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ABSTRACT. The notion of the velocity ellipsoid for the planar three body 
problem is given. Using the sufficient conditions for escape of one 
member of a triple system, given by Standish (1971), a region is found 
on the velocity ellipsoid for which escape is guaranteed. 

1. INTRODUCTION 

We shall consider planar systems of three bodies P , P , P with masses 

m , m0, m and with a certain value L of the total angular momentum 
1 £~ O 

with respect to their center of mass G. To describe the motion we 
shall use a non-inertial frame Oxy with its origin 0 as the center 
of mass of the primaries P.. and P , the x-axis permanently directed 
from P. to P. and the y axis perpendicular to the x-axis. Let 
x,y be the coordinates of the body P and let x >0 be the ordi­
nate of P . The location of the body P on the x-axis is 
easily found when x and x,y are given. Therefore the problem is of 
three degrees of freedom. The space Oxyx., may be taken as the con­
figuration space for the dynamical system. 

The distances r , r of the body P from the bodies P , P 
respectively are given by 

/ 2 2 / Xl 2 2 
r = / (x-x ) +y and vo~ (x"xi + — ) +Y (D 

where m_ 
2 

V = 

and 

ml+m2 

mi+m2+ln3 

If § is the angle formed by the moving axis Ox and any fixed 
axis, say GX, on the plane of motion, the non-constant angular velocity 
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358 G. BOZIS 

of the non-inertial frame will be 4 = dd/dt. The coordinates of the 
relative velocities are x,y for the body P and x1 for the body P.. 

o 1 J. 

The system provides the energy integral, given by 
(l-u)(l-m ) R(l-m ) 

2E = — xZ
± + jp2- $Z + m3(l-n3)(xV) + 

+ 2m3(l-m3)(xy-xy)d - Q. (2) 

As to the angular momentum integral 
R(l-m ) 

L = m3(l-m3)(xy-xy) + - %, (3) 

this will be used to eliminate %. Thus Equation (2) may be written 
as follows (Bozis, 1976) „ 2 

(l-y)x2 + ym„(x2+y2) ^- (xy-xy)2 = ^— $ (4) 

where 2 
$ = 2E + Q-RTI^7 (5) 

Both R and Q appearing in the above expressions are functions 
of the position coordinates x and x,y and they are given by 

R = (l-y)x2 + um3(x
2+y2) (6) 

2 
and y (l-y)(l-m,) (l-y)m ym 

Q = 2(l-m ) { 2_ + _ _ _ _ 3 + -A } (7) 

d xx rx r2 

A simple calculation shows that the moment of inertia I of the 
three masses with respect to their center of mass G is given by 

R(l-m,) 
j = 2_ . 

y 
Also the quantity Q, defined by Equation (7), is related to the 

potential V of the system by the Equation 

Q = -2V. 

2. THE VELOCITY ELLIPSOID 

The left member of Equation (4) is a definite positive quantity for all 
values of the variables involved. The inequality 

$(x,y,x1) > 6 

defines in the position space Oxyx regions where motion is allowed 
to take place (Bozis, 1976). 

Therefore we conclude that, for definite values of E and L, to 
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each point P(x,y,x ) of the position space there corresponds a "veloci­
ty ellipsoid" given by Equation (M-) in the velocity space 0'xyx.. 

As P moves in the permissible region of the configuration space 
Oxyx. its velocity vector may have any direction. Its magnitude, how­
ever, is such that, in the velocity space 0 'xyx , the vector 0 v pa­
rallel to the velocity of P, /terminates on the surface of the veloci­
ty ellipsoid of the point P.' 

One of the main axes of the velocity ellipsoid is along the 0 'x 
axis. The other two main axes are on the plane 0 'xy. In order to 
orient the ellipsoid along its main axes let us use the new orthogonal 
system 0 'ink.. 

