M. Kishi Nagoya Math. J. Vol. 48 (1972), 189–196

AN EXAMPLE OF A POSITIVE NON-SYMMETRIC KERNEL SATISFYING THE COMPLETE MAXIMUM PRINCIPLE

Dedicated to Professor Yukinari TÔKI on his sixtieth birthday

MASANORI KISHI

§1. Introduction and preliminaries.

One of the main problems in potential theory is to determine the class of kernels satisfying the domination principle or the complete maximum principle. As to positive symmetric kernels this is settled to a certain extent, but as to non-symmetric kernels we have not yet obtain satisfactorily large explicit classes. In this note we shall give a class of positive non-symmetric convolution kernels on the real line satisfying the complete maximum principle.

Let K be a positive Radon measure on the real line R. Given an essentially bounded Lebesgue measurable function f vanishing outside a compact set, the convolution K*f is called a *potential* relative to a positive kernel K. This is a Lebesgue measurable function on R. Throughout this note we shall identify two functions which differ on a set of Lebesgue measure zero.

We shall say that the kernel K satisfies the complete maximum principle, when the following statement is valid: if f and g are essentially bounded Lebesgue measurable functions vanishing outside a compact set and $K*f \leq K*g + 1$ on the set $\{x \in \mathbf{R}; f(x) > 0\}$, then the same inequality holds almost everywhere in \mathbf{R} . A sufficient condition for the complete maximum principle is the existence of a so-called submarkovian resolvent $\{K_p\}$ (p > 0), a family of positive kernels such that for each $p > 0, K - K_p$ $= pK*K_p = pK_p*K$ and $pK_p*1 \leq 1$, and $K = K_0 = \lim_{p \neq 10} K_p$. The outline of the proof: we have, for each p > 0,

Received March 31, 1972.

$$K+rac{1}{p}arepsilon=rac{1}{p}\Big(\sum\limits_{n=0}^{\infty}{(pK_p)^n}\Big),$$

where $(pK_p)^0 = \varepsilon$, the Dirac measure on the origin, and $(pK_p)^n = (pK_p)^{n-1}*(pK_p)$. This shows that $K + (1/p)\varepsilon$ satisfies the complete maximum principle, so that K itself satisfies the complete maximum principle.

§2. Negative-definite functions.

A complex-valued continuous function $\lambda(x)$ on **R** is said to be *negative*definite, when it holds that

i) $\lambda(0) \ge 0$, $\lambda(-x) = \overline{\lambda(x)}$,

ii) for any *n* points x_1, x_2, \dots, x_n on **R** and for any *n* complex numbers $\xi_1, \xi_2, \dots, \xi_n$ with $\sum_{i=1}^n \xi_i = 0$,

$$\sum_{j,k} \lambda(x_j - x_k) \xi_j \bar{\xi}_k \leq 0 \; .$$

As easily seen, $\lambda(x) = ax^2 + ibx + c$ is negative-definite, if a and c are non-negative and b is real. $\lambda(x) = c - (p - ix)^{-1}$ with p > 0 and $c \ge p^{-1}$ is also negative-definite, since

$$-(p - ix)^{-1} = -\int_0^\infty e^{-py} e^{ixy} dy$$
.

The sum of negative-definite functions $\lambda_1, \lambda_2, \dots, \lambda_n$ is evidently negativedefinite. In this section we shall show that for specific λ_j 's, $\lambda = \left(\sum_{j=1}^n \lambda_j^{-1}\right)^{-1}$ is negative-definite.

LEMMA 1. Let $0 < p_1 < p_2 < \cdots < p_n$ and $\mu_1, \mu_2, \cdots, \mu_n, \nu_1, \nu_2, \cdots, \nu_n$ be non-negative numbers, and let f(z) be a complex-valued function $\left(\sum_{j=1}^n \left(\frac{\mu_j}{p_j+z} + \frac{\nu_j}{p_j-z}\right)\right)^{-1}$. If $\sum_{j=1}^n \mu_j \neq \sum_{j=1}^n \nu_j$, f(z) is equal to

(1)
$$az + b + \sum_{k=1}^{2n-1} \frac{c_k}{z - \alpha_k}$$

with b > 0, $\alpha_k c_k > 0$. If $\sum_{j=1}^n \mu_j = \sum_{j=1}^n \nu_j$, it is equal to

(2)
$$az^2 + bz + c + \sum_{k=1}^{2n-2} \frac{d_k}{z - \alpha_k}$$

with a < 0, c > 0, $\alpha_k d_k > 0$.

