound epsl to restrict
the residual r = ||i/(x(f), A((),t)||2 at each step and a positive number
k representing the maximal number of iterations to refine x(t) and X(t)
by inverse iteration.

(2) Correct x(t) and X(t) by inverse iteration, if r > epsl. For t = 1, correct
the eigenpair as much as machine precision allows.

(3) Combine step-size control and order selection in the solver with the
magnitude of r, which can be regarded as a measure of curve tracing
quality.

It turns out that the overall efficiency of the homotopy method strongly de-
pends on two decisions:

(a) choice of the error bounds epsl and eps;
(b) choice of D, which corresponds to the initial conditions of the initial

value problem (IVP).
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In order to find all eigenpairs, we should prevent two curves "running together",
else one eigenpair would be provided twice at t = 1. Choosing eps and epsl
too large results in the curves not being followed closely enough. In this case,
an approximation {x(t), X(t)) could be located between two neighbouring curves,
that is, in the domain of attraction of another curve.

The importance of choosing a suitable diagonal D can be demonstrated by
the following simple 3 by 3 example with B = I. Let

- 1 1 0
A = 1 198 - 1

0 - 1 1

with eigenvalues 198.0101, 0.99494 and -1.00504 and

n xii \ * \D + t{A-D)-XI -x]

with the condition number

K(M{t)) = |Amax(M(<))/Amin(M(<))|.

If K,(M(t)) becomes large, then ||(i(t),A(())T|| will also be large, forcing the
ODE-solver to take short step sizes. Consider the situation at t = 1/2 with
£>=diag(3,2,l):

1 0.5 0
K{M(1/2)) sa 20000 as D + 0.5{A - D) becomes 0.5 100 -0.5

0 -0.5 1
with eigenvalues 99.01, —0.00505 and 0. The condition number has become much
worse in comparison to K(M(1)) = K(A) « 200. This radical deterioration of
the condition may have the undesired effect that many steps are necessary to
prevent two curves "running together".

With the choice of D = diag(^4), the homotopy method is able to calculate
the three eigenpairs in not more than four steps from 0 to 1 with error bound
eps = 10"1 and epsl = 10~2. So it has to be emphasised that the choice of a
suitable diagonal D plays an important role in making the homotopy method
competitive. D should be chosen so that K.{M{t)) « K(A) for ( € [0,1]. We have
to concede that, so far, we do not know how to choose a suitable D for large n.

4. Numerical experience

In this section, some examples are given to illustrate the numerical behaviour,
by performing the homotopy method and investigating the trace of the curves.
All computations were done in FORTRAN 77 on a BASF 7/70 computer (2 - t w
10"12) in single precision arithmetic.
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4.1. Improving the estimating accuracy of the homotopy method
According to our experience, it is not sufficient to pursue the curves using

ODE-solvers without inverse iterative improvement in each step. In fact, the
e-tube of the solution curve in this case would be too wide and the results could
stray outside the convergence range of Newton's method. Hence we have no
chance to correct the computed eigenpairs at t = 1 using inverse iteration.

The following table gives a comparison between the homotopy method and
the Qi?-method [8]- We perform one inverse iteration in each step in order to
follow the exact trajectory sufficiently closely, and at t — 1 force the residual
\\Ax — \Bx\\ to be small (of the order of the machine precision using inverse
iteration, if high accuracy is required).

EXAMPLE. A, B are two tridiagonal matrices of dimension 8 (see Table 1).

TABLE l

diag. of A subdiag. of A diag. of B subdiag. of B

- 0.82446 - 1.12084 1.06416 0.050622
1.80331 - 1.41511 1.04762 0.577722
0.61557 1.23429 1.53037 0.644825

-0.27344 -0.07309 1.89360 0.509867
- 1.60200 - 0.85724 1.88292 0.679965
-0.55078 0.74460 1.77055 0.040127
1.10018 - 1.67464 1.01956 0.127609

- 1.99046 1.40009

For the purpose of comparison between the QR and homotopy methods, we do
not consider reiterations here at the end step (t = 1). We choose the initial
matrix D = diag(-A) for the homotopy method.