If cp(0<tp< —) is the angle formed by the positive semi-axes 0'x 
and 0 't on the plane 0 'xy we have 

tg2q> = - p 2 • (8) 
x -y 

The equation of the velocity ellipsoid in the new system 0 '£nx is 
then 

.2 
•2 .2 x, 

a b c 

where the semi-axes a,b,c are given by the formulae 

m3(l-m3) 

Xl / m
3 (

1 _ m 3 ) ( 1 ~ y ) 

y$ 
(l-u)(l-m3) 

We observe that for all points x,y,x it is 

a < b 
and that 

c / y m 3 
— = / = constant. 
a / 1-p 

The quantities a,b and c all vanish for points x,y,x on the sur­
face of zero velocity $ = 0. The same quantities tend to infinity 
near collisions. 
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The value of a may be smaller or larger than the value of c since 
the quantity urn /1-y ranges from 0 to °°. It may be that a=c for 
values of u and 1113 on the part of the hyperbola um =l-y inside the 
square 0<u<l, 0<m3<l.

 d 

It may also be that a=b^0 and this actually happens only for 
points on the x -axis of the position space. It is therefore understood 
that for certain values of the parameters u and 1113 and for points 
xl» x3=03 v 3 = 0 "the velocity ellipsoid is reduced to a sphere. In this 
case the magnitude of the velocity, at these points, is completely de­
fined if E and L are given. 

In all other cases the magnitude of the velocity at a point x,y,x.., 
depends on its direction and ranges between the maximum and the minimum 
value of the quantities a, b and c, evaluated at this point. 

We shall now compare this statement with the information given by 
the well known Sundmann's inequality (e.g. Birkhoff, 1927). In bur no­
tation this inequality may be written as 

(^•)2 < 41$ (10) 

Its meaning is that for each point (x,y, x ) of the position space 
there exists a certain velocity which makes the quantity (dl/dt)2 

maximum. The quantity 

d I 1-m 
^ = —JJ—^ {2(l-y)x1x1 + 2ym3(xx+yy)} (11) 

is a function of x and y only, since x = x (x , y ) by Equation 
_L X O O 

(4). The critical values of (11) are then found to be 

x = ± / — x, y = ± / — y and x. = ± /— x„ (12) 
o / I ' Jo / I J l,o / I 1 

and they define on the velocity ellipsoid two points symmetric with 
respect to the origin 0.' 

From another point of view Sundmann's inequality implies that for 
each point (x,y,xi) of the position space the vector of the velocity 

in the velocity space 0 'xyx. must be selected so that its termi­
nal point V lies somewhere between the two parallel planes 

( l - y ) x x + ym„(xx+yy) = - -^— / i ¥ (13a) 
1 1 3 J l~ni. 

and 
( l - y ) x x + ym (xx+yy) = -^— /ET . (13b) 

One could probably think that the planes (13) intersect the surface (4) 
and that part of the surface is excluded. However, this is not the case. 
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It can easily be shown that "Sundmann's planes" (13a) and (13b) are 
always tangent to the velocity ellipsoid (M-) at the points 

D i A A A ^ 
P O ( / T

 x ' / i y» / i x i ) 

(14) 
and — — D,., A A A ^ 

po(VTx> V l y » V l x i ) 
The conclusion is that, as far as the magnitude of the velocity is con­
cerned, more information is given by the velocity ellipsoid than by 
Sundmann's plane s. 

3. CONDITIONS FOR ESCAPE 

We shall prove in this section that in general to a certain part of the 
surface of the velocity ellipsoid there correspond escaping orbits. 

We shall limit our study to negative values of the energy E. For 
such values of E the zero velocity surfaces allow for the following 
types of dissolution: (i). The body P. escapes to infinity leaving 
the bodies P and P in a close binary, (ii). The body P goes 
to infinity in a close binary with either P or P . In either case 

(for E<0) there is a minimum distance of the bodies bounded by the 

quantity (Birkhoff, 1927) 

(1-m ){p(l-y)(l-m )+m } 

r4 = = • (15) 

Let us study case (i). It is exactly for this case that Standish 
(1971) has given sufficient conditions for escape. In our notation 
these conditions are the following: 

/ 2 2~ 
/ x +y > r.,. 

and 

^ ( / A 7 ) > o 

(^/xV)2>2 
y(l-y)r... 

