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1. Introduction

P. M. Cohn [7] calls a submodule P of the left ^-module Mpure iff 0 -> E ®
P -* E ® M is exact for all right modules E. This definition of purity, which
Cohn [7] has shown to be equivalent to the usual one when A is a PID ( = Principal
Ideal Domain), was studied in [9] and [10]. Here we show that the ring A is (von
Neumann) regular iff every left (or right) ideal is pure. This leads us to define
regular modules as modules all of whose submodules are pure. The ring A is then
regular iff all its left (or right) ^-modules are regular. A regular socle, analogous
to the usual socle is defined. For commutative A, some localization theorems
are proved, and used to settle a conjecture of Bass [1 ] concerning commutative
perfect rings.

Most of the results in this paper are contained in the author's doctoral thesis
[9], at McGill University. The author would like to thank his research director,
Dr. J. Lambek, for his generous encouragement and continued interest.

Throughout this paper A will be an associative ring with 1, but not neces-
sarily commutative. All modules are unitary, and <g) means ®A. We use "fg'' for
finitely generated and 'fp' for finitely presented.

2. Pure left ideals

THEOREM 1. Let P be a submodule of the left A-module M, and consider the
following conditions:

(1) M/Pisflat.

(1)' Pis pure in M.

(2) KMnP = KPfor all rt. ideals K.

(2)' KMnP = KPfor allfg rt. ideals K.

(2)" KMnP = KPfor all principal rt. ideals K.

(3) aM nP = aP for all a in A.

All
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Then we always have the following implications:

(1)=>(1) '=>(2)~(2) '=>(2)"O(3).

If Mis flat we have (1) o (1)' <* (2).

PROOF. (1) => (1)': is given by Cohn [7]. Since KP is always contained in
KM n P, we need only show the opposite inclusion in each case. We shall also
use the fact, due to Cohn [7 ], that P is pure in M iff

for some/>j e P, where a^ e A, nij e M and i e I,j e J, two finite index sets, and the
summation is over the repeated indice.

(1)' => (2): If p = Ikjirij (j in /, a finite set) is a typical element of KM nP
then p = YftjPje KP since P is pure in M. Therefore KM n P is contained in KP.

(2) => (2)': is obvious.
(2)' => (2): If/; = Ikj-ntj (j in J, a finite set) is a typical element of KM n P,

let K' be the/# rt. ideal generated by the kj. Thenp is contained in K'M n P =
^T'P, which is contained in AT. Therefore .Of n P is contained in KP. The
remaining implications are obvious.

If M is flat, the equivalences (1) o (1)' o (2) are given in ([4], Cor., p. 33).

COROLLARY. (1) The left ideal P of A is pure in A iff KP = K n P for all
{finitely generated) right ideals K of A.

(2) Every pure left ideal P is idempotent.
(3) Let P be a left ideal. IfKnPis idempotent for allfg right ideals K, then

P is pure in A.

PROOF. (1) A is a flat ,4-module.
(2) Let P' = PA^ P. Then P2 = P'P = P' nP = P.
(3)KnP = (Kn Pf = (Kn P)(Kn P) ^ KP.

3. Regular rings

The ring A will be called (von Neumann) regular iff a e aAa for all ae A.
Since this concept is left-right symmetric, all results about left ideals or modules
will have analogues for right ideals and modules, which will be assumed and used,
although they have not been stated explicitly.

THEOREM 2. The ring A is regular iff every left ideal is pure.

PROOF. =>: In (4) it is shown that A is regular iff every ,4-module is flat.
Therefore for any left ideal / of A, we have A/I flat and hence / pure in A by
Theorem 1.
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<=: For any a in A the left ideal Aa is pure in A and therefore aA n Aa = aAa
by Theorem 1. But aeaA n Aa.

COROLLARY. (1) If A is regular, every left ideal is idempotent.

(2) The converse holds if A is commutative.

PROOF. These results follow immediately from the corollary of Theorem 1.

THEOREM 3. For any ring A, consider the following conditions:

(1) A is a regular ring.

(2) AH is a regular ring for every two-sided ideal I of A.

(3) A/I is a semi-primitive ring for every two-sided ideal I of A.

(4) A/I is a semi-prime ring for every two-sided ideal I of A.

Then we always have (1) => (2) => (3) => (4). If A is commutative, (4) => (1).