Proof. First we consider the case that $\sum_{j=1}^{n} \mu_j \neq \sum_{j=1}^{n} \nu_j$. In this case f(z) is equal to $\prod_{j=1}^{n} (p_j^2 - z^2)/\psi(z)$, where $\psi(z) = \sum_{k=1}^{n} ((\mu_k + \nu_k)p_k + (\nu_k - \mu_k)z)$ $\cdot \prod_{j \neq k} (p_j^2 - z^2)$ is a polynomial of degree 2n - 1: the coefficient c of z^{2n-1} is $(-1)^{n-1} \sum_{k=1}^{n} (\nu_k - \mu_k)$. Hence f(z) is written as

$$az + b + \frac{\varphi(z)}{\psi(z)}$$

with a polynomial $\varphi(z)$ of degree less than 2n - 1 and $a = \left(\sum_{k=1}^{n} (\mu_k - \nu_k)\right)^{-1}$. Remark that $\psi(z)$ has 2n - 1 simple zeros α_k 's and β_k 's: in the case that c is positive and n is odd, or c is negative and n is even,

$$egin{aligned} eta_n < -p_n < eta_{n-1} < -p_{n-1} < \cdots < -p_2 < eta_1 < -p_1 \ p_1 < lpha_1 < p_2 < \cdots < p_{n-1} < lpha_{n-1} < p_n \ , \end{aligned}$$

and in the case that c is negative and n is odd, or c is positive and n is even

$$egin{aligned} &-p_n < eta_{n-1} < -p_{n-1} < \cdots < -p_2 < eta_1 < -p_1 \ p_1 < lpha_1 < p_2 < \cdots < p_{n-1} < lpha_{n-1} < p_n < lpha_n \ . \end{aligned}$$

In any case we have

$$\begin{split} \frac{\varphi(z)}{\psi(z)} &= \sum_{k} \frac{\varphi(\alpha_{k})}{\psi'(\alpha_{k})} \frac{1}{z - \alpha_{k}} + \sum_{k} \frac{\varphi(\beta_{k})}{\psi'(\beta_{k})} \frac{1}{z - \beta_{k}} \\ \varphi(z) &= \prod_{j=1}^{n} (p_{j}^{2} - z^{2}) - (az + b)\psi(z) \\ \frac{\varphi(\alpha_{k})}{\psi'(\alpha_{k})} &= \prod_{j=1}^{n} \frac{(p_{j}^{2} - \alpha_{k}^{2})}{\psi'(\alpha_{k})} > 0 \\ \frac{\varphi(\beta_{k})}{\psi'(\beta_{k})} &= \prod_{j=1}^{n} \frac{(p_{j}^{2} - \beta_{k}^{2})}{\psi'(\beta_{k})} < 0 \; . \end{split}$$

Therefore $\alpha_k \varphi(\alpha_k)/\psi'(\alpha_k)$ and $\beta_k \varphi(\beta_k)/\psi'(\beta_k)$ are positive. We put z = 0 in (1) and obtain

$$b = \left(\sum_{j=1}^{n} \frac{\mu_j + \nu_j}{p_j}\right)^{-1} + \sum_{k=1}^{2n-1} \frac{c_k}{\alpha_k} > 0$$
.

Now suppose that $\sum_{j=1}^{n} \mu_j = \sum_{j=1}^{n} \nu_j$ ($\neq 0$). Then

https://doi.org/10.1017/S002776300001518X Published online by Cambridge University Press

MASANORI KISHI

$$f(z) = az^2 + bz + c + \frac{\varphi(z)}{\psi(z)}$$

with a polynomial $\varphi(z)$ of degree less than 2n-1 and $a = -\left(\sum_{k=1}^{n} (\mu_k + \nu_k)p_k\right)^{-1} < 0$. $\psi(z)$ has 2(n-1) simple zeros α_k 's and β_k 's such that

 $p_k < lpha_k < p_{k+1}$, $-p_{k+1} < eta_k < -p_k \ (1 \leq k \leq n-1)$.

Similarly in the first case it holds that

Hence the product of α_k and d_k in (2) is positive for each k and

$$c = \left(\sum_{j=1}^{n} rac{\mu_j +
u_j}{p_j}
ight)^{-1} + \sum_{k=1}^{2n-2} rac{d_k}{lpha_k} > 0 \; .$$

By this lemma we have

PROPOSITION 1. Let $p_1, p_2, \dots, p_n, \mu_1, \mu_2, \dots, \mu_n, \nu_1, \nu_2, \dots, \nu_n$ be non-negative numbers. Then

(3)
$$\lambda(x) = \left(\sum_{j=1}^{n} \left(\frac{\mu_j}{p_j + ix} + \frac{\nu_j}{p_j - ix} \right) \right)^{-1}$$

is negative-definite.