In Table 2, we show eigenvalues with corresponding eigenvectors calculated
by an error bound of 10"1.

4.2. Multiple arrival of the same eigenpair
For the pursuit of the n space curves using an ODE-solver with variable step

size, we have to choose an error bound eps in order to limit the local error
in each step. When two curves come near at a point ( 6 [0,1], a jump to a
neighbouring curve may occur if the e-tube around the exact curve becomes too
wide because of too large an error. This "running together" of two curves would
not often occur for matrices of small dimension, if eps is chosen small enough
(e.g. < 0.01). The following 40 x 40 example will show the cause of a multiple
arrival (see Table 3).
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TABLE 2. QR-method

4.64471364

1.98359439

0.37757980

-0.18152507

0.190373
- 0.809692
0.542059

- 0.114076
0.032809

- 0.015193
- 0.002799
0.000747

0.000153
- 0.000368
- 0.000034
0.022878

- 0.085006
0.194407
0.905725
0.095725

- 0.366222

- 0.356161
0.383129
0.578821
0.609497

- 0.108956
0.080899

- 0.031166
0.021315

- 0.004109
0.002334
0.007037

- 0.002389
- 0.481013
0.824438

- 0.217044
0.206440

- 0.79096387

- 1.06747536

- 1.34079937

- 1.93639927

- 0.402404
- 0.006422
0.436272

- 0.460238
- 0.598198
- 0.264742
0.043626

- 0.077747

0.786015
0.229513

- 0.210384
0.341430

- 0.408140
- 0.042896
0.004852
0.004852

- 0.015054

0.424441
0.242807
0.518333

- 0.584663
0.387589

- 0.011760
0.000419

- 0.005558

0.001267
0.001531
0.015420

- 0.022044
0.039943

- 0.133845
0.446081
0.883614
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TABLE 2 (continued). Homotopy method

4.64470040

1.98359770

0.37757799

- 0.18152968

-0.190373
0.809692

- 0.542060
0.114076

- 0.032809
0.015193
0.002799

- 0.000747

0.000153
- 0.000368
- 0.000033
0.022878

- 0.085008
0.194406
0.905723

- 0.366223

- 0.356158
0.383134
0.578831
0.609492

-0.108955
0.080899

-0.031166
0.021315

0.004114
- 0.002336
- 0.007046
0.002399
0.480115

- 0.824432
0.217040

- 0.206448

- 0.79097263

- 1.06747478

- 1.34079829

- 1.93638674

0.402456
0.006437

- 0.436293
0.460269
0.598180
0.264731

- 0.043625
0.077743

0.786015
0.229513

- 0.210385
0.341431

- 0.408137
- 0.042896
0.004852

- 0.015054

0.424448
0.242809
0.518336

- 0.584666
0.387590

-0.011760
0.000418

- 0.005558

0.001266
0.001531
0.015404

- 0.022025
0.039935

- 0.133830
0.446050
0.883625
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TABLE 3

diag. of A subdiag. of A

1.03790
0.39143
0.61643
1.95590
1.26920
0.34467
1.65383
1.85014
1.20483
1.15569
0.05080
1.81171
0.26809
1.29456
1.15722
1.18261
1.33834
0.65834
1.82102
1.01112

diag. of B

- 0.94870
- 0.50191
- 0.65524
1.40716
1.06806

- 1.91614
- 1.47243
- 1.50767
0.30503

- 1.70789
0.12880

- 0.40209
0.91812

- 0.00381
- 1.72923
0.72568

- 0.48764
- 1.73680
0.87320

- 0.10050

- 1.57300
- 0.72290
0.81169

- 1.36820
- 1.91596
- 1.22120
- 0.45275
- 1.72410
1.98133

- 0.40882
1.06304
0.78293
0.13995

- 0.79281
- 1.77261
1.55665

- 1.54071
- 1.94258
0.39931
1.50296

subdiag.