PROOF. The implications (1) => (2) => (3) => (4) are well-known and can
be found in Bourbaki [3] and Lambek [14]. (4)=>(1) (A commutative):
Suppose K and J are any two ideals of A and let / = KJ. Then KJ = 0 in the ring
B = A/I, where A denotes the image in B. Since B is semi-prime, fc n J = 0 (see
Lambek [14], p. 56). Hence K n J is contained in KJ. Since we always have the
opposite inclusion, A is regular by Theorem 2.

4. Regular modules

A left y4-module R will be called (von Neumann) regular iff every submodule
is pure. This generalizes the idea of regular ring, as the following theorem shows:

THEOREM 4. For any ring A, the following conditions are equivalent:

(1) A is a regular ring.

(2) Every left A-module is regular.

(3) The left A-module A is a regular module.

PROOF. (1) => (2): Since A is a regular ring, every rt. ^4-module F is flat.
Hence if D is any submodule of the left ^-module E, the sequence

0 -> D® F-* E® F^ E/D ® F -+ 0

is exact and D is pure in E. Therefore E is regular.

(2) => (3): is obvious.

(3) => (1): If A is a regular left ^-module, then all the left ideals of A are pure
and A is a regular ring by Theorem 2.

REMARKS. (1) This theorem shows that any theorem about regular modules
implies a theorem about modules over regular rings.
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(2) Maddox [15] calls a module E absolutely pure iff ^ is pure in any module
containing it. It is easy to see that A is regular iff every left A -module is absolutely
pure.

PROPOSITION 1. R is a regular module iff every fg submodule is pure.

PROOF. =>: is clear.

<=: Every submodule of R is the direct limit offg submodules of R, i.e. the
direct limit of pure submodules, and hence pure, by Corollary 2 of Theorem 1 in
[10].

In (10) it was shown that E is pure in F iff maps from fp{= finitely presented)
modules M to F/E can be lifted to F.

THEOREM 5. Suppose we have an exact commutative diagram of left A-modules:

0 > E > F > G > 0

1 I I
0 > E' > F' > G' > 0

with the map G -*• G' an isomorphism. Then Epure in F implies E' pure in F'.

PROOF. Any map from anfp module M to G' can be lifted first to G by means
of the isomorphism G -> G', and then to F since E is pure in F. Using the map
F -> F' we then have a lifting of the map M -»• G' to F', and E' is therefore pure
in F'.

COROLLARY 1. Let P and Q be two submodules of M. Then

(1) (P n Q)pure in Q => P pure in (P+Q).

(2) (P+ Q) pure in M and (P n Q) pure in Q => P pure in M.

(3) (P + Q) pure in M and (P n Q) pure in M => Ppure in M and Q pure in M'.

(4) P nQ pure inP+Q=*P and Q are both pure in P+Q.

PROOF. We have an exact commutative diagram.

0 >PnQ • Q >Q/(PnQ) >0

II 1-
0 > P > P+Q > (P+Q)/P * 0

where all homomorphisms arise from the natural injections, and c is an isomor-
phism.

(1) is a straightforward application of the theorem.

(2) By (1), P is pure in (P+Q). But (P+ Q) is pure in M and hence P is pure
in M by Proposition 1 in (10).
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(3) (P n Q) pure in M => (P n Q) pure in P and (P n Q) pure in Q.
Apply (2).

(4) Apply (3) with M = P+Q.

COROLLARY 2. For all i in I, any index set, let Nt be a submodule of a fixed
module M and let N = INt (i in I). For each k in I define ftk = XNt (i in I, i ^ it).
Then for all k in I, N pure in M and (Nk n ft k) pure in ftk => Nkpure in M.

PROOF. Apply Corollary 1 with P = Nk and Q - ftk.

REMARK. Examples are given in (9) to show that the converses are false.

THEOREM 6. Let 0-+R-*S-*T-*0bean exact sequence of left A-modules.
Then S is a regular module iff both R and Tare regular modules, and R is pure in S.

PROOF. In the course of this proof, we shall refer several times to Proposition
1 of (10). For convenience, this will be denoted (*) for this proof only.

=>. R is regular since every submodule of R is a submodule of S, hence pure
in S, and therefore pure in R by (*). Every submodule of T has the form V/R
with R ^ V ^ S. But V is then pure in S and therefore V/R is pure in S/R = T
by (*). Hence T is regular. And R is pure in S, since S is regular.