Proof. If
$$\sum_{j=1}^{n} \mu_j \neq \sum_{j=1}^{n} \nu_j$$
, we have by (1)
$$\lambda(x) = iax + b + \sum_{k=1}^{2n-1} \frac{c_k}{ix - \alpha_k}$$

with real $a \neq 0$, b > 0, $\alpha_k c_k > 0$. If $\sum_{j=1}^n \mu_j = \sum_{j=1}^n \nu_j \ (\neq 0)$,

$$\lambda(x) = -ax^2 + ibx + c + \sum_{k=1}^{2n-2} \frac{d_k}{ix - \alpha_k}$$

192

with real b, a > 0, c < 0, $\alpha_k d_k > 0$. Therefore, in any case, $\lambda(x)$ is negative-definite.

§3. Fractional powers of Heaviside kernel.

Heaviside kernel H is the convolution kernel on R induced by the function

$$H(x) = egin{cases} 1 & , & x > 0 \ 0 & , & x \leq 0 \end{cases}.$$

Given a non-negative Lebesgue measurable function f, its Heaviside potential Hf(x) is

$$H*f(x) = \int_{-\infty}^{x} f(y) dy$$
.

The kernel H has a unique positive resolvent $\{H_p\}$ $(p \ge 0)$ such that

$$H_p(x) = \begin{cases} e^{-px}, & x > 0\\ 0, & x \leq 0 \end{cases},$$

and H satisfies the complete maximum principle. For a positive number α smaller than 1, the *fractional power* H^{α} of H is the convolution kernel defined by

$$rac{\sinlpha\pi}{\pi}\!\int_{_{0}}^{_{\infty}}\!p^{-lpha}H_{p}dp$$
 ,

which is equal to the one induced by

$$H^{\alpha}(x) = egin{cases} rac{x^{lpha - 1}}{\Gamma(lpha)} \ , \qquad x > 0 \ 0 \ , \qquad x \leq 0 \ , \end{cases}$$

In this section we shall show that for any $0 < \alpha$, $\beta < 1$, the sum of H^{α} and \check{H}^{β} satisfies also the complete maximum principle, \check{H}^{β} being the *adjoint* kernel of H^{β} , namely, $\check{H}^{\beta}(x) = H^{\beta}(-x)$. Notice that

$$\check{H}^{\scriptscriptstyleeta}(x) = egin{cases} rac{|x|^{eta-1}}{\Gamma(eta)} = rac{\sineta\pi}{\pi} \int_0^\infty p^{-eta} e^{px} dp \;, & x < 0 \ 0 \;, & x \geqq 0 \;. \end{cases}$$

Let μ and ν be positive Radon measures on $(0, \infty)$. We exclude the case $\mu = \nu = 0$, and put

MASANORI KISHI

(*)
$$K(x) = \begin{cases} \int_{0}^{\infty} e^{-px} d\mu(p) , & x > 0 \\ \int_{0}^{\infty} e^{px} d\nu(p) , & x < 0 \end{cases}$$

We assume that K(x) is locally Lebesgue integrable. Then it induces a positive convolution kernel K. Our aim is to prove the complete maximum principle for K. First we restrict ourselves to the case that μ and ν are measures on a bounded closed interval [a, b] ($0 < a < b < \infty$). The Fourier transform of K, $\hat{K}(y) = \int_{-\infty}^{\infty} K(x)e^{-2\pi ixy}dx$, is equal to

$$\int_a^b rac{d\mu(p)}{p+2\pi i y} + \int_a^b rac{d
u(p)}{p-2\pi i y}$$

Hence $\lambda(y) = (K(y))^{-1}$ is continuous on **R**, and

$$\lambda(0) = \left(\int_a^b \frac{d\mu(p)}{p} + \int_a^b \frac{d\nu(p)}{p}\right)^{-1} > 0 , \qquad \lambda(-y) = \overline{\lambda(y)} .$$

LEMMA 2. $\lambda(y)$ is negative-definite.