- 0.79227
0.71835
0.51495
1.99538

- 0.92466
- 1.75060
- 0.78361
- 0.40233
- 0.63900
0.47224

- 0.66552
1.23641
1.87632

- 1.20339
- 0.39009

1.37069
1.28342
0.11292
1.73372

of£

1.42369
1.82736
1.80066
1.63709
1.52247
1.63151
1.52916
1.06769
1.25593
1.53228
1.98110
1.17838
1.15058
1.34477
1.88009
1.97487
1.79800
1.76634
1.33776
1.59123

1.56722
1.38461
1.01601
1.67491
1.40288
1.80216
1.66128
1.53259
1.51033
1.43571
1.63248
1.55986
1.22127
1.45483
1.48999
1.58789
1.23272
1.13767
1.56517
1.79588

0.890872
0.786782
0.893630
0.622052
0.993529
0.509042
0.762349
0.384084
0.449564
0.640229
0.575375
0.590335
0.761321
0.162205
0.901615
0.903999
0.943198
0.870167
0.473603
0.385359

0.866422
0.180812
0.820654
0.161941
0.730857
0.356992
0.480960
0.736915
0.069231
0.970906
0.111342
0.237507
0.961169
0.457632
0.225999
0.325589
0.187618
0.921842
0.489429
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The following pairs mark the curves of index i with the initial vector e<, which
run together for eps = 0.1: (7,14), (15,20), (16,23), (28,32) and (27,40).

Pursue all curves with eps = 0.1 and correct the eigenpairs using inverse
iteration at the end (see Table 4).

TABLE 4

Eigenvalues

15.04731
14.33334
4.38383
2.67272
2.20794
1.79434
1.40901
1.23301
1.21427
1.21427
1.07317
0.66271
0.44396
0.41900
0.40880
0.27985
0.15848
0.12585
0.12008
0.14825
0.39705
0.39705
0.56775
0.72685

- 0.89598
- 1.08116
- 1.30467
- 1.30467
- 1.34743
- 1.34743
- 1.59300
- 1.59300
- 1.66087
- 2.33812
-2.71028
- 3.03039
-3.18289
- 5.14978
- 5.65133
- 8.73588

ith initial
vector e,-

5
19

1
24
17
10
33
39
15
20
36
29

3
13
31
25
22
11
6

34
40
27

2
18

9
37
23
16
28
32
14
7

21
4

35
26

8
30
38
12

Required
from 0

17
18
11
11
14
8

10
10
15
10
9

13
8
7

10
15
14

7
9

15
14
16
8
8

steps
to 1

9
13
23
18
20
16
14
12
19
8

19
19
13
16
11
16

Multiple attainable eigenvalues are underlined.
Pursue all curves with eps = 0.01 and use inverse iteration at the end (see

Table 5).
From Figures 1 and 2 it is clear that the derivatives (dx/dt, dX/dt) have large

norm, exactly at the point at which the curves run together. In fact, (2.5)
provides dX/dt = xT(A — D)x, i.e. the derivative dX/dt is almost constant over
a broad range in the interval [0,1], so that most eigenvalue curves, chosen by
random examples, run piecewise linearly. Numerical difficulty occurs only in
the computation of eigenvectors, since their components are subjected to large
fluctuation (see next example).

In the 20 x 20 example with B = I, large derivatives occur following curves
6, 7, 11 and 15, which force the solver to small step sizes (see Table 6).
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TABLE 5

Eigenvalues

15.04731
14.33334
4.38383
2.67272
2.20794
1.79434
1.40901
1.23301
1.21427
1.07317
0.94140
0.66271
0.44396
0.41900
0.40880
0.27985
0.15848
0.12585

-0.12008
- 0.14825

- 0.39705
- 0.48492
- 0.56775
- 0.72685
- 0.89598
- 1.02530
- 1.08116
- 1.08116
- 1.54785
- 1.59300
- 1.66087
- 1.66087
- 1.71097
- 2.33812
- 2.71028
- 3.03039
- 3.18289
- 5.14978
- 5.65133
- 8.73588

tth initial
vector e,-

19
5
1
24
17
10
33
39
15
36
20
25
3
13
29
31
22
11
6
34

40
27
2
18
9
32
28
37
23
16
21
14
7
4
35
26
12
30
38
8

Required
from 0

46
40
19
18
26
14
16
18
29
14
21
30
14
11
37
30
23
15
19
19

steps
to 1

38
33
12
21
18
47
48
69
60
55
60
47
30
14
40
40
26
27
22
33
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TABLE 6

diag. of A subdiag. of A

1.76527
- 3.34318

4.16146
4.92607
3.59465
3.54024
2.62480
3.90966

- 1.95242
- 0.69723

Eigenvalues

10.63040 0.80643
9.10130 - 0.86434

: 7.00736 -1.26542
5.52085 - 1.84721
4.78417 - 3.59012
4.35742 - 5.07960
3.78543 - 5.15356
3.58174 - 5.93749
1.63356 -7.58358
0.96612 - 7.58775