<=. Let V be any submodule of S. Then (V+R)/R is pure in S/R = T,
since T is regular. But R is pure in S. Hence V+R is pure in S by (*). Also V n R
is pure in R, since R is regular. Hence V n R is pure in S, since R is pure in S,
again by (*). Therefore, both V+R and V n R are pure in S. Hence Fis pure in
S by Corollary 1 of Theorem 5.

THEOREM 7. Let R = ERt (i in I, any index set) be left A-modules. Then R is a
regular module iffRt is a regular module for all i in I.

PROOF. =>. For each / in /, Rt is regular by Theorem 6 since it is a submodule
ofR.

<=: Since R is a homomorphic image of S = © Rt (i in / ) , it suffices to show
that S is regular by Theorem 6. We will use Proposition 1: Let P be any fg sub-
module of S. Then P is a submodule of T = © Rt (i in J, J some finite subset of
/) . Since T is a direct summand of S, it is pure in S. Hence if we show that T is
regular, we are finished because then P will be pure in T and hence in S, by the
transitivity of purity (see Proposition 1 in [10]). We have reduced the problem
to proving the following lemma:

LEMMA. JfT = ©" Rt, then Tis regular if each Rt is regular.

PROOF. We use induction. For each k < n, let T(k) = ©*./?;. Clearly
T(\) = Rt is regular. Assume T(k) is regular; then

0 -* Rk+1 -+ T{k + \) -> T{k) -* 0
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is exact with T(k) and Rk+l regular and Rk+i pure in T(k +1) (since it is a direct
summand). Hence T(k +1) is regular by Theorem 6.

COROLLARY. For any left A-module R, the following conditions are equivalent:

(1) R is a regular module.

(2) Ax is a regular module for all x in R and Ax is pure in R.

(3) Ax is a regular module for all x in R.

PROOF. The proof is clear since R = £ Ax (x in R).

5. Regular projective modules

THEOREM 8. Suppose O~*P^>F->E->O is exact with F free. Then the
following conditions are equivalent:

(1) P is pure in F.

(2) E is flat.

(3) Given any x in P, there exists a homomorphism u : F -»P such that
u(x) = x.

(4) Given any xt in P, 1 ^ i ^ m, there exists a homomorphism u : F -> P
such that u(Xi) = xtfor all i.

PROOF. The equivalence of (1) and (2) has been shown in (10). The equivalence
of (2), (3) and (4) has been shown by Chase ([6], Prop.2.2), who attributes the
result to Villamayor.

COROLLARY. Suppose O->P-+Q-*E->Ois exact with Q projective and P
pure in Q. Then given xt in P, 1 ^ i ^ m, there exists a homomorphism u : Q -> P
such that u(xi) = xtfor all i.

PROOF. Since Q is projective, there exists F = Q® Q with F free. And P
pure in Q, Q pure in F -> P pure in F by Proposition 1 of [10]. By the theorem,
there exists w : F -> P such that w(xi) = xt. Let u = w\Q. Then u : Q -+ P and
u(xt) = w(x;) = xt for all i, since xt is in P.

THEOREM 9. Suppose O-*P->Q->F-+Ois exact with Pfg and Q projective.
Then P is pure ijfP is a direct summand.

PROOF. Since any direct summand is pure, it suffices to show the converse.
Suppose then that P is pure and let xt in P, (1 ^ i ^ m). generate P. Then there
exists w : Q -*• P such that u{xt) = xt for all i. If/ : P -» Q is the natural injection,
then we have uj = lp, whence the sequence splits.

COROLLARY 1. If Q is a regular projective then every fg submodule is a direct
summand.
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PROOF. Every (fg) submodule is pure.

COROLLARY 2. (Osofsky [17]). A is regular iff every fg submodule of a pro-
jective module is a direct summand.

PROOF. =>: If A is regular, every module is regular (Theorem 4), and the
result follows from Corollary 1.

<=: Every fg left ideal is a direct summand, hence pure, and A is regular by
Proposition 1.

THEOREM 10. (Structure Theorem for Regular Projective Modules).
A left A-module P is regular projective iffP = © Ji where J, is a regular projective
principal left ideal, which is a direct summand of A.

REMARK. This generalizes and simplifies the proof of a theorem of Kaplansky
([13], Thm. 4).