Proof. We fix n points y_1, y_2, \dots, y_n on the real line and n complex numbers $\xi_1, \xi_2, \dots, \xi_n$ such that $\sum_{j=1}^n \xi_j = 0$. Given an arbitrary positive number ε , we can take a division of [a, b], $a = p_0 < p_1 < \dots < p_N = b$, such that

$$|\lambda(y_j - y_k) - \lambda_{\epsilon}(y_j - y_k)| < \varepsilon \ (j, k = 1, 2, \cdots, n)$$
,

where $\lambda_{\iota}(y) = \left(\sum_{l=1}^{N} \left(\frac{\mu_{l}}{p_{l} + 2\pi i y} + \frac{\nu_{l}}{p_{l} - 2\pi i y}\right)\right)^{-1}$, and μ_{l} and ν_{l} denote respectively μ -and ν -masses of *l*-th subinterval of the division. Then it holds that

$$|\sum\limits_{j,k}\lambda(y_j-y_k)\xi_jar{\xi}_k-\sum\limits_{j,k}\lambda_{\epsilon}(y_j-y_k)\xi_jar{\xi}_k|\leq \epsilon(\sum\limits_j|\xi_j|)^2$$
 ,

and that, $\lambda_{i}(y)$ being negative-definite by Proposition 1, $\sum_{j,k} \lambda(y_{j} - y_{k})\xi_{j}\overline{\xi}_{k} \leq 0$.

This lemma leads us to the following

PROPOSITION 2. If μ and ν are positive Radon measures on [a, b] $(0 < a < b < \infty)$, then the convolution kernel K defined by

194

$$K(x) = egin{cases} \int_a^b e^{-px} d\mu(p) \ , & x > 0 \ \int_a^b e^{px} d
u(p) \ , & x < 0 \end{cases}$$

satisfies the complete maximum principle.

Proof. It suffices to show the existence of a positive submarkovian resolvent $\{K_q\}$ $(q \ge 0)$ such that $K_0 = K$. By the above proposition, $q + \lambda(y)$ is a negative-definite continuous function and $0 < \lambda(0) = \left(\int_a^b \frac{d\mu(p)}{p} + \int_a^b \frac{d\nu(p)}{p}\right)^{-1}$ $\le \operatorname{Re} \lambda(y)$. Hence $(q + \lambda(y))^{-1}$ is a positive-definite continuous functions and by Bochner's theorem it is the Fourier transform of a positive measure K_q ,

$$(q + \lambda(y))^{-1} = \hat{K}_q(y) = \int_{-\infty}^{\infty} e^{-2\pi i x y} dK_q(x) .$$

Notice that |yK(y)| is bounded and hence every K_q is a square integrable function. Therefore we have

$$q\widehat{K_0*K_q} = q\widehat{K_0}\widehat{K_q} = \frac{q}{\lambda(y)(q+\lambda(y))} = \frac{1}{\lambda(y)} - \frac{1}{q+\lambda(y)} = \widehat{K_0} - \widehat{K_q},$$

and hence $qK_{0}*K_{q}=K_{0}-K_{q}.$ We have also $q\hat{K}_{q}(0)=rac{q}{q+\lambda(0)}<1.$

By this proposition we have

THEOREM. Let μ and ν be positive Radon measures on $(0, \infty)$ such that the function K defined by (*) is locally Lebesgue integrable. Then K satisfies the complete maximum principle.

Proof. K is the limiting kernel of an increasing sequence of kernels discussed above. Hence our theorem follows immediately from the following lemma.

LEMMA 3. Let $\{K_n\}$ be an increasing sequence of positive kernels satisfying the complete maximum principle. If $K = \lim K_n$ defines a positive kernel, it satisfies the complete maximum principle.

Poof. Let f and g be essentially bounded positive Lebesgue measurable functions vanishing outside a compact set such that $Kf \leq Kg + 1$ on $Sf = \{x \in \mathbf{R}; f(x) > 0\}$. We shall prove the inequality $Kf \leq Kg + 1$

195

MASANORI KISHI

almost everywhere in **R**. Without loss of generality, we may suppose that Kf < Kg + 1 on Sf. Let f_n be the restriction of f to the set $\{x \in Sf; Kf \leq K_ng + 1\}$. Then $\{f_n\}$ increases to f. Since K_n satisfies the complete maximum principle, we have $K_nf_n \leq K_ng + 1 \leq Kg + 1$ almost everywhere. Noticing that $\{K_nf\}$ increases to Kf, we conclude that $Kf = \lim K_nf_n$, and $Kf \leq Kg + 1$.

Setting $\mu = \frac{\sin \alpha \pi}{\pi} p^{-\alpha}$ and $\nu = \frac{\sin \beta \pi}{\pi} p^{-\beta}$, we have

COROLLARY. $H^{\alpha} + \check{H}^{\beta}$ satisfies the complete maximum principle, for any $0 < \alpha, \ \beta < 1$.

Nagoya University