1.78285
2.95864
0.39343
3.73302
0.72845
2.83381
1.34617
3.85757
1.79869
0.34191

tth

4.46870
- 0.13243

1.95458
4.65391
2.46035

- 4.74122
4.62402
2.37385

- 3.76831
4.22387

initial
vector ej

4
3
8

14
5
6
7

17
1

11

13
20
10
15
19
9

16
2

12
18

- 4.64719
- 1.38682
- 2.88848

0.84243
- 3.02567

1.29526
- 3.13650

3.65834
2.03203

Required steps
from 0 to 1

25 98
52 73
90 78
61 175
84 75

115 31
184 25
80 26
93 38

141 27
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a

o . A
37 2

2 1

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

T-AxiS

FIGURE 1. Norm of derivatives of i and A of 40 x 40 example with eps = 0.01 for all curves.

37 28

0 . 1 0 . 2 0 . 3 0 .4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1.0

T-Axis

FIGURE 2. Eigenvalue curves 14, 20, 28 and 37 of 40 x 40 example. Because of large
derivatives, the curves 14, 21 and 28, 37 run together.
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o

n

m o
> 00
U CN
3
O
C o

•a
c o
O CM
U f-l

O "

• « • 1 " I 1 1 1 1 1 1 1 1 1 — I 1 I 1 I 1 1

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

T-Axis

FIGURE 3. Condition number of matrices of linear system in curve 11 for the 20 x 20
example.

Figures 3 and 4 show the relation between the condition number of appearing
matrices corresponding to linear equations and the nearest distance of two eigen-
values of D+t(A — D) for t G [0,1]. Figure 5 illustrates the curves of components
of the demonstrative eigenvector x(t) (see (2.1)). We see that abrupt alternations
occur on the position of large condition in the individual components.

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

FIGURE 4. The smallest distance of eigenvalue curve 11 of 20 x 20 example to the other
curves.
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Symmetric Eigenvalue Problems

l . O - i -

0.6-

245

-0.6- -

-\ —I \
0.8 1.00 . 0 0 . 4 0 . 8 0 . 4

0.2"

EIGENVECTORCOMPONENTS OF CURVE 11

(7) COMPONENTS 1-4

(_?) COMPONENTS 5-8

(?) COMPONENTS 9-12

(7) COMPONENTS 13-16

(s) COMPONENTS 17-20

FIGURE 5
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4.3. Possible strategy for the prevention of the multiple arrival of
the same eigenpair

Denote by (ij, Aj) an eigenpair, which was computed by the homotopy method
with 0 < t < 1. The starting vector was the l-th entry on the diagonal D with
the l-th unit vector. Let

Step(Z) := Required number of steps from 0 to 1 for the

computation of (xj(l), Aj(l)).

Doub := The set of the indices of the curves which run together.

d: Doub —• Doub, d(l) = k, where I ^ A; with

We propose a strategy consisting of two parts which can be combined.
In the predictor step, a jump to another curve can be detected by observation

of rotations in the eigenvectors xi(t), xi(t + h) of two consecutive steps. Let
a be a bound given by the user, with 0 < s < 1. Then xj(t + h)Txi(t) < s
indicates that a jump on a different curve has occurred. The predictor step must
be repeated with a smaller step size (e.g. h/2).

In the case of matrices with clustered eigenvalues, it is often not sufficient
to observe rotations of eigenvectors (the bound s cannot be chosen optimally).
Curves which have run together should be pursued once again with a smaller
error tolerance. At first, we try to pursue all curves with a large error bound
in order to minimize the number of steps. If multiple arrival of the same eigen-
pair occurs (/, fc € Doub), we reduce the error bound of the curve with index I
satisfying step(Z) < step(fc).