PROOF. <=: If each / ( i s regular so is P (Theorem 7). If each J{ is projective,
so is P. Hence the result in one direction.

=>: By Kaplansky's Theorem ([13], Thm. 1), every projective module is the
direct sum of eg (= countably generated) projective modules; hence we can reduce
our problem to this case, and assume that P is eg. Let x,,i = 1, 2, 3, • • • generate
P. We shall define inductively y, in P, i = 1, 2, 3, • • • such that: For all n, the sum
Pn = £ " Ay, is direct and P = ©f Ayt. Defineyt = xl and assume j ; defined for
i ^ n, so that Pn = ©" Ay,. Since Pn is fg pure and P is projective, there exists
Q so that P = Pn © Q. Let xn+1 = Pn+yn+1 (/>„ in Pn,yn+i in Q). Clearly the
sum Pn + i = YA+1 Ayi is direct. Since for all n the sum Pn = ©" Ayt is direct, so
is the sum P' = ©f Ay(. Also for each n, xn+1 is in Pn © Ayn+1 = Pn+1. There-
fore P is contained in P'. The opposite inclusion holds to since each yn is in
P = Pn® Q- Since P is regular projective, so is Ayn for all n. Since Ayn is projective,
it is isomorphic to a left ideal /„ , which is a direct summand of A, and hence
principal.

COROLLARY 1. If P is a regular projective module, every eg submodule is
projective.

PROOF. Let xt i — 1, 2, • • • generate the eg submodule M of P. We define
y,,i = 1, 2, • • • exactly as we did in the proof of the theorem. Then M — © f Ay,
is projective since each Ay, is projective.

COROLLARY 2. If A is regular, every eg submodule of a projective module is
projective.

6. Socles

In this section, we define socles which are generalizations of the usual socle.
We remark that both Maranda [16] and Dickson [8] have studied radicals, and
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in doing so, have introduced preradicals which correspond to our socles. How-
ever, there is little, if any, overlap with our work.

Let C be the category of all left ^-modules. A socle is a function T which as-
signs to each module M of C a submodule T(M) of M in such a way that
f:M->N=>f(T(A£))£T(N), i.e. f(T(M)) in a submodule of T(N) (or
equivalently/T =f\T(M) is a map from T(M) to T(N)). In categorical language,
a socle is a subfunctor of the identify functor. Let T be a socle. We make the fol-
lowing definitions:

Tis torsion iff T(N) = N n T(M) for all submodules TV of M.

Tis idempotent iff T2 = T, i.e. T(r(M)) = T{M) for all M.

T has radical property iff T(M/T(M)) = 0 for all Af.

A module M is T-complete iff T(Af) = M.

If T and r are socles, T ^ T iff T(M) is a submodule of T'(M) for all
modules Af. It is easy to verify that if T is torsion, then it is idempotent and
T(M) is T-complete.

We now prove a theorem which establishes the basic properties of socles.

THEOREM 11. Let T be any socle.

(1) If N is a submodule of M, then T(N) is a submodule of T{M) and
(T(M) + N)/N is a submodule ofT(M/N).

(2) T(A) is a two-sided ideal of A.

(3) T commutes with direct sums, i.e. T(@ Mf) = © r(M().

(4) T(P) = T(A)Pfor all projective modules P.

(5) T(A)M is a submodule ofT(M)for all modules M.

(6) IfM is T-complete, so is any image ofM.

(7) IfT{M) is T-complete then it is the largest T-complete submodule of M.

PROOF. (1) Let k : N -* M a n d / : M-> M\N be the canonical maps. Since
T.is a socle, T(N) = k(T(N)) ^ T(M) and (T(M) + N)/N =f(T(M)+N)
^ T(M/N).

(2) T(A) is a left ideal by definition. For any a in A, define fa : A -> A (as
left ^-modules) by/a(x) = xa for all x in A. Since T is a socle, (T(A))a = fa(T(A))
^ T(^). Hence T(A) is also a right ideal.

(3) Let M = © M;. By (1) for each i, r(M;) is a submodule of T(M).

Hence YT(Mi) = © r ( M i ) ^ ^W)- T h e s u m i s d i r e c t s i n c e f o r e a c h '' T(Mt)is

a submodule of Mt. Letp(: M -> Aff be the canonical projection. Then/?;(r(Af))
is a submodule of T{Mt). If x is in T(M) then x = £ xf with xf in Aff. Then
JC. = ^.(^r) which is in T(Mt). Hence T(M) = © r(M,).