/ 2 2 , / 2 2 w 2 2, 
/ x +y (/ > x +y (/ x +y -r.,s)(x +y ) 

These are rewritten as follows: 

x +y > v.,. (16a) 

xxtyy > 0 (16b) 

xx+yy-S > 0 (16c) 

where 
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2 

r . . , , ,.%„2 i 
/ o 2 * 

/ 2 ^ 2 

/ x +y -r f t 

(17) 

Only the positive square root in (17) is considered in view of the 
inequality (16b). Since (16c) is stronger than (16b) we only need con­
sider (16c). 

Equation 

xx + yy - S = 0 (18) 

represents, in the 0'xyx space, a plane parallel to the x axis. 
The inequality (16c) holds to the other side of this plane from 
the side where the origin 0 ' is. 

The question now is: Does the plane (18) intersect the velocity el­
lipsoid (H)? This happens indeed if, on the plane x =0, the straight 
line (18) intersects the ellipse 

U2m2 
li $ Z Z M Q Z 

ym3(x +y ) ^ (xy-iy) ±_m 
(19) 

Eliminating y between (18) and (19) we get, with y^O, the 
quadratic equation 

where 

.2 
ax + Bx + y = 0 

2. 2 

(20) 

a - (l-vOym 
x +y__ ..2 

Ry 
2 Xl 

6 = -2(l-y)vimg -*— x1 

Ry 

M* S2
 r/1 . 2 2, 

Y = - T — — + Vim — ^ l(l-v)x + ym y }. 
1 _ m3 3 Ry2 X 3 

In order that the Equation (20) has two real roots we must have 

2 „2 
m3(l-m3) 

S > 0 

where $ is given by (5), S is given by (17) and 

2 2 2 
r = x +y 

(21) 

(22) 
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We shall replace the inequality (21) by a weaker but much simpler' 
inequality. 

We have, in view of Equations (6), (7) and (22), 

R > R = ym r2 (23) 
- o 3 

and 2y2(l-y)(l-m ) 2 

Q > Q = — . (24) 
- o xx 

Therefore, in view of Equation (5), 
L2 

$ > $ =2E + Q - ̂ -r^ v- . (25) 
- o o R (l-m0) o 3 

We thus come to the conclusion that the inequality (21) is always 
true provided that 

$ r2 

° S2 > 0. (26) 
m3(l-m3) 

The inequality (26) is equivalent to the inequality. 

0 <x < f(r) (27) 

2 2 2 
where 2y (l-u)(l-m ) r 

f(r) = - _ _ (28) 
m„(l-m„)S2-(2Er2- , L . ) 
3 3 m (1-m ; 

The meaning of the last inequality (27) is the following: Suppose that 
the initial conditions (i.e. coordinates of position and velocity) of 
the problem are given. Also suppose that the angular momentum L is 
given. The value of E is then known and from Equation (15) the value 
of r},{ may be found. Then from Equation (17) and (28) the values of 
S and f(r) corresponding to the given initial conditions are found. 
Now if the inequalities 

r > r!V and x < f(r) (29) 

are satisfied we understand that the orbit corresponding to the given 
initial conditions may be escaping. This is because these two inequa­
lities are sufficient conditions for the plane (18) and the ellipsoid 
(4) to intersect each other, thus forming on the velocity ellipsoid a 
patch to the points of which there correspond velocities leading to 
escaping orbits. 

Therefore it will depend on the direction of the velocity x,y,x 
whether or not the orbit will be escaping. 
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Another way of interprating inequality (27) is the following: 
Suppose that the third body is brought to a distance r>rft from the center 
of mass of the primaries P and P . The question is: With a certain 
negative value of the energy E (by means of which rft was determin­
ed) and of the angular momentum L are there any velocities which 
make the body P escape to infinity? The answer may definetely be af­
firmative provided that the distance x^/y between the primaries P.. 
and P„ is sufficiently small as to satisfy the inequality (27). 