The strategy will be repeated until no double pairs occur (see Figure 6).
Consider the 20 x 20 example given in Table 7.

diag.

0.92090
1.34215
1.88659
0.39088
1.00548
1.61127
0.05334
0.02240
0.92464
0.74512

TABLE

of A

- 0.24239
0.91212 -

- 1.42630 -
- 1.92657 -
- 0.99159
- 0.02780
- 0.08227
1.75703
0.26430
1.38202

7

subdiag.

0.58790
- 1.02382
- 0.50036
- 1.77122
1.94549
1.16990
0.61511
0.52738
0.88681
1.49588

of A

- 1.26938
- 0.44064
1.68493
0.64265

- 0.55770
0.76313
- .35795
1.57235

- 0.15158
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TABLE 7 (continued)

247

diag.

1.74959
1.77554
1.70061
1.39198
1.38120
1.74952
1.95976
1.28791
1.12338
1.35598

of B

1.86182
1.15285
1.29831
1.07308
0.98102
1.30884
1.94632
1.05313
1.95318
1.68701

subdiag.

0.482148
0.453783
0.872928
0.945517
0.640771
0.420097
0.137067
0.926086
0.346523
0.879626

of B

0.066360
0.078613
0.650783
0.265925
0.657949
0.254484
0.837674
0.937862
0.155763

choose eps > eps .r min
perform homotopy method

~HDetermine Doub|

Doub = (£? | yes )| STOP

no

(eps £ eps . /
\ m m /

yes

Avoidance of double pairs
with eps 2 eps . is notwith eps 2
possible min

eps = 0.l*eps
Pursue the £-th curve using this
eps for £ € Doub with

FIGURE 6
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Eigenvalues

28.46983
2.21768
1.44173
1.44173
1.18556
0.91963
0.84275
0.56178
0.33365
0.09003

- 0.01865
- 0.40977
- 0.60235
- 0.67347
- 0.75602
- 1.24384
- 1.50296
- 1.50296
- 2.62570
- 7.09735

TABLE

i-th

8

initial
vector e,-

6
18
9
2
5

12
20
19
10
47

16
8

17
7
1

15
13

IC
O

11
14

Required
from 0

33
12
39
37
50
29

9
35
21
31

steps
to 1

44
48
47
61
37
59
60
27
80
19

For eps = 0.01 the curves 3 and 13, 2 and 9 run together (see Table 8). Since
3 and 2 are pursued with a fewer number of steps, their error bound will be
reduced to 0.001; we then have 9 and 2 run together (see Table 9).

Eigenvalues

1.44173
1.44173
1.18556

-1.50296
-4.28759

TABLE 9

i-th initial
vector e,-

9
2
5

13
3

Required
from 0

39
69
50
60
63

steps
to 1

We now reduce the error bound for curve 9 to 0.001; then the curves 9 and 5
run together (see Table 10).

TABLE 10

i-th initial Required steps
Eigenvalues vector et- from 0 to 1

1.44173
1.18556
1.18556

-1.502%
-4.28759

2
9
5

13
3

69
83
50
60
63

Finally, we reduce eps for curve 5 to 0.001 (see Table 11).
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Eigenvalues

1.44173
1.24247
1.18556

-1.50296
-4.28759

5.

TABLE 11
t'-th initial
vector e,-

2
5
9

13
3

Required steps
from 0 to 1

69
101
83
60
63

Conclusion

The above examples clearly show that some numerical difficulties exist when
using the curve-pursuit method to solve the eigenvalue problem. In some cases
during curve pursuit, the condition of the matrices of linear systems, whose solu-
tions are necessary for the homotopy method, becomes suddenly worse. There-
fore, an appropriate choice of the initial diagonal D plays an important role for
the homotopy method, especially for large dimensions of A and B. Numerical
experience tell us that the choice D = diag(yl) is favourable, although this choice
cannot completely avoid the occurrence of large condition numbers. It is remark-
able that an ODE-solver with step size control and variable order can be applied
to recover the lost eigenpair (because of multiple arrival) using a reduced error
bound.
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