(4) If F is free, F = © A and by (3), T(F) = © J(i4) = © (T(A)A) =
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T{A){ © A) = T(A)F. If P is projective then F = P® Q with F free. Hence
T(P) ® T(Q) = T(F) = r(^X^» © Q) = r ( ^ V © r(i4)g. Therefore T(P) =
T{A)P.

(5) For any M, let/: f -> M be epi with Ffree. Then/(r(F)) = f(T(A)F) =
T{A)f(F) = T(A)M. But f(T(F)) is a submodule of T(M). Hence the result.

(6) Let / : M -> AT be epi and T(M) = A/". Then Af =f(M) =f(T(M)) ^
r(AT) ^ M

(7) If T(N) = N ^ M then AT = T(N) g J(M) by (1).

COROLLARY. T(P) = 0 for all projective modules P iff T (A) = 0.

PROOF. Obvious since r(i>) = T(^)P by (4).

PROPOSITION 2. 7/"/Ae wcfe TAaj radical property, then T{M) is the smallest
of the submodules N of M such that T(M/N) = 0.

PROOF. By definition of radical property, T(M/T(M)) = 0. If for some Â
we have T(M/N) = 0, then

(T(M) + N)/N ^ T(M/N) = 0

and T(M) + N = N. Hence T(M) ^ N.

7. Semi-simple and regular socles

In this section, we shall define the regular socle of a module which is analogous
to the semi-simple (= usual) socle of a module, with purity playing the role of
direct summand.

A left /^-module M ^ 0 is called simple iff O and M are its only submodules,
and semi-simple iff it is the sum of simple modules. For basic facts on (semi-)
modules and rings, see Lambek [14].

For any left yi-module M, its ss ( = semi-simple) socle S(M) is defined to be
the sum of all its simple submodules (= the sum of all its semi-simple submodules).
In an analogous way, we will define the regular socle R(M) of a module M to be
the sum of all its regular submodules (i.e. submodules which are regular modules).
Thus R{M) = £Ax(xinM and Ax regular).

THEOREM 12. Both the ss socle S and the regular socle R are torsion socles,
and hence have all the properties given in Theorem 11. A module is S-complete iff
it is semi-simple, and R-complete iff it is regular, i.e. S(M) = M iff M is semi-
simple and R{M) = M iff M is regular. Also S ^ R.

REMARK, (i) Neither S nor R are radicals. See Proposition 3 for examples
and discussion.

(ii) By taking A to be a ring which is one of
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(a) regular,
(b) not regular,
(c) semi-simple,
(d) not semi-simple,
(e) regular but not semi-simple,

we easily have examples where

(a) R(M) = M,
(b) R(M) # M,
(c) S(M) = M,
(d) S(M) # M,
(e) S(M) * R(M), etc.

PROOF. Let T be either S or R.

Socle: T(M) was denned to be a submodule. T(M) is the sum of simple
(resp. regular) modules. Hence iff:M-*N then f(T(M)) is the sum of simple
(resp. regular) modules, since the image of a simple module is simple or zero (easy
to verify), and the image of a regular module is regular (Theorem 6).

Torsion. If iV is a submodule of M, we know that T(N) is a submodule of
T(M), by Theorem 11. T(M) is the sum of simple or regular modules and hence
T(M) is either semi-simple (well known) or regular (Theorem 7). Hence the sub-
module N r\ T(M) of T(M) is either semi-simple (well known) or regular
(Theorem 6), and therefore contained in T(N).

The properties concerning S-complete and incomplete are clear. Also
S ^ R since every simple module is regular.

For any socle T, the ring A will be called left T-faithful iff for all left ,4-modules
M ± 0, we have T(M) # 0.

For example, Bass [1] has shown that a left perfect ring is rt. S-faithful,
where S = ss socle.

Clearly if T ^ T then if A is left T-faithful, it is left T'-faithful. Hence A
left perfect => A is rt. S-faithful => A is rt. i?-faithful.

PROPOSITION 3. If A is left T-faithful for some socle T, then the left A-module
MisT-completeiffT(M/T(M)) = 0.

PROOF. =>: is clear since T(M) = M.

<=: Since A is T-faithful, we have M\T{M) = 0 whence M = T(M) and M

is T-complete.