We now observe that 
(i) As r •> r.,. we have 

lim S 
r-̂ r.,. 

and lim f(r) 
r->r. 

(ii) As r-*» we have 

lim f(r) = 
y2(l-p)(l-m3)

2 

0.4--

0.2 

Fig. 1: The function x =f(r) as given by Equation (28), drawn for 
y=0.50, m3=0.015 E=-0.25 and L=0.05. For a certain r>rA 

and for x.,<f(r) there is always a region of escaping orbits 
on the velocity ellipsoid. 

It is worth noticing that the value of the limf(r) is the same with 
p-»oo 

2 2 
the value k in the position space of the plane x =k=y (l-y)(l-m ) /-E 
which is asymptotically tangent to the zero velocity surfaces 
(Bozis, 1976). 
(iii). A direct calculation gives 
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o 
df(r) 4 p., ,-i2 2,., w , >2r ,, N L 
••,'• = ~, Lf(r)J V (l-u)(l-m.) {m (l-m„)r + — r . ^ + 
dr 3L a 3 3 3 m (1-m ) 

y(l-p)rA 
+ m3(l-m3) ^ (3r-rA)}. 

(r-rA) 

Since r>rA, we have df(r)/dr>0, i.e. the function f(r) is increasing 
in the interval [r .,.,<») (Figure 1). 

For a given value of r>r.,{ we have from Figure 1 the values of 
x for which the inequality (27) is valid. 

Inequality (27) may also be interpreted as follows: The Equation 

:/xV) = X 1 - f(/x +y ) = 0 (30) 

represents in the position space a surface of revolution around the Ox. 
axis. Figure 1 may also serve to visualize the intersection of this 
surface with either of the planes y=0 or x=0. The surface of 
revolution is asymptoticaly tangent to the plane 

U2(l-y)(l-m3)
2 

Xl = =F̂  • 

We thus come to the conclusion that for given values of p, m , E 
and L escape of the third body is not guaranteed in the part of the 
position space underneath the zero velocity surfaces, above the surface 
of revolution (30) and outside the cylinder 

x2+y2 = r2 (31) 

Obviously, inside the cylinder (31) escape is not guaranteed since 
the inequality (16a) is not valid. 

A final remark concerns the coefficients of Equation (20). These 
coefficients have no meaning for y=0. This case, however, may be 
studied separately. In fact the Equation of the straight line (18) be­
comes 

xx = S 

whereas the Equation of the ellipse (19) becomes 
.2 .2 
^ + * = 1 
a b 

These two curves intersect each other if 

https://doi.org/10.1017/S0252921100062485 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100062485


366 G. BOZIS 

S < a x -

or, since x=r, if 

r > S 
- a 

Again taking into account (23), (24-), (25) we can easily prove 
that the inequality r>S/a is equivallent to the inequality (27). Thus 
(27) covers the case y=0 as well. 

4. NUMERICAL EXAMPLE 

Figure 1 was drawn for the following values of the parameters: 

p = 0.50, m = 0.01 E = -0.25 L = 0.05. 

From Equation (15) we find 

rA = 1.0197. 

We now select a distance r=/5~ > rs,. and, for this r, we find from 

Equation (17) 

S = 2.2135. 

Then, either from the diagram of Figure 1 or from Equation (28) we find 

f(r=/5) = 0.4374. 

2 2 
Let us now select x=l, y=2 (so that x ty =5) and x =0.30 (so 

that the inequality (27) is satisfied). 

For this position of the triple system (with given masses and E, 
L) there will be a patch on the velocity ellipsoid for all points of 
which we will have an escaping orbit for the body P . 

o 

In Figure 2 we give the projection of this patch on the 0'xy plane. 
This is found as follows: 

For the point 
x = 1, y = 2, x = 0.30 

of the configuration space we calculate the values of R, Q and $ from 
Equations (6), (7) and (5) respectively. Then with the aid of Formulae 
(9) and (8) we calculate the semi-axes a,b,c of the velocity ellipsoid 
as well as its orientation. 

We have 
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a = 5.5735, b = 6.9514, c = 0.5573 

367 

and 
tgcp = 2. 

Fig.22 The shaded part of this Figure is the projection of the 

escaping region of the velocity ellipsoid on the 0 'xy plane 
for^ u=0.50, m3=0.01, E=-0.25, L=0.05. For a certain pair 
x, y of the shaded region the value of x. is found from 
Equation (4). The velocities (x, y. 
are then escaping velocities. V and (x, y, -v 

We now draw the ellipse 
•2 .2 
£ + ̂  = 1. 2 , 2 a b 

Next we draw the straight line (18), i.e. 

x + 2y = 2.2135 

The shaded part of Figure 2 corrsponds to velocities for which the third 
body by all means escapes to infinity. For any pair x,y of the shaded 
part of Figure 2 the corresponding value of x must be found from 
Equation (4). The velocity (x,y,x.) as well as the velocity (x,y,-x ) 
is then an escaping velocity. 
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5. COMMENTS AND CONCLUSIONS 

The planar problem of three bodies is of three degrees of freedom in a 
conveniently selected non-inertial frame. As a consequence, we can think 
of a representative point P moving in a triaxial space Oxyx.. For 
given values of the masses of the three bodies and the parameters E and 
L there exist always, in the position space, regions where motion of 
the point P(x,y,x ) is allowed to take place. 

On the other hand to each point P(x,y,x ) of the allowable position 
space there corresponds, in the velocity space 0'xyx., a velocity el­
lipsoid, i.e. a surface with Equation (4). The vector of the velocity 
of the point P may have any direction. However the magnitude of the 
velocity is found from Equation (4) for any given direction. The range 
of the velocities which can be used from any point P with certain 
values of E, L can be found by calculating the semi-axes (9) of the 
velocity ellipsoid. 

Let us look at this from another point of view: Suppose that y, 
m3, E and L are given and also a point P(x,y,x ) is given. The velocity 
ellipsoid corresponding to this point P is then determined with the 
aid of Equations (9) and (8). To each point of this ellipsoid there 
corresponds a certain orbit through the point P with a definite velocity. 
The question naturally arises: Do all the orbits through P have any 
common features? In particular how do they behave as to escaping? The 
answer is as follows: If the inequalities (29) are satisfied at the 
point P, then there exists a part on the surface of the velocity el­
lipsoid to all points of which there correspond escaping orbits. This 
part is always less than half of its surface. Its projection on the 
0'xy plane is defined, as in Fig.2, by the intersection of the ellipse 
(19) with the straight line (18), which is always parallel to one of 
the main axes of the ellipse. (See Figure 2). 

In case that the inequalities (29) are not simultaneously satisfied 
there is no velocity for which escape of the third body may be guaranteed. 
This happens inside the cylinder (31) or outside this cylinder but 
between the surface of revolution (30) and the zero velocity surface. 

If, for instance, in the numerical example worked in §4, we select­
ed x-i=0.50 (instead of x->=0.30) the second inequality (29) would not 
hold and no patch of escaping orbits on the velocity ellipsoid could 
be found. 

Consider now a symmetric periodic orbit. Since at t=0 we have 
x=x , y=0, it follows from (8) that tp=0 and the velocity ellipsoid is 

.2 .2 x? 

2 v2 2 
a b c 
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Also, since at t=0 it is x =0, x. =0 we have y =±b. ' o l,o Jo 

On the other hand the straight line (8) is, in this case, 

S 
x = — . 

x 
o 

Obviously the initial velocity (0,0 ,b) or (0,0,-b) of the periodic 
orbit through the point (x , 0, x ) corresponds to a point of the ve­
locity ellipsoid outside the shaded region x>S/x . 

REFERENCES 

1. Birkhoff, G. : 1927, Dynamical Systems, (published by the 
A.M.S., Providence, Rhode Island). 

2. Bozis, G.: 1976, Astroph. and Space Science ̂ +3_, 355. 
3. Standish, M.: 1971, Celes. Mech 4, 44. 

https://doi.org/10.1017/S0252921100062485 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100062485