COROLLARY 1. If A is left T-faithful, then the socle T has radical property iff
all left A-modules are T-complete.

PROOF. =>: For any M, T(M/T(M)) = 0 whence M/T(M) = 0 and
M = T(M).
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<=: is clear since T(M) = Mfor all M.

COROLLARY 2. Neither S nor R have radical property.

PROOF. Let A be left perfect, but not regular. Then A is rt. T'-faithful for
T = R or S by Bass [1], but not all rt. modules are regular ( = incomplete) and
hence not all are semi-simple ( = S-complete).

EXAMPLE 1. In [9] it is shown that the singular submodule functor of Johnson
[12] is a torsion socle.

EXAMPLE 2. Brown and McCoy [5] define a regular radical M(A) of the ring
A, so that A is (von Neumann) regular iff A = M(A). In [9] it is shown that
M(A) is contained in R(A) if A is a commutative semi-principal ring (i.e. every
fg ideal is principal). An example is given in [9] to show that this inclusion can be
strict.

EXAMPLE 3. Let A be a Dedekind domain. For any element x # 0, in the
,4-module E let the order ideal O(JC) = nP"(P), with the product ranging over the
prime ideals P of A. Call x square free iff n(P) ^ 1 for all P. In [9] we have shown
that the regular socle of E consists of the square free elements of E.

8. Localization

In this section we let A be a commutative ring, S a multiplicative set of A
and M = M(A) be the collection of maximal ideals mofA. We let Es, Em, Ep, us

etc. denote the localization of the y4-module E at S, at m, at p (a prime ideal),
and of the ^4-homomorphism u at S, etc. Also ® s and ®m denote ®As and ®Am

respectively.

THEOREM 13. Let E be any A-module, D any submodule of E and S any multi-
plicative set of A.

(1) If D is an A-direct summand of E (resp. A-pure in) E, then Ds is an As-
direct summand of {resp. As-pure in) Es.

(2) If E is A-semi-simple {resp. A-regular), then Es is As-semi-simple {resp.
As-regular).

(3) {T{E))S ^ TS{ES) where T {resp. Ts) is either the ss socle or the regular
socle with respect to A {resp. As).

(4) If E is A-simple, then Es is As-simple.

PROOF. (1) The direct summand case is given in [2] and the pure case in [4]

(2) Any /*s-submodule of Es has the form Ds where D is an v4-submodule
of E. If E is ,4-semi-simple (resp. ^-regular) than D is v4-direct summand of
(resp. .4-pure in) E, and the result follows from (1).
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(3) T(E) is y4-semi-simple (resp. ,4-regular); therefore by (2) (T(E))S is an
yis-semi-simple (resp. A -regular) submodule of Es and hence contained in TS(ES).

(4) As in (2), any ,4s-submodule of Es has the form Ds where D is an A-
submodule of E. If E is ^4-simple then D = 0 or D = E and Ds = O or Ds = Es.
Hence Es is ^4s-simple.

COROLLARY. Let S be any multiplicative set of A.

(1) If A is semi-simple (resp. regular), so is As.

(2) If A is simple, so is As.

PROOF. Apply Parts (2) and (4) of the theorem with E = A.

THEOREM 14. Let E be any A-module and D any submodule of E.

(1) D is A-pure in EijfDm is Am-pure in Emfor all m in M.

(2) E is A-regular iff Em is Am-regular for all m in M.

PROOF. By Theorem 13 we need only show <= in each case.

(1) <=: Let y : D -* E be the canonical injection. For any ^4-module F, let
/ = lF ® / T h e n / m = lFm ®m^.SinceZ)misv4m-purein£'m,/misamonomorphism,
for all m in M, and therefore/ is a monomorphism. Hence D is /I-pure in E.

(2) <=: If D is any submodule of E, Dm is ^4m-pure in Em, and therefore D is
,4-pure in iTby (1), and £?is ^-regular.

In general, the property of being a direct summand is not local. However,
we have:

THEOREM 15. Let O-*D^E-*F-+Obean exact sequence of A-modules.
IfFis A-pureprojective, (see [10]), then

(1) D is an A-direct summand of E iff Dm is an Am-direct summand of Emfor
all m in M.

(2) E is A-semi-simple iff Em is Am-semi-simple for all m in M.

PROOF. By Theorem 13 we need only show <= in each case.

(1) <=: If Z)m is v4m-pure in Em for all m in M, then D is ,4-pure in E by
Theorem 14. Since F is pure projective, the sequence is split exact by Theorem 4
of [10].

(2) <=: For any submodule D of E, Dm is an ,4m-direct summand of Em for
all m in M. Therefore by (1), D is a direct summand of E.

COROLLARY. If A is PBS, (see (10)) then any exact sequence O -* D -» E ->
F-> Ois split exact iffO-*Dm->Em-yFm-+O is split exact for allm in M.

PROOF. If A is PDS, then all ,4-modules are pure projective by Theorem 7
of [10]. Apply the above theorem.
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THEOREM 16. Let O-+D->E->F-+Obean exact sequence of A-modules.
IfF is fg flat, then Dp is an Ap-direct summand of Epfor all prime ideals p of A.

PROOF. For all p, Fp is a fg flat ^-module and hence yip-free since Ap is
a local ring. Since any free module is pure projective, the exact sequence
O -> Dp - Ep -> Fp - O splits.

9. Commutative perfect rings

Bass [1] has conjectured that a ring A is left perfect iff every nonzero left A-
module has a maximal submodule and A has no infinite sets of orthogonal idem-
potents. As he remarks, this is the natural dual to Part (7) of Theorem P of [1 ].

Hamsher [11] has given an affirmative solution for commutative noetherian
rings. We shall extend his solution to arbitrary commutative rings.

For the rest of this section, let A be commutative. We quote without proof:

LEMMA A. (Hamsher [11]) If every nonzero module has a maximal submodule,
then every prime ideal of A is a maximal ideal and the obvious:

COROLLARY. In this case the Jacobson radical J = J(A) of A coincides with
the prime radical of A.

PROOF. J(A) is the intersection of all maximal ideals and the prime radical
is the intersection of all prime ( = maximal) ideals.

For our main theorem we prove:

LEMMA B. If A has the property that every prime ideal is maximal, then

(1) Every quotient ring A/1 has the same property.

(2) As has the same property for any multiplicative set S.

PROOF. (1) is an immediate consequence of the one-one correspondence
between the prime (resp. maximal) ideals of A and the prime (resp. maximal)
ideals of AjI.

(2) Any prime ideal of As has the form ps where p is a prime ideal of A dis-
joint from S. Butp is maximal and disjoint from S, and therefore a maximal ideal
among ideals disjoint from S. Hence Ps is a maximal ideal of As.

An ideal / of A is T-nilpotent (1) iff for any sequence a1,a2,a3, • • • of
elements of / there exists an integer n > 0 such that at a2 • • • an = 0.

THEOREM 17. The ring A is perfect iff every nonzero A-module has a maximal
submodule and A has no infinite sets of orthogonal idempotents.

PROOF. =>: has been shown by Bass (1).

<=: Bass has also shown that under these conditions the Jacobson radical /
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of A is J-nilpotent. Therefore by Theorem P of [1 ] it only remains to show that
B = A/J is semi-simple.

Lambek ([14], p. 72) has shown that if J is a nil ideal of A, any countable
orthogonal set of nonzero idempotents in B = A/J can be lifted to an orthogonal
set of nonzero idempotents of A. Since any T-nilpotent ideal is clearly a nil ideal,
this implies that B has no infinite sets of orthogonal idempotents. Osofsky [17]
has remarked that any regular ring with no infinite sets of orthogonal idempotents
is a semi-simple ring. Therefore to complete the proof it suffices to show that B
is a regular ring.

We will prove that B is a regular ring by showing that Bn is a field for all
maximal ideals n of B.

By the corollary of Lemma A,J = the prime radical of A and hence B = A/J
is a semi-prime ring (see Lambek [14], p. 56). Therefore Bn is semi-prime for all

maxima) jdea)s /? ofJ by //4J, Prop 17, p. 97). Sincein J every prime idea) is
maximal, the same is true for B and Bn by Lemma B. Consequently for all n, Bn

is a local semi-primitive ring i.e. a field, and B is a regular ring.

REMARKS. (1) Hamsher has informed me that he has also obtained a solution
to Bass' conjecture in the commutative case. However the solution presented above
is different from his, and was obtained independently in [9].

(2) Parts of the above solution are also valid in the non-commutative case.
Details will appear in a subsequent publication.